ebook img

Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries PDF

498 Pages·2015·108.05 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries

Handbook of Materials Failure Analysis With Case Studies from the Aerospace and Automotive Industries Handbook of Materials Failure Analysis With Case Studies from the Aerospace and Automotive Industries Edited by Abdel Salam Hamdy Makhlouf Mahmood Aliofkhazraei AMSTERDAM (cid:129) BOSTON (cid:129) HEIDELBERG (cid:129) LONDON NEW YORK (cid:129) OXFORD (cid:129) PARIS (cid:129) SAN DIEGO SAN FRANCISCO (cid:129) SINGAPORE (cid:129) SYDNEY (cid:129) TOKYO Butterworth-Heinemann is an imprint of Elsevier ButterworthHeinemannisanimprintofElsevier TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK 225WymanStreet,Waltham,MA02451,USA Copyright#2016ElsevierLtd.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein. BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-800950-5 ForinformationonallButterworthHeinemannpublications visitourwebsiteathttp://store.elsevier.com/ Contributors Laura Allegrucci Chemistry Department,Italian Air Force—FlightTest Centre,PraticadiMare AFB, Pomezia, Rome, Italy Mikael Amura Chemistry Department,Italian Air Force—FlightTest Centre,PraticadiMare AFB, Pomezia, Rome, Italy In˜akiArmenda´riz MaterialsandStructuresDepartment,InstitutoNacionaldeTe´cnicaAeroespacial (INTA),Torrejo´n de Ardoz, Madrid Spain Mohammad Azadi Fatigueand Wear inMaterials (FWM) Workgroup, Irankhodro Powertrain Company(IPCO),Tehran, Iran FionaBelben AWL MaterialsTechnologyLaboratory, AgustaWestlandLtd.,Yeovil,Somerset, United Kingdom ManueleBernabei Chemistry Department,Italian Air Force—FlightTest Centre,PraticadiMare AFB, Pomezia, Rome, Italy Swati Biswas Gas Turbine Research Establishment, Bengaluru,India Victor K.Champagne US Army Research Laboratory, Aberdeen Proving Ground,Adelphi,Maryland, USA Seyid F. Diltemiz TurkishAirForce,1stAirSupplyandMaintenanceCenterCommand,Eskis¸ehir, Turkey Mirko Dinulovic University ofBelgrade,Faculty ofMechanicalEngineering, Kraljice Marije 16, Belgrade,Serbia Kay Ellinghaus Tenneco GmbH, Edenkoben,Germany Jose´ M. Encinas MaterialsandStructuresDepartment,NationalInstituteofAerospaceTechniques (INTA),Torrejo´n de Ardoz, Madrid, Spain Ahmed Z.Farahat CentralMetallurgical Research and Development Institute, CMRDI, Helwan, Cairo,Egypt xix xx Contributors MudigereD. Ganeshachar Gas TurbineResearchEstablishment,Bengaluru,India Juan Garcı´a-Martı´nez MaterialsandStructuresDepartment,InstitutoNacionaldeTe´cnicaAeroespacial (INTA), Torrejo´n de Ardoz, MadridSpain Thomas Goehring Tenneco Inc.,GrassLake, Jackson, Michigan,USA Roberto Gonza´lez MaterialsandStructuresDepartment,InstitutoNacionaldeTe´cnicaAeroespacial (INTA), Torrejo´n de Ardoz, MadridSpain Selim Gu¨rgen Department ofMechanicalEngineering, Eskis¸ehir OsmangaziUniversity, Eskis¸ehir, Turkey Vı´ctor H. Jacobo Department ofMaterialsScience and Manufacturing, DIMEI Universidad NacionalAuto´noma de Me´xico Avenida Universidad, Coyoaca´n,Me´xico D.F. Mexico AdamKotrba Tenneco Inc.,GrassLake, Jackson, Michigan,USA BranimirKrstic University ofDefence inBelgrade, Military Academy,Generala Pavla Jurisica Sturma 33,Belgrade,Serbia MelihC.Kus¸han Department ofMechanicalEngineering, Eskis¸ehir OsmangaziUniversity, Eskis¸ehir, Turkey JivanKumar Gas TurbineResearchEstablishment,Bengaluru,India Victoria L. Long NationalAeronauticsandSpaceAdministration(NASA),KennedySpaceCenter, Florida, USA Limin Luo Tenneco Inc.,GrassLake, Jackson, Michigan,USA AbdelS.H. Makhlouf Manufacturing and Industrial Engineering Department,Collegeof Engineering and ComputerScience,University ofTexas RioGrandeValley Steven J. McDanels NationalAeronauticsandSpaceAdministration(NASA),KennedySpaceCenter, Florida, USA