ebook img

Handbook of Basal Ganglia Structure and Function PDF

729 Pages·2010·33.237 MB·iv-xxv, 3-693\729
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of Basal Ganglia Structure and Function

Handbook of Basal Ganglia Structure and Function This page intentionally left blank Handbook of Basal Ganglia Structure and Function Heinz Steiner and Kuei Y. Tseng Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD • PARIS SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA Copyright © 2010 Elsevier Inc. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone ((cid:2) 44)(0) 1865 843830; fax ( (cid:2) 44) (0) 1865 853333; email: [email protected] . Alternatively you can submit your request online by visiting the Elsevier web site at ( http://elsevier.com/locate/permissions ), and selecting Obtaining permissions to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein, Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Catalog Number: 2009923451 ISBN : 978-0-12-374767-9 For information on all Elsevier publications visit our website at www.elsevierdirect.com Typeset by MPS Limited, a Macmillan Company www.macmillansolutions.com Printed and bound in the USA 10 11 12 13 10 9 8 7 6 5 4 3 2 1 Cover art: D1 and D2 dopamine receptor-expressing medium spiny projection neurons of the striatum and their terminal fields, labeled by bacterial artificial chromosome (BAC) vector-driven expression of enhanced green fluorescent protein. Illustration is a composite of images from Chapter 6 by Surmeier et al., “D1 and D2 dopamine receptor modulation of glutamatergic signaling in striatal medium spiny neurons”, and Chapter 28 by Gerfen, “D1 dopamine receptor supersensitivity in the dopamine-depleted striatum: Aberrant ERK1/2 signaling”. Overlaid in red is an activity trace of a medium spiny neuron recorded intracellularly i n vivo in a dopamine-depleted rat by Kuei Tseng. Dedication We dedicate this Volume to Prof. Stephen T. Kitai, friend, mentor and colleague to many of the contributors and one of the founders of modern basal ganglia research. v This page intentionally left blank Contents Contributors xix 2. The Conservative Evolution of the Preface xxiii Vertebrate Basal Ganglia 29 Acknowledgements xxv Anton Reiner I. Introduction 29 Part A A. Defining Traits of Basal Ganglia The Basal Ganglia System and its in Mammals 29 Box 2.1 Brain Evolution and the Evolution Term Homology 30 II. Basal Ganglia in Anamniotes 31 1. The Neuroanatomical Organization A. Agnathans 31 of the Basal Ganglia 3 B. Chondroicthyans 32 C. Osteicthyes – Ray-Finned Fish 34 Charles R. Gerfen and J. Paul Bolam D. Osteicthyes – Lobe-Finned Fish 37 I. Introduction 3 E. Amphibians 38 II. Overview of Basal Ganglia Organization 4 F. Summary and Overview of Basal Ganglia III. The Corticostriatal System 6 Evolution in Anamniotes 41 A. Subtypes of Corticostriatal Neurons 6 III. Basal Ganglia in Amniotes 41 B. Patterns of Organization of Corticostriatal A. Reptiles 41 Afferents 7 B. Birds 44 IV. Striatum 8 C. Overview of Basal Ganglia Evolution in A. Medium Spiny Projection Neurons 8 Amniotes 49 B. Synaptic Inputs to Medium Spiny Neurons 9 IV. Basal Ganglia Evolution – Outdated C. Striatal Interneurons 11 Concepts and Terminology 50 V. Output Systems of the Striatum 12 Acknowledgments 50 A. The Direct and Indirect Pathways 12 References 50 B. Other Nuclei of the Indirect Pathway 14 C. Dual Projections within Basal Ganglia 3. Cell Types in the Different