Handbook of Difierential Equations 3rd edition Daniel Zwillinger Academic Press, 1997 Contents Preface Introduction Introduction to the Electronic Version How to Use This Book I.A Deflnitions and Concepts 1 Deflnition of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Alternative Theorems . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Bifurcation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 A Caveat for Partial Difierential Equations . . . . . . . . . . . . 27 5 Chaos in Dynamical Systems . . . . . . . . . . . . . . . . . . . . 29 6 Classiflcation of Partial Difierential Equations . . . . . . . . . . . 36 7 Compatible Systems . . . . . . . . . . . . . . . . . . . . . . . . . 43 8 Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . 47 9 Difierential Resultants . . . . . . . . . . . . . . . . . . . . . . . . 50 10 Existence and Uniqueness Theorems . . . . . . . . . . . . . . . . 53 11 Fixed Point Existence Theorems . . . . . . . . . . . . . . . . . . 58 12 Hamilton-Jacobi Theory . . . . . . . . . . . . . . . . . . . . . . . 61 13 Integrability of Systems . . . . . . . . . . . . . . . . . . . . . . . 65 14 Internet Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 71 15 Inverse Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 16 Limit Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 17 Natural Boundary Conditions for a PDE . . . . . . . . . . . . . . 83 18 Normal Forms: Near-Identity Transformations . . . . . . . . . . 86 19 Random Difierential Equations . . . . . . . . . . . . . . . . . . . 91 20 Self-Adjoint Eigenfunction Problems . . . . . . . . . . . . . . . . 95 21 Stability Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 101 22 Sturm-Liouville Theory . . . . . . . . . . . . . . . . . . . . . . . 103 23 Variational Equations . . . . . . . . . . . . . . . . . . . . . . . . 109 24 Well Posed Difierential Equations . . . . . . . . . . . . . . . . . . 115 25 Wronskians and Fundamental Solutions . . . . . . . . . . . . . . 119 26 Zeros of Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . 123 I.B Transformations 27 Canonical Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 28 Canonical Transformations . . . . . . . . . . . . . . . . . . . . . 132 29 Darboux Transformation . . . . . . . . . . . . . . . . . . . . . . . 135 30 An Involutory Transformation . . . . . . . . . . . . . . . . . . . . 139 31 Liouville Transformation - 1 . . . . . . . . . . . . . . . . . . . . . 141 32 Liouville Transformation - 2 . . . . . . . . . . . . . . . . . . . . . 144 33 Reduction of Linear ODEs to a First Order System . . . . . . . . 146 34 Prufer Transformation . . . . . . . . . . . . . . . . . . . . . . . . 148 35 Modifled Prufer Transformation . . . . . . . . . . . . . . . . . . . 150 36 Transformations of Second Order Linear ODEs - 1 . . . . . . . . 152 37 Transformations of Second Order Linear ODEs - 2 . . . . . . . . 157 38 Transformation of an ODE to an Integral Equation . . . . . . . . 159 39 Miscellaneous ODE Transformations . . . . . . . . . . . . . . . . 162 40 Reduction of PDEs to a First Order System . . . . . . . . . . . . 166 41 Transforming Partial Difierential Equations . . . . . . . . . . . . 168 42 Transformations of Partial Difierential Equations . . . . . . . . . 173 II Exact Analytical Methods 43 Introduction to Exact Analytical Methods . . . . . . . . . . . . . 178 44 Look-Up Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 179 45 Look-Up ODE Forms. . . . . . . . . . . . . . . . . . . . . . . . . 219 II.A Exact Methods for ODEs 46 An Nth Order Equation . . . . . . . . . . . . . . . . . . . . . . . 224 47 Use of the Adjoint Equation . . . . . . . . . . . . . . . . . . . . . 226 48 Autonomous Equations - Independent Variable Missing . . . . . 230 49 Bernoulli Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 235 50 Clairaut’s Equation. . . . . . . . . . . . . . . . . . . . . . . . . . 237 51 Computer-Aided Solution . . . . . . . . . . . . . . . . . . . . . . 240 52 Constant Coe–cient Linear Equations . . . . . . . . . . . . . . . 247 53 Contact Transformation . . . . . . . . . . . . . . . . . . . . . . . 249 54 Delay Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 55 Dependent Variable Missing . . . . . . . . . . . . . . . . . . . . . 260 56 Difierentiation Method . . . . . . . . . . . . . . . . . . . . . . . . 