Contributors xxi Javier S.Milla´n MaterialsandStructuresDepartment,InstitutoNacionaldeTe´cnicaAeroespacial (INTA),Torrejo´n de Ardoz, Madrid Spain Melany Mioduszewski Tenneco Inc.,Grass Lake, Jackson,Michigan, USA Teresa L.M. Morgado EngineeringDepartmentalUnitofTomarPolytechnicInstitute,EscolaSuperiorde Tecnologiade Abrantes do Instituto Polite´cnicode Tomar,Abrantes, Portugal, and ICEMS-IST-UL—Institute ofMaterials and SurfacesScience and Engineering, Lisbon University, Lisboa, Portugal Sangli N. Narendra Babu Gas Turbine Research Establishment, Bengaluru,India Jose´ Olarrea E.T.S.I.Aerona´uticos,UniversidadPolite´cnicadeMadrid(UPM),Madrid,Spain ArmandoOrtiz Department ofMaterials Science and Manufacturing, DIMEI Universidad NacionalAuto´nomade Me´xico AvenidaUniversidad, Coyoaca´n, Me´xico D.F. Mexico Edgar A.Ossa MaterialEngineeringResearchGroup,SchoolofEngineering,UniversidadEafit, Medell´ın,Colombia Marco Paniagua MaterialEngineeringResearchGroup,SchoolofEngineering,UniversidadEafit, Medell´ın,Colombia Marc S. Pepi US Army Research Laboratory, Aberdeen Proving Ground,Adelphi, Maryland, USA Markus Pieszkalla Tenneco GmbH, Edenkoben,Germany Igor Radisavljevic MilitaryTechnical Institute,Ratka Resanovica1, Belgrade,Serbia Zoran Rajic MilitaryTechnical Institute,Ratka Resanovica1, Belgrade,Serbia Edgar I.Ramı´rez Department ofMaterials Science and Manufacturing, DIMEI Universidad NacionalAuto´nomade Me´xico AvenidaUniversidad, Coyoaca´n, Me´xico D.F. Mexico Bosko Rasuo University ofBelgrade,Faculty ofMechanicalEngineering, Kraljice Marije 16, Belgrade,Serbia xxii Contributors MarekRybarz Tenneco Automotive Polska sp. z o.o.Rybnik, Poland VaradaN. Satish Kumar Gas TurbineResearchEstablishment,Bengaluru,India RafaelSchouwenaars Department ofMaterialsScience and Manufacturing, DIMEI Universidad NacionalAuto´noma de Me´xico Avenida Universidad, Coyoaca´n,Me´xico D.F. Mexico DanielJ. Thomas College ofEngineering, Swansea University, Swansea,UK Dragan Trifkovic University ofDefence inBelgrade, Military Academy,Generala Pavla Jurisica Sturma 33,Belgrade,Serbia Zhigang Wei Tenneco Inc.,GrassLake, Jackson, Michigan,USA William J.Wolfgong RaytheonSpace and Airborne Systems,Component Engineering Department, McKinney, Texas MariaC.Wright NationalAeronauticsandSpaceAdministration(NASA),KennedySpaceCenter, Florida, USA XiaoleiXu KeyLaboratory ofShip-MachineryMaintenance & Manufacture Ministry of Communication,PRC,andDepartmentofMaterialsScience,EngineeringDalian Maritime University, Dalian, PR China Shang-Kuo Yang Department ofMechanicalEngineering, NationalChin YiUniversity of Technology, Taichung, Taiwan Zhiwei Yu KeyLaboratory ofShip-MachineryMaintenance & Manufacture Ministry of Communication,PRC,andDepartmentofMaterialsScience,EngineeringDalian Maritime University, Dalian, PR China Preface OneofthemostcommonapplicationsoffailureanalysisisintheAerospaceindustry. Planescrashesarememorabletothepublic,duetotheresultinglossoflivesofmany people and the spiritual injuries suffered by survivors. In 2005, a hydroplane explodedduringtakeofffromMiamiBeach,Florida.Theplanewascarryingfifteen passengers.Duringthistragedy,duetoanexplosion,theplanewasengulfedinflame and the right wing was damaged prior to collision with the surface of the water. Experiments on the wreck of the plane indicated that the cracks resulting from fatigueintherightwingoftheplanewerethecauseoftheaccident.Anotherexample wasanincidentinRailwayTransportin1998.AnexpresstraininGermanywentoff therails.ThetrainwastravellingontherailwaybetweenMunichandHamburg.At 11AM,aroundEschede(situated35milestothenorthofHanover),thetrainwent off the rails. According to reports, some of the passengers had heard a knocking sound.Investigationsclarifiedthattheknockingsoundwascreatedduetothefrac- ture