ebook img

Handbook of materials failure analysis : with case studies from the oil and gas industry PDF

432 Pages·2016·86.965 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of materials failure analysis : with case studies from the oil and gas industry

Handbook of Materials Failure Analysis With Case Studies from the Oil and Gas Industry Handbook of Materials Failure Analysis With Case Studies from the Oil and Gas Industry Edited by Abdel Salam Hamdy Makhlouf Mahmood Aliofkhazraei AMSTERDAM (cid:129) BOSTON (cid:129) HEIDELBERG (cid:129) LONDON NEW YORK (cid:129) OXFORD (cid:129) PARIS (cid:129) SAN DIEGO SAN FRANCISCO (cid:129) SINGAPORE (cid:129) SYDNEY (cid:129) TOKYO Butterworth-Heinemann is an imprint of Elsevier ButterworthHeinemannisanimprintofElsevier TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK 225WymanStreet,Waltham,MA02451,USA Copyright#2016ElsevierLtd.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesand ourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein. BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-08-100117-2 ForinformationonallButterworthHeinemannpublications visitourwebsiteathttp://store.elsevier.com/ Contributors Mohammed A.Al-Anezi SaudiAramco,Dhahran,SaudiArabia Tariq A. Al-Ghamdi SaudiAramco,Dhahran,SaudiArabia Saad M. Al-Muaili SaudiAramco,Dhahran,SaudiArabia Waleed L. Al-Otaibi SaudiAramco,Dhahran,SaudiArabia Julien Capelle ENIM (LaBPS), Metz, France Guillermina Capiel Composite Materials,InstituteofMaterials Science and Technology (INTEMA), University ofMar delPlataand National Research Council, and Chemical Engineering Department,University of Mar delPlata,Mar del Plata, Argentina CarlosChastre Department ofCivilEngineering, FCT, Universidade NOVA de Lisboa,Lisboa, Portugal Joaquim S.Corte Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Metalu´rgica e Materiais, Rio de Janeiro, Brazil Tito L. da Silveira TSEC IntegridadeEstrutural Ltda, Riode Janeiro, Brasil Ryuichiro Ebara InstituteofMaterialsScienceandTechnology,FukuokaUniversity,Fukuoka-city, Japan Ahmed Z.Farahat CentralMetallurgical Research and Development Institute, CMRDI, Helwan, Cairo,Egypt Pablo Fayo´ Composite Materials,InstituteofMaterials Science and Technology (INTEMA), University ofMar delPlataand National Research Council, Mar delPlata, Argentina Pablo Fazzini GIE S.A., Failure Analysis Division,Mar delPlata, Argentina Heloisa C. Furtado ElectricalResearch Center,Rio deJaneiro, Brazil xv xvi Contributors Yi Gong Department ofMaterialsScience, Fudan University, Shanghai, China ShokrollahHassani BP America Inc.,Houston, TX, USA Alexander Hudgins Exponent, Menlo Park, California, USA Brad James Exponent, Menlo Park, California, USA Herna´n G. Kunert UniversityofMardelPlata,andGIES.A.,FailureAnalysisDivision,MardelPlata, Argentina ChunQ. Li RoyalMelbourneInstituteofTechnology, Melbourne, Australia TanF. Long UTM-MPRC Institue for Oil and Gas, Universiti TeknologiMalaysia(UTM), Skudai, Johor, Malaysia MarcoLudovico-Marques BarreiroSchoolofTechnology, Polytechnic Institute ofSetu´bal,Lavradio, Portugal Mojtaba Mahmoodian RoyalMelbourneInstituteofTechnology, Melbourne, Australia Zulkifli A.Majid UTM-MPRC Institue for Oil and Gas, Universiti TeknologiMalaysia(UTM), Skudai, Johor, Malaysia AbdelS.H. Makhlouf Manufacturing and Industrial Engineering Department,Collegeof Engineering and ComputerScience,University ofTexas RioGrandeValley AnibalA. Marquez University ofMar del Plata, and INTEMA-CONICET, Mar del Plata, Argentina IainL. May Metallurgical Consulting Services Ltd.,Saskatoon,SK, Canada Rahmat Mohsin UTM-MPRC Institue for Oil and Gas, Universiti TeknologiMalaysia(UTM), Skudai, Johor, Malaysia PabloE.Montemartini CompositeMaterials, Institute ofMaterials Science and Technology (INTEMA), University ofMar del Plata and NationalResearch Council, and Chemical Engineering Department,University ofMar del Plata,Mar delPlata, Argentina Contributors xvii SeifollahNasrazadani Engineering TechnologyDepartment,University of North Texas, Denton, TX, USA AntonelaOrofino Composite Materials,InstituteofMaterials Science and Technology (INTEMA), University ofMar delPlataand National Research Council, and Chemical Engineering Department,University of Mar delPlata,Mar del Plata, Argentina Jose´ L. Otegui Y-TEC (YPF—CONICET), Ensenada,Argentina Juan M.Pardal UniversidadeFederalFluminense–EscoladeEngenharia,RuaPassodaPa´tria, Nitero´i, Rio de Janeiro, Brazil Guy Pluvinage ENIM (LaBPS), Metz, France Iva´nU. Pe´rez Universidad Industrial Santander,Bucaramanga, Colombia Xudong Qian Department ofCiviland Environmental Engineering, NationalUniversity of Singapore,Singapore