262 57 Difierential Equations with Discontinuities . . . . . . . . . . . . . 264 58 Eigenfunction Expansions . . . . . . . . . . . . . . . . . . . . . . 268 59 Equidimensional-in-x Equations . . . . . . . . . . . . . . . . . . . 275 60 Equidimensional-in-y Equations . . . . . . . . . . . . . . . . . . . 278 61 Euler Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 62 Exact First Order Equations . . . . . . . . . . . . . . . . . . . . 284 63 Exact Second Order Equations . . . . . . . . . . . . . . . . . . . 287 64 Exact Nth Order Equations . . . . . . . . . . . . . . . . . . . . . 290 65 Factoring Equations . . . . . . . . . . . . . . . . . . . . . . . . . 292 66 Factoring Operators . . . . . . . . . . . . . . . . . . . . . . . . . 294 67 Factorization Method . . . . . . . . . . . . . . . . . . . . . . . . 300 68 Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . . . . . 303 69 Fractional Difierential Equations . . . . . . . . . . . . . . . . . . 308 70 Free Boundary Problems . . . . . . . . . . . . . . . . . . . . . . . 311 71 Generating Functions. . . . . . . . . . . . . . . . . . . . . . . . . 315 72 Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 318 73 Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . 327 74 Method of Images . . . . . . . . . . . . . . . . . . . . . . . . . . 330 75 Integrable Combinations . . . . . . . . . . . . . . . . . . . . . . . 334 76 Integral Representation: Laplace’s Method. . . . . . . . . . . . . 336 77 Integral Transforms: Finite Intervals . . . . . . . . . . . . . . . . 342 78 Integral Transforms: Inflnite Intervals . . . . . . . . . . . . . . . 347 79 Integrating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 356 80 Interchanging Dependent and Independent Variables . . . . . . . 360 81 Lagrange’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . 363 82 Lie Groups: ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . 366 83 Operational Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 379 84 Pfa–an Difierential Equations. . . . . . . . . . . . . . . . . . . . 384 85 Reduction of Order . . . . . . . . . . . . . . . . . . . . . . . . . . 389 86 Riccati Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 87 Matrix Riccati Equations . . . . . . . . . . . . . . . . . . . . . . 395 88 Scale Invariant Equations . . . . . . . . . . . . . . . . . . . . . . 398 89 Separable Equations . . . . . . . . . . . . . . . . . . . . . . . . . 401 90 Series Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 91 Equations Solvable for x . . . . . . . . . . . . . . . . . . . . . . . 409 92 Equations Solvable for y . . . . . . . . . . . . . . . . . . . . . . . 411 93 Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 94 Method of Undetermined Coe–cients. . . . . . . . . . . . . . . . 415 95 Variation of Parameters . . . . . . . . . . . . . . . . . . . . . . . 418 96 Vector Ordinary Difierential Equations . . . . . . . . . . . . . . . 421 II.B Exact Methods for PDEs 97 Backlund Transformations . . . . . . . . . . . . . . . . . . . . . . 428 98 Method of Characteristics . . . . . . . . . . . . . . . . . . . . . . 432 99 Characteristic Strip Equations . . . . . . . . . . . . . . . . . . . 438 100 Conformal Mappings . . . . . . . . . . . . . . . . . . . . . . . . . 441 101 Method of Descent . . . . . . . . . . . . . . . . . . . . . . . . . . 446 102 Diagonalization of a Linear System of PDEs . . . . . . . . . . . . 449 103 Duhamel’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . 451 104 Exact Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 105 Hodograph Transformation . . . . . . . . . . . . . . . . . . . . . 456 106 Inverse Scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . 460 107 Jacobi’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 464 108 Legendre Transformation . . . . . . . . . . . . . . . . . . . . . . 467 109 Lie Groups: PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . 471 110 Poisson Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 111 Riemann’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . 481 112 Separation of Variables. . . . . . . . . . . . . . . . . . . . . . . . 487 113 Separable Equations: Stackel Matrix . . . . . . . . . . . . . . . . 494 114 Similarity Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 497 115 Exact Solutions to the Wave Equation . . . . . . . . . . . . . . . 501 116 Wiener-Hopf Technique . . . . . . . . . . . . . . . . . . . . . . . 