of one of the wheels, prior to the reversal of the train. Failure analysis is not limitedtoplanecrashesandtrainsreversals.Failureanalysisisthekeytofailurepre- vention.Materialengineersplaythemostimportantroleintheinvestigationoffail- ure analysis and methods of prevention. Therefore, studying materials science and engineering isthe doortoeffective failure analysisand materialsprotection. Thishandbookprovidesathoroughunderstandingofthereasonsmaterialsfailin certainsituations,coveringimportantscenarios,includingmaterialdefects,mechan- icalfailureasaresultofimproperdesign,corrosion,surfacefracture,andotherenvi- ronmentalcauses.Thehandbookbeginswithageneraloverviewofmaterialsfailure analysisanditsimportance,andthenlogicallyproceedsfromadiscussionofthefail- ureanalysisprocess,typesoffailureanalysis,andspecifictoolsandtechniques,to chapters onanalysis ofmaterials failure from various causes. Thishandbookcontainsmanyreal-worldfailurecasesandcasestudiescoveringa widespectrumofmaterialsfailureinNASA,aerospace,army,marine,andautomo- tive applications. The editors thank all the contributors for their excellent chapter contributionstothishandbook,andfortheirhardworkandpatienceduringtheprep- aration and production of the book. We sincerely hope that the publication of this handbookwillhelppeoplefromIndustryandAcademiatogetthemaximumbenefits from the experience contained inthe published chapters. Summer 2015 Abdel Salam Hamdy Makhlouf Mahmood Aliofkhazraei xxiii CHAPTER 1 Strategies for static failure analysis on aerospace structures JavierS.Milla´n,In˜aki Armenda´riz, JuanGarcı´a-Martı´nez, Roberto Gonza´lez MaterialsandStructuresDepartment,InstitutoNacionaldeTe´cnicaAeroespacial(INTA), Torrejo´ndeArdoz,MadridSpain CHAPTER OUTLINE 1 Introduction .........................................................................................................4 2 DelaminationGrowthinComposites .......................................................................4 2.1 VCCTFundamentals .............................................................................5 2.2 ExperimentalBenchmarkandFEMSimulation .......................................7 2.3 FEMsComparison ................................................................................8 2.4 DelaminationGrowthTool .....................................................................9 2.5 CorrelationBetweenFEMSimulationsandTests.....................................9 2.6 MeshSizeEffects ..............................................................................10 2.7 ComparisonofMixed-ModeFailureCriteria ..........................................10 2.8 ConclusionandFurtherWorkinDelaminationGrowthAnalysis...............10 3 DebondingOnsetandGrowth ...............................................................................12 3.1 DCBCoupon:ModeIInterlaminarFractureToughnessTest ...................13 3.2 FEModeling ......................................................................................13 3.3 CZFundamentals ...............................................................................14 3.4 MeshDependency ..............................................................................14 3.5 ExperimentalResults .........................................................................16 3.6 CorrelationFEMSimulation—Tests .....................................................17 3.7 ConclusionandFutureWorkinDebondingAnalysis...............................20 4 CrackGrowthinMetallicStructures ....................................................................20 4.1 CTOACriterion—ExperimentalObtainingofCTOA ...............................21 C 4.2 CrackGrowthTool ..............................................................................23 4.3 BenchmarksDescription .....................................................................23 4.4 FEMModeling ...................................................................................24 4.5 CorrelationSimulations—Tests ...........................................................24 4.6 CrackGrowthinMetallicStructures—ConclusionandFutureWork .........26 References ..............................................................................................................26 HandbookofMaterialsFailureAnalysisWithCaseStudiesfromtheAerospaceandAutomotiveIndustries. 