CarlosRubio-Gonza´lez Centro deIngenierı´a y Desarrollo Industrial, Quere´taro,Me´xico Juan M.Salgado-Lo´pez Centro deIngenierı´a y Desarrollo Industrial, Quere´taro,Me´xico ChristianSchmitt ENIM (LaBPS), Metz, France Se´rgioS.M.Tavares UniversidadeFederalFluminense–EscoladeEngenharia,RuaPassodaPa´tria, Nitero´i, Rio de Janeiro, Brazil GudimellaV.S. Murthy Materials Science and Technology Division,CSIR-National Metallurgical Laboratory, Jamshedpur, Jharkhand,India Zhen-Guo Yang Department ofMaterials Science,Fudan University, Shanghai, China Xiao-Hua Zhu SchoolofMechanicalEngineering, Southwest Petroleum University, Chengdu, China Preface Failureanalysisandpreventionareimportantissuesforallengineeringmaterialsand industrial structures. One of the most important engineering fields which plays an essentialroleinfailureanalysisisMaterialsEngineering.Whetherthefailurehap- pens in service or during the production process (manufacturing defects), failure analysis must be performed in order to prevent it from happening again in future. Another important factor which must be precisely investigated is to determine whetheror notthe metalliccomponents andstructures are beingused well. There have been several reports of catastrophic accidents in the Oil and Gas industry in countries including the United Kingdom, Kuwait, the United States of America, Venezuela, etc. Most, if not all of these accidents, were due to materials failureandwerethoughttobethecauseofanumberofworkersbeingkilled,inaddi- tiontotheenvironmentalcrises.Forinstance,in1993,anaturalgaspipelinerunning alongahighwayinVenezuela,exploded.Therapidcombustionofthespreadinggas caused a hellish situation that lead to the deaths of at least 50 people. It should be notedthatalotoffactors,includingbaddesign,impropermanufacturing,low-grade rawmaterialsinthepipeproduction,improperjoiningofthepipesand/orcorrosion, can bethe cause ofsuch incidents. This handbookcoversanalysis ofmaterials failureinthe Oil and Gas industry, where a single failure can result in devastating consequences for people, wildlife, theenvironment,andtheeconomyofaregion.Thebookcombinesintroductorysec- tionsonfailureanalysiswithnumerousreal-worldcasestudiesofpipelinesandother typesofmaterialsfailureintheOilandGasindustry,includingjointfailure,leakage incrudeoilstoragetanks,failureofglassfiber-reinforcedepoxypipes,andfailureof stainless steel components inoffshore platforms, amongst others. Thishandbookcontainsmanyfailurereal-worldcasesandcasestudiescoveringa widespectrumofmaterialsfailurerelatedtopetroleum,petrochemicals,oil,andgas applications.Theeditorsthankallthecontributorsfortheirexcellentchaptercontri- butions to this handbook, and for their hard work and patience during preparation, andproductionofthehandbook.Wesincerelyhopethatthepublicationofthishand- book will help people from Industry and Academia to get the maximum benefits from the experience contained inthe published chapters. Summer 2015 Abdel Salam Hamdy Makhlouf Mahmood Aliofkhazraei xix CHAPTER 1 Failure analysis of oil and gas transmission pipelines BradJames, AlexanderHudgins Exponent,MenloPark,California,USA CHAPTER OUTLINE 1 Introduction .........................................................................................................1 2 MechanicalDamage .............................................................................................3 3 LongitudinalSeam-WeldDefects ...........................................................................6 3.1 Lap-WeldDefects .................................................................................8 3.2 Lap-WeldCaseStudy ...........................................................................9 3.3 ERWDefects .....................................................................................12 3.4 FlashWeldDefects ............................................................................14 3.5 Submerged-ArcWeldDefects ..............................................................14 3.6 Submerged-ArcWeldDefectCaseStudy ..............................................15 3.7 ShieldedMetalArcWeldDefects.........................................................20 4 Corrosion ...........................................................................................................21 4.1 GeneralCorrosion ...............................................................................22 4.2 StressCorrosionCracking ...................................................................22 4.3 High-pHSCCCaseStudy ....................................................................23 4.4 Near-NeutralpHSCCCaseStudy ........................................................24 