Nuclei Circuits 16 of the Basal Ganglia 63 VI. Basal Ganglia Output Nuclei: Internal Segment of Globus Pallidus and Substantia Nigra 17 Dorothy E. Oorschot A. Cell Types 18 B. Inputs 18 I. Introduction 63 C. Outputs 19 A. Overview of the Basal Ganglia Nuclei in VII. The Nigrostriatal Dopamine System 19 Rodents and Higher Vertebrates 63 A. Dorsal Tier Versus Ventral Tier Dopamine B. Overview of Recent Findings on the Neurons 19 Circuitry and Nuclei of the Basal Ganglia 64 B. Inputs to Dopamine Neurons 21 II. Projection Neurons Within the Different VIII. Striatal Patch-Matrix Compartments 21 Nuclei of the Basal Ganglia 66 A. Markers Defining the Patch-Matrix III. Interneurons Within the Nuclei of the Basal Compartments 21 Ganglia 67 B. Dopamine Inputs to Patches Versus Matrix 21 IV. Absolute Numbers of Neurons in the Basal C. Cortical and Thalamic Inputs 22 Ganglia: Functional Implications 68 D. Outputs of Patches Versus Matrix 23 A. Absolute Number of Projection Neurons References 23 in the Striatum and its Targets 68 vii viii Contents B. Absolute Number of GPe, GPi, SNr and V. Functional Implications, Models and Outlook 108 STN Neurons 69 Acknowledgment 109 C. Absolute Number of Interneurons 70 References 109 V. Glial Cell Types Within the Different Nuclei 70 A. Absolute Number of Glial Cells: Neuron-to- 6. D1 and D2 Dopamine Receptor Astrocyte Ratios in Some of the Basal Modulation of Glutamatergic Signaling Ganglia Nuclei of the Rat 71 in Striatal Medium Spiny Neurons 113 VI. Conclusions: The Past and the Next 10–15 Years 71 Acknowledgments 72 D. James Surmeier, Michelle Day, Tracy Gertler, References 72 Savio Chan and Weixing Shen I. Introduction 113 4. Neurotransmitter Receptors in II. The “Classical” Model of Dopaminergic the Basal Ganglia 75 Modulation 114 III. Modulation of Intrinsic Excitability and Piers C. Emson, Henry J. Waldvogel and Glutamatergic Signaling by D1 Receptors 114 Richard L.M. Faull Box 6.1 D1 and D2 MSNs Differ in I. Introduction 75 Dendritic Morphology 116 II. Ionotropic Receptors 80 IV. Modulation of Intrinsic Excitability and A. Glutamate Receptor Ion Channels 80 Glutamatergic Signaling by D2 Receptors 117 B. Ligand-Gated Ion Channels 82 V. Dopaminergic Modulation of Long-Term III. Metabotropic Receptors 84 Synaptic Plasticity 117 A. Family 1 85 Box 6.2 MSN Dendrites are Active 118 B. Family 3 89 VI. The Indirect Players – Striatal Interneurons 124 IV. Conclusions 90 VII. Dopaminergic Modulation of Glutamatergic Acknowledgments 91 Signaling in Parkinson’s Disease 124 References 91 VIII. Functional Implications for the Pathophysiology in Parkinson’s Disease 128 IX. Concluding Remarks 128 Part B References 129 Anatomy and Physiology of the 7. The Cholinergic Interneurons Striatum of the Striatum: Intrinsic Properties Underlie Multiple 5. The Striatal Skeleton: Medium Spiny Discharge Patterns 133 Projection Neurons and their Lateral Joshua A. Goldberg and Charles J. Wilson Connections 99 I. Introduction 133 Dietmar Plenz and Jeffery R. Wickens II. Autonomous Firing Patterns in Cholinergic I. Introduction 99 Interneurons 135 II. The Striatal Medium Spiny Neuron 99 A. Biophysical Mechanism of Autonomous A. General Morphology of the Medium Firing 135 Spiny Neuron 99 B. Influence of Neurotransmitters on B. Dendritic Spines 101 Autonomous Firing 138 C. Glutamate Receptor-Mediated Responses 101 III. Influence of the Cholinergic Interneurons D. Neurophysiology of Medium Spiny on the Striatal Network 140 Neurons 103 A. Neuronal Excitability 140 E. Dopaminergic Modulation of B. Synaptic Transmission 141 Ion Channels 104 C. Synaptic Plasticity 142 III. Anatomical Connectivity of the IV. The Cholinergic Interneurons are the Striatal Skeleton 105 Tonically Active Neurons of the Striatum 143 A. Quantitative Neuroanatomical A. The Pause Response 143 Consideration of Local Connectivity 106 B. Spontaneous Firing Patterns and IV. Synaptic Physiology of Lateral Interactions 107 Synchronization of TANs 143 Contents ix V. Summary and Conclusions 145 V. Endocannabinoid Roles in Striatum- References 146 Dependent Behavior 178 References 181 8. GABAergic Interneurons of the Striatum 151 10. Nitric Oxide Signaling in the James M. Tepper Striatum 187 I. Introduction 151 Anthony R. West II. Parvalbumin-Immunoreactive Interneurons 152 A. Neurocytology 152 I. Introduction: The Nitric Oxide System 187 B. Afferents and Efferents 152 A. Biosynthesis of NO 187 C. Basic Membrane Properties 152 B. nNOS-Expressing Interneurons and NO D. Firing Characteristics 154 Effector Pathways 188 E. Synaptic Connectivity 154 II. Afferent Regulation of Striatal NO Synthesis 189 F. In Vivo Recordings 155 A. Role of Corticostriatal Afferents and G. Pharmacology 156 Glutamate Receptors 189 III. Somatostatin/NOS/Neuropeptide Y B. Regulation of Striatal NO Synthesis by Interneurons 156 Dopamine 189 A. Neurocytology 156 III. Effects of NO Signaling on Neurotransmitter B. Afferents and Efferents 158 Release 191 C. Basic Membrane Properties 158 A. Regulation of Glutamate Release 191 D. Synaptic Connectivity 158 B. Regulation of Dopamine Release 192 E. Spontaneous Activity 158 C. Regulation of Acetylcholine Release 192 F. Pharmacology 160 IV. Regulation of Striatal Neuron Activity and IV. LTS Neurons 160 Output by NO Signaling 192 A. Synaptic Connectivity 160 A. Tonic NO Signaling 192 V. Calretinin Interneurons 160 B. Phasic NO Signaling 193 VI. Other GABAergic Interneurons: Tyrosine C. Regulation of Short- and Long-Term Hydroxylase-Immunoreactive Neurons 160 Synaptic Plasticity 193 A. Striatal EGFP-TH(cid:2) Interneurons 162 D. Regulation of Striatal Neuronal VII. Summary and Conclusions 163 Synchrony and Output 194 Acknowledgments 163 V. Role of Striatal NO-sGC Signaling in References 163 Motor Behavior 195 VI. Impact of Dopamine Depletion on 9. Endocannabinoid Signaling in Striatal NO-sGC Signaling 195 the Striatum 167 Acknowledgments 196 References 196 David M. Lovinger, Margaret I. Davis and Rui M. Costa 11. Role of Adenosine in the I. Introduction: The Endocannabinoid System 167 Basal Ganglia 201 II. Endocannabinoids and Cannabinoid Micaela Morelli, Nicola Simola, Patrizia Receptors in the Striatum 168 Popoli and Anna R. Carta A. The CB1 Receptor 168 B. The CB2 Receptor 170 I. Introduction: The Adenosine System 201 C. TRPV1 170 II. Adenosine Receptor Localization and D. Endocannabinoids in Striatum 170 Function 202 E. Biosynthetic Enzymes 171 A. A Receptors 202 1 F. Degrading Enzymes 172 B. A Receptors 202 2A III. CB1 Receptor Function in the Striatum 173 III. Adenosine Receptor Interactions 203 IV. Endocannabinoid-Mediated Synaptic A. Biochemical Interactions: Postsynaptic Plasticity in the Striatum 174 Modulation of BG Neurotransmission 203 A. Short-Term Depression 174 B. Biochemical Interactions: Presynaptic B. Long-Term Depression 175 Modulation of BG Neurotransmission 206

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.