3 http://dx.doi.org/10.1016/B978-0-12-800950-5.00001-6 Copyright©2016ElsevierLtd.Allrightsreserved. 4 CHAPTER1 Strategiesforstaticfailureanalysisonaerospacestructures 1 INTRODUCTION Failure analysis comprises the prediction of damage onset on a structure when subjectedtoloadsandenvironmentalconditions.Damagesmayconsistinpermanent structural deformations (plastic strains for instance); local damages as cracks forinstance,oringeneralanydeteriorationofthestructure,orlackoffunctionality. Itshouldbenotedthatdamageonsetdoesnotmeanthefinalorcatastrophicfailureof thestructure.Failureanalysisalsocomprisesthesubsequentprogressivefailureanal- ysis(PFA)thatoccurswhenthestructureisloadedinstaticorfatigueenvironments. In PFA, two features are commonly studied. The first is damage progression before it may reach a critical size producing the final failure. The second is the so-called residual strength, the remaining capability of the damaged structure to withstandloads.Intheaircraftsector,itiscommontorefertheconceptofdamage tolerance, which means that a structure in presence of undetected damages, either producedbymanufacturingdefects,fatigue,ambientconditions,oraccidental,isstill abletowithstandtheloadsproducedduringitsservicelife.Thefail-safeconceptis employedandisdefinedasdamagethatmustnotleadtofailurebeforeitisdetectable bymeansofinspections.ProperlyunderstandingoffailurecausesandPFA,allows theengineerimprovingandoptimizingthestructuraldesign,additionallyimproving structural reliability. Instituto Nacional de Te´cnica Aeroespacial (INTA) is currently involved in developing reliable simulation techniques for damaged structures including PFA. Themethodologiesarebasedinthefiniteelementmodel(FEM)techniqueandhave beenappliedtotypicalaerospacestructuresmadeinmetallicorcompositematerials, monolithic orsandwich, etc. Some examplesare shown below: (cid:129) Composite structures with interlaminardelaminations:prediction of delamination growth under staticloads. (cid:129) Debondinganalysis:predictionofdebondingonsetandgrowthunderstaticloads. (cid:129) Crack growth inthin metallic structures(structures with high plasticity). Besidesaccuracy,INTAfocusesondevelopingefficienttechniquesfromacompu- tationalpointofview(reasonablecomputationandpostprocessingtime)aswellas understanding and correcting the mesh size effects (FE results dependency on meshsize). 2 DELAMINATION GROWTH IN COMPOSITES The general trend in modern aircraft structures is the progressive replacement of metallicmaterialswithcomposites.Compositesexhibitsuperiorstructuralproperties suchashigherstressallowable,betterbehaviorinfatigueanddamagetolerance,less sensitivitytocorrosionphenomena,etc.BoththenewAirbusA350andBoeingB787 eachwithover50%oftheirstructuremadeupofcompositesareillustrationsofthis tendency. Thefuel consumptionof these aircrafts isreduced around 20%.

Description:
Handbook of Materials Failure Analysis: With Case Studies from the Aerospace and Automotive Industries provides a thorough understanding of the reasons materials fail in certain situations, covering important scenarios, including material defects, mechanical failure as a result of improper design, c
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.