505 III Approximate Analytical Methods 117 Introduction to Approximate Analysis . . . . . . . . . . . . . . . 510 118 Chaplygin’s Method . . . . . . . . . . . . . . . . . . . . . . . . . 511 119 Collocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 120 Dominant Balance . . . . . . . . . . . . . . . . . . . . . . . . . . 517 121 Equation Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 520 122 Floquet Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523 123 Graphical Analysis: The Phase Plane . . . . . . . . . . . . . . . 526 124 Graphical Analysis: The Tangent Field. . . . . . . . . . . . . . . 532 125 Harmonic Balance . . . . . . . . . . . . . . . . . . . . . . . . . . 535 126 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538 127 Integral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 128 Interval Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 129 Least Squares Method . . . . . . . . . . . . . . . . . . . . . . . . 549 130 Lyapunov Functions . . . . . . . . . . . . . . . . . . . . . . . . . 551 131 Equivalent Linearization and Nonlinearization . . . . . . . . . . . 555 132 Maximum Principles . . . . . . . . . . . . . . . . . . . . . . . . . 560 133 McGarvey Iteration Technique . . . . . . . . . . . . . . . . . . . 566 134 Moment Equations: Closure . . . . . . . . . . . . . . . . . . . . . 568 135 Moment Equations: Ito Calculus . . . . . . . . . . . . . . . . . . 572 136 Monge’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 575 137 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 578 138 Pade Approximants . . . . . . . . . . . . . . . . . . . . . . . . . 582 139 Perturbation Method: Method of Averaging . . . . . . . . . . . . 586 140 Perturbation Method: Boundary Layer Method . . . . . . . . . . 590 141 Perturbation Method: Functional Iteration . . . . . . . . . . . . 598 142 Perturbation Method: Multiple Scales . . . . . . . . . . . . . . . 605 143 Perturbation Method: Regular Perturbation . . . . . . . . . . . . 610 144 Perturbation Method: Strained Coordinates . . . . . . . . . . . . 614 145 Picard Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618 146 Reversion Method . . . . . . . . . . . . . . . . . . . . . . . . . . 621 147 Singular Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 623 148 Soliton-Type Solutions . . . . . . . . . . . . . . . . . . . . . . . . 626 149 Stochastic Limit Theorems . . . . . . . . . . . . . . . . . . . . . 629 150 Taylor Series Solutions . . . . . . . . . . . . . . . . . . . . . . . . 632 151 Variational Method: Eigenvalue Approximation . . . . . . . . . . 635 152 Variational Method: Rayleigh-Ritz . . . . . . . . . . . . . . . . . 638 153 WKB Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 IV.A Numerical Methods: Concepts 154 Introduction to Numerical Methods. . . . . . . . . . . . . . . . . 648 155 Deflnition of Terms for Numerical Methods . . . . . . . . . . . . 651 156 Available Software . . . . . . . . . . . . . . . . . . . . . . . . . . 654 157 Finite Difierence Formulas . . . . . . . . . . . . . . . . . . . . . . 661 158 Finite Difierence Methodology. . . . . . . . . . . . . . . . . . . . 670 159 Grid Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 675 160 Richardson Extrapolation . . . . . . . . . . . . . . . . . . . . . . 679 161 Stability: ODE Approximations . . . . . . . . . . . . . . . . . . . 683 162 Stability: Courant Criterion . . . . . . . . . . . . . . . . . . . . . 688 163 Stability: Von Neumann Test . . . . . . . . . . . . . . . . . . . . 692 164 Testing Difierential Equation Routines . . . . . . . . . . . . . . . 694 IV.B Numerical Methods for ODEs 165 Analytic Continuation . . . . . . . . . . . . . . . . . . . . . . . . 698 166 Boundary Value Problems: Box Method . . . . . . . . . . . . . . 701 167 Boundary Value Problems: Shooting Method . . . . . . . . . . . 706 168 Continuation Method . . . . . . . . . . . . . . . . . . . . . . . . 710 169 Continued Fractions . . . . . . . . . . . . . . . . . . . . . . . . . 713 170 Cosine Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716 171 Difierential Algebraic Equations. . . . . . . . . . . . . . . . . . . 720 172 Eigenvalue/Eigenfunction Problems. . . . . . . . . . . . . . . . . 726 173 Euler’s Forward Method . . . . . . . . . . . . . . . . . . . . . . . 730 174 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . 