ebook img

Handbook of functional equations. Functional inequalities PDF

555 Pages·2014·2.75 MB·English
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of functional equations. Functional inequalities

Springer Optimization and Its Applications Volume 95 ManagingEditor PanosM.Pardalos(UniversityofFlorida) Editor–CombinatorialOptimization Ding-ZhuDu(UniversityofTexasatDallas) AdvisoryBoard J.Birge(UniversityofChicago) C.A.Floudas(PrincetonUniversity) F.Giannessi(UniversityofPisa) H.D.Sherali(VirginiaPolytechnicandStateUniversity) T.Terlaky(McMasterUniversity) Y.Ye(StanfordUniversity) AimsandScope Optimizationhasbeenexpandinginalldirectionsatanastonishingrateduringthe lastfewdecades.Newalgorithmicandtheoreticaltechniqueshavebeendeveloped, thediffusionintootherdisciplineshasproceededatarapidpace,andourknowledge ofallaspectsofthefieldhasgrownevenmoreprofound.Atthesametime,oneof themoststrikingtrendsinoptimizationistheconstantlyincreasingemphasisonthe interdisciplinarynatureofthefield. Optimizationhasbeenabasictoolinallareas ofappliedmathematics,engineering,medicine,economics,andothersciences. The series Springer Optimization and ItsApplications publishes undergraduate and graduate textbooks, monographs and state-of-the-art expository work that fo- cus on algorithms for solving optimization problems and also study applications involvingsuchproblems.Someofthetopicscoveredincludenonlinearoptimization (convex and nonconvex), network flow problems, stochastic optimization, optimal control,discreteoptimization,multi-objectiveprogramming,descriptionofsoftware packages,approximationtechniquesandheuristicapproaches. Moreinformationaboutthisseriesathttp://www.springer.com/series/7393 Themistocles M. Rassias Editor Handbook of Functional Equations Functional Inequalities 2123 Editor ThemistoclesM.Rassias DepartmentofMathematics NationalTechnicalUniversityofAthens Athens,Greece ISSN1931-6828 ISSN1931-6836(electronic) ISBN978-1-4939-1245-2 ISBN978-1-4939-1246-9(eBook) DOI10.1007/978-1-4939-1246-9 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2014949795 MathematicsSubjectClassification(2010):39-XX,41-XX,46-XX © SpringerScience+BusinessMedia,LLC2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection withreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredand executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’s location,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permissions forusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliableto prosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication, neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforanyerrorsor omissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespecttothe materialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Handbook of Functional Equations: Functional Inequalities consists of 20 chap- ters written by eminent scientists from the international mathematical community who present important research works in the field of mathematical analysis and related subjects with emphasis to functional equations and functional inequalities. AsRichardBellmanhassoelegantlystatedatthesecondinternationalconference ongeneralinequalities(Oberwolfach1978),“Therearethreereasonsforthestudy of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he said, “As has been pointed out, beauty is in the eye of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. Thereisanelegancetoinequalitiesthatmakesthemveryattractive.”Thechapters of this book focus mainly on both old and recent developments on approximate homomorphisms,onarelationbetweentheHardy–HilbertandtheGabrielinequal- ity,generalizedHardy–HilberttypeinequalitiesonmultipleweightedOrliczspaces, half-discreteHilbert-typeinequalities,affinemappings,contractiveoperators,mul- tiplicativeOstrowskiandtrapezoidinequalities,Ostrowskitypeinequalitiesforthe Riemann–Stieltjesintegral,meansandrelatedfunctionalinequalities,weightedGini means, controlledadditiverelations, Szaz–Mirakyanoperators, extremalproblems inpolynomialsandentirefunctions,applicationsoffunctionalequationstoDirichlet problemfordoublyconnecteddomains,nonlinearellipticproblemsdependingonpa- rameters,stronglyconvexfunctions,aswellasapplicationstosomenewalgorithms forsolvinggeneralequilibriumproblems, inequalitiesfortheFisher’sinformation measures, financial networks, mathematical models of mechanical fields in media withinclusionsandholes. Itisourpleasuretoexpressourthankstoallthecontributorsofchaptersinthis book. I would like to thank Dr. Michael Batsyn and Dr. Dimitrios Dragatogiannis fortheirinvaluablehelpduringthepreparationofthispublication.Lastbutnotleast, I would like to acknowledge the superb assistance that the staff of Springer has providedforthepublicationofthiswork. Athens,Greece ThemistoclesM.Rassias v Contents OnaRelationBetweentheHardy–HilbertandGabrielInequalities..... 1 VandanjavAdiyasurenandTserendorjBatbold MathematicalModelsofMechanicalFieldsinMediawithInclusions andHoles ........................................................ 15 MartaBryla,AndreiV.Krupoderov,AlexeyA.Kushunin, VladimirMityushevandMichailA.Zhuravkov ANoteontheFunctionsthatAreApproximatelyp-WrightAffine....... 43 JanuszBrzde¸k MultiplicativeOstrowskiandTrapezoidInequalities .................. 