4.5 Hydrogen-StressCracking ...................................................................24 4.6 HSCCaseStudy.................................................................................28 4.7 GroovingCorrosion .............................................................................31 5 Fatigue ..............................................................................................................33 6 Conclusion .........................................................................................................36 References ..............................................................................................................36 1 INTRODUCTION Thereareover2.3millionmilesofpipelinesintheUnitedStatesthatcarrynatural gasandliquid-petroleumproducts[1];approximately60%ofwhichwereinstalled before 1970 [2]. These oil and gas pipelines are the backbone of our energy- dependentsociety.Statisticsindicatethatoilandgaspipelinesareafarsafer,more efficient, cost-effective way to move these hazardous products than any other 1 HandbookofMaterialsFailureAnalysisWithCaseStudiesfromtheOilandGasIndustry. http://dx.doi.org/10.1016/B978-0-08-100117-2.00001-7 Copyright©2016ElsevierLtd.Allrightsreserved. 2 CHAPTER 1 Failure analysis of oil and gas transmission pipelines methodoftransportation[1].However,whenpipelinesdoruptureorleak,disastrous human, environmental, and business consequences can result. The most common issuesthatcanresultinpipelineleaksandrupturesincludemechanicaldamage,seam weld defects, stress corrosion cracking (SCC), hard spots, fatigue, and corrosion. This chapter is intended to serve as a primer to help failure analysts to understand andinterpretthesemorecommonpipelinefailuremechanismsandprovidesspecific casestudies.Themoreweunderstandhowandwhypipelinescanfail,thebetterwe can maintain ouraging infrastructureandprevent accidentsin the future. Internalpressureresultsin“hoopstress”inapipelineandistypicallyquantified using Barlow’s formula [3]. These hoop stresses act to favor crack initiation and growthinaradialandalongitudinaldirection.Hoopstressesandthecorresponding preferentialcrackgrowthdirectionsinpipeareshownschematicallyinFigure1.1. Thus,pipinganomaliesthataremostdetrimentaltointegrityaretypicallythosethat are oriented ina longitudinal direction. Stresses other than pressure-induced hoop stress can affect pipeline integrity. Residualstressescausedbyinadvertentdentsorgougescancontributetocrackini- tiationandgrowth.Weldingcanalsobeasourceofresidualstresses.Anotherofthe morecommonstressesthatcancausepipelinefailuresarethosecausedbygeological forces, such as landslides, earthquakes, or other large-scale soil or pipeline move- ment. These can result in axial stresses that cause failures transverse to the pipe’s longitudinal direction, such as at girthwelds. Datafrom2011showthatmaterialandweldfailuresconstitutethelargestincident type for both hazardous liquid and gas transmission systems (Figures 1.2 and 1.3). Other authors have indicated that third party damage is the most common cause of incidentsingastransmissionsystems[4].Thefollowingsectionsoutlinespecificpipe- linefailure mechanismsand provideexamplestoillustrate key phenomena.A sum- mary of failure mechanisms presented in this chapter is shown in Table 1.1, which alsoservesasanoutlineforthecontentpresentedinthischapter. Radial crack Hoop stress growth direction Longitudinal crack growth direction FIGURE1.1 Schematicpipelineshowingtheorientationofhoopstressresultingfrominternalpressure andthepreferentialorientationofcrackgrowth. 2 Mechanical Damage 3 Other outside forceAll other causes, 37, damage, 18, 3% 7% Natural force damage, 34, 6% Corrosion, 133, 24% Excavation damage, Material and/or 75, 14% weld failures, 195, 36% Incorrect operation, 55, 10% FIGURE1.2 Thedistributionofincidentsinhazardousliquidlinesisshownbetweentheyearsof2006 and2010[20]. Other outside force damage, 24, All other causes, 9% 43, 16% Corrosion, 54, 20% Excavation damage, 40, 14% Natural force damage, Material and/or 18, weld failures, 84, 6% 31% Incorrect operation, 10, 4% FIGURE1.3 Thedistributionofincidentsingastransmissionlinesisshownbetweentheyearsof2006 and2010[20]. 2 MECHANICAL DAMAGE Mechanicaldamageoccurswhenapipelineisstruckbymechanicalequipment,such asabackhoe.Mechanicaldamagehasbeencharacterizedbysomeofthemostcom- mon causes of pipeline rupture [5]. If the mechanical strike does not immediately rupturethepipe,theformationofthedentorgougewilloftenresultinlocalstress concentrationandresidualstresses.API579andASMEB31.8provideguidancefor

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.