734 175 Hybrid Computer Methods . . . . . . . . . . . . . . . . . . . . . 744 176 Invariant Imbedding . . . . . . . . . . . . . . . . . . . . . . . . . 747 177 Multigrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 752 178 Parallel Computer Methods . . . . . . . . . . . . . . . . . . . . . 755 179 Predictor-Corrector Methods . . . . . . . . . . . . . . . . . . . . 759 180 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . 763 181 Stifi Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770 182 Integrating Stochastic Equations . . . . . . . . . . . . . . . . . . 775 183 Symplectic Integration . . . . . . . . . . . . . . . . . . . . . . . . 780 184 Use of Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784 185 Weighted Residual Methods . . . . . . . . . . . . . . . . . . . . . 786 IV.C Numerical Methods for PDEs 186 Boundary Element Method . . . . . . . . . . . . . . . . . . . . . 792 187 Difierential Quadrature . . . . . . . . . . . . . . . . . . . . . . . 796 188 Domain Decomposition . . . . . . . . . . . . . . . . . . . . . . . 800 189 Elliptic Equations: Finite Difierences . . . . . . . . . . . . . . . . 805 190 Elliptic Equations: Monte-Carlo Method . . . . . . . . . . . . . . 810 191 Elliptic Equations: Relaxation . . . . . . . . . . . . . . . . . . . 814 192 Hyperbolic Equations: Method of Characteristics . . . . . . . . . 818 193 Hyperbolic Equations: Finite Difierences . . . . . . . . . . . . . . 824 194 Lattice Gas Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 828 195 Method of Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 196 Parabolic Equations: Explicit Method . . . . . . . . . . . . . . . 835 197 Parabolic Equations: Implicit Method . . . . . . . . . . . . . . . 839 198 Parabolic Equations: Monte-Carlo Method . . . . . . . . . . . . 844 199 Pseudospectral Method . . . . . . . . . . . . . . . . . . . . . . . 851 Mathematical Nomenclature Errata Preface WhenIwasagraduatestudentinappliedmathematicsattheCaliforniaInstitute of Technology, we solved many di(cid:11)erential equations (both ordinary di(cid:11)erential equations and partial di(cid:11)erential equations). Given a di(cid:11)erential equation to solve, I would thinkof all thetechniquesI knewthat might solvethat equation. Eventually, the number of techniques I knew became so large that I began to forget some. Then, I would have to consult books on di(cid:11)erential equations to familiarize myself with a techniquethat I remembered only vaguely. This was a slowprocessandoftenunrewarding;Imightspendtwentyminutesreadingabout a technique only to realize that it did not apply to the equation I was trying to solve. Eventually, I created a list of the di(cid:11)erent techniques that I knew. Each techniquehadabriefdescriptionofhowthemethodwasusedandtowhattypes of equations it applied. As I learned more techniques, they were added to the list. This book is a direct result of that list. At Caltech we were taught the usefulness of approximate analytic solutions and the necessity of being able to solve di(cid:11)erential equations numerically when exactorapproximatesolutiontechniquescouldnotbefound. Hence,approximate analyticalsolutiontechniquesandnumericalsolutiontechniqueswerealsoadded to thelist. Given a di(cid:11)erential equation to analyze, most people spend only a small amount of time using analytical tools and then use a computer to see what the solution \looks like." Because this procedure is so prevalent, this edition includes an expanded section on numerical methods. New sections on sympletic integration (see page 780) and theuse of wavelets (see page 784) also havebeen added. Inwritingthisbook,Ihaveassumedthatthereaderisfamiliarwithdi(cid:11)eren- tial equations and their solutions. The object of this book is not to teach novel techniquesbut to provide a handy reference to many popular techniques. All of thetechniquesincludedareelementaryintheusualmathematicalsense;because thisbookisdesignedtobefunctionalitdoesnotincludemanyabstractmethods of limited applicability. This handbook has been designed to serve as both a reference book and as a complement to a text on di(cid:11)erential equations. Each techniquedescribed is accompanied by several references; these allow each topic to bestudied in more detail. Itishopedthatthisbookwillbeusedbystudentstakingcoursesindi(cid:11)erential equations (at