57 PietroCerone,SeverS.DragomirandEderKikianty A Survey on Ostrowski Type Inequalities for Riemann–StieltjesIntegral ......................................... 75 W.S.CheungandSeverS.Dragomir InvarianceintheFamilyofWeightedGiniMeans ..................... 105 IuliaCostinandGheorgheToader Functional Inequalities and Analysis of Contagion intheFinancialNetworks .......................................... 129 P.Daniele,S.Giuffè,M.Lorino,A.MaugeriandC.Mirabella ComparisonsofMeansandRelatedFunctionalInequalities............ 147 WłodzimierzFechner ConstructionsandExtensionsofFreeandControlledAdditiveRelations 161 TamásGlavositsandÁrpádSzáz vii viii Contents ExtremalProblemsinPolynomialsandEntireFunctions .............. 209 N.K.GovilandQ.M.Tariq OnApproximationPropertiesofSzász–MirakyanOperators........... 247 VijayGupta Generalized Hardy–HilbertType Inequalities on MultipleWeighted OrliczSpaces ..................................................... 273 JichangKuang InequalitiesfortheFisher’sInformationMeasures.................... 281 ChristosP.KitsosandThomasL.Toulias ApplicationsofFunctionalEquationstoDirichletProblemforDoubly ConnectedDomains ............................................... 315 VladimirMityushev Sign-Changing Solutions for Nonlinear Elliptic Problems DependingonParameters .......................................... 327 D.MotreanuandV.V.Motreanu OnStronglyConvexFunctionsandRelatedClassesofFunctions ....... 365 KazimierzNikodem SomeNewAlgorithmsforSolvingGeneralEquilibriumProblems ...... 407 MuhammadA.NoorandThemistoclesM.Rassias ContractiveOperatorsinRelationalMetricSpaces.................... 419 MihaiTurinici Half-DiscreteHilbert-TypeInequalities,OperatorsandCompositions... 459 Bicheng Yang SomeResultsConcerningHardyandHardyTypeInequalities.......... 535 NikolaosB.Zographopoulos Contributors VandanjavAdiyasuren Departmentof MathematicalAnalysis, NationalUniver- sityof Mongolia,Ulaanbaatar,Mongolia TserendorjBatbold Instituteof Mathematics,NationalUniversityof Mongolia, Ulaanbaatar,Mongolia Marta Bryla Department of Computer Sciences and Computer Methods, PedagogicalUniversity,Krakow,Poland Janusz Brzde¸k Department of Mathematics, Pedagogical University, Kraków, Poland Pietro Cerone Department of Mathematics and Statistics, La Trobe University, Bundoora,Australia W. S. Cheung Department of Mathematics, The University of Hong Kong, Pokfulam,HongKong IuliaCostin TechnicalUniversityCluj-Napoca,Cluj-Napoca,Romania P. Daniele Department of Mathematics and Computer Science, University of Catania,Catania,Italy Sever S. Dragomir Mathematics, School of Engineering & Science, Victoria University,MelbourneCity,MC,Australia Włodzimierz Fechner Institute of Mathematics, University of Silesia, Katowice, Poland S. Giuffè D.I.M.E.T. Faculty of Engineering, University of Reggio Calabria, ReggioCalabria,Italy Tamás Glavosits Institute of Mathematics, University of Debrecen, Debrecen, Hungary N.K.Govil DepartmentofMathematicsandStatistics,AuburnUniversity,Auburn, AL,USA ix x Contributors VijayGupta DepartmentofMathematics, NetajiSubhasInstituteofTechnology, NewDelhi,India Eder Kikianty Department of Pure and Applied Mathematics, University of Johannesburg,AucklandPark,SouthAfrica ChristosP.Kitsos TechnologicalEducationalInstituteofAthens,Egaleo,Athens, Greece AndreiV.Krupoderov DepartmentofTheoreticalandAppliedMechanics,Belaru- sianStateUniversity,Minsk,Belarus JichangKuang DepartmentofMathematics,HunanNormalUniversity,Changsha, P.R.China AlexeyA.Kushunin DepartmentofTheoreticalandAppliedMechanics,Belarusian StateUniversity,Minsk,Belarus M. Lorino Department of Mathematics and Computer Science, University of Catania,Catania,Italy A. Maugeri Department of Mathematics and Computer Science, University of Catania,Catania,Italy C. Mirabella Department of Mathematics and Computer Science, University of Catania,Catania,Italy Vladimir Mityushev Department of Computer Sciences and Computer Methods, PedagogicalUniversity,Krakow,Poland D.Motreanu DépartementdeMathématiques,UniversitédePerpignan,Perpignan, France V.V.Motreanu DepartmentofMathematics,BenGurionUniversityoftheNegev, Be’erSheva,Israel KazimierzNikodem DepartmentofMathematicsandComputerScience,Univer- sityofBielsko-Biala,Bielsko-Biala,Poland MuhammadA.Noor COMSATSInstituteofInformationandTechnology,Islam- abad,Pakistan ThemistoclesM.Rassias DepartmentofMathematics,NationalTechnicalUniver- sityofAthens,Athens,Greece ÁrpádSzáz InstituteofMathematics,UniversityofDebrecen,Debrecen,Hungary Q. M. Tariq Department of Mathematics and Computer Science, Virginia State University,Petersburg,VA,USA GheorgheToader TechnicalUniversityCluj-Napoca,Cluj-Napoca,Romania ThomasL.Toulias TechnologicalEducationalInstituteofAthens,Egaleo,Athens, Greece Contributors xi MihaiTurinici “A.Myller”MathematicalSeminar, “A.I.Cuza”University, Ias¸i, Romania BichengYang Department of Mathematics, Guangdong University of Education, Guangzhou,Guangdong,P.R.China MichailA.Zhuravkov DepartmentofTheoreticalandAppliedMechanics,Belaru- sianStateUniversity,Minsk,Belarus Nikolaos B. Zographopoulos Department of Mathematics & Engineering Sci- ences,HellenicArmyAcademy,Athens,Greece

Description:
As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), “There are three reasons for the study of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he said, “As has been pointed out, beauty is
See more

The list of books you might like