either the undergraduate or the graduate level). It will introduce the student to more techniques than they usually see in a di(cid:11)erential equations xv xvi Preface classandwillillustratemanydi(cid:11)erenttypesoftechniques. Furthermore,itshould actasaconcisereferenceforthetechniquesthatastudenthaslearned. Thisbook shouldalsobeusefulforthepracticingengineerorscientistwhosolvesdi(cid:11)erential equations on an occasional basis. A feature of this book is that it has sections dealing with stochastic di(cid:11)er- ential equations and delay di(cid:11)erential equations as well as ordinary di(cid:11)erential equationsandpartialdi(cid:11)erentialequations. Stochasticdi(cid:11)erentialequationsand delaydi(cid:11)erentialequationsareoftenstudiedonlyinadvancedtextsandcourses; yet, the techniques used to analyze these equations are easy to understand and easy to apply. Had this book been available when I was a graduate student, it would have saved me much time. It has saved me time in solving problems that arose from my own work in industry (the Jet Propulsion Laboratory, Sandia Laboratories, EXXONResearch and Engineering, The MITRE Corporation, BBN). Parts of the text have been utilized in di(cid:11)erential equations classes at the Rensselaer Polytechnic Institute. Students’ comments have been used to clarify thetext. Unfortunately,theremaystillbesomeerrorsinthetext;Iwouldgreatly appreciate receiving notice of any such errors. Many people have been kind enough to send in suggestions for additional material to add and corrections of existing material. There are too many to name them individually, but Alain Moussiaux stands out for all of the checking hehas performed. Thank you all! This book is dedicated tomy wife, Janet Taylor. Boston, Mass. 1997 Daniel Zwillinger [email protected] CD-ROM Handbook of Di(cid:11)erential Equations (cid:13)cAcademic Press 1997 Introduction Thisbookisacompilationofthemostimportantandwidelyapplicablemethods for solving and approximating di(cid:11)erential equations. As a reference book, it providesconvenient access tothese methods and contains examples of theiruse. The book is divided into four parts. The (cid:12)rst part is a collection of trans- formations and general ideas about di(cid:11)erential equations. This section of the book describes thetechniquesneededtodeterminewhethera partialdi(cid:11)erential equation is well posed, what the \natural" boundary conditions are, and many other things. At the beginning of this section is a list of de(cid:12)nitions for many of theterms that describe di(cid:11)erential equations and their solutions. The second part of the book is a collection of exact analytical solution techniques for di(cid:11)erential equations. The techniques are listed (nearly) alpha- betically. First is a collection of techniques for ordinary di(cid:11)erential equations, thenacollectionoftechniquesforpartialdi(cid:11)erentialequations. Thosetechniques that can be used for both ordinary di(cid:11)erential equations and partial di(cid:11)erential equations havea star ((cid:3)) nextto themethod name. For nearly every technique, thefollowing are given: (cid:15) thetypesof equations to which themethod is applicable (cid:15) theidea behind themethod (cid:15) theprocedurefor carrying out themethod (cid:15) at least one simple example of themethod (cid:15) any cautions that should be exercised (cid:15) notes for more advanced users (cid:15) references to the literature for more discussion or more examples The material for each method has deliberately been kept short to simplify use. Proofs havebeen intentionally omitted. Itishopedthat,byworkingthroughthesimpleexample(s)given,themethod willbeunderstood. Enoughinsightshouldbegainedfromworkingtheexample(s) to apply the method to other equations. Further references are given for each methodsothattheprinciplemaybestudiedinmoredetailorsomoreexamples may be seen. Note that not all of the references listed at the end of a method may be referred to in thetext. Theauthorhasfoundthatcomputerlanguagesthatperformsymbolicmanip- ulations(e.g.,Macsyma,Maple,andMathematica)areveryusefulforperforming the calculations necessary to analyze di(cid:11)erential equations. Hence, there is a section comparing the capabilities of these languages and, for some exact analytical techniques,examples of theiruse are given. xvii
Description: