J V H e an o a -É lu n H andbook of r ic m d P b in e (Ed I oo Automata Theory .) k o f A Volume I u Theoretical Foundations t o m Edited by Jean-Éric Pin a t a T h e o r y H andbook of Automata Theory Volume I Theoretical Foundations Edited by Jean-Éric Pin Editor: Jean-Éric Pin Institut de Recherche en Informatique Fondamentale (IRIF) Université de Paris and CNRS Bâtiment Sophie Germain, Case courier 7014 8 Place Aurélie Nemours 75205 Paris Cedex 13 E-mail: [email protected] Volume I: 2020 Mathematics Subject Classification: 68Q45; 03B50, 03D05, 08A70, 08B20, 15A80, 16Y60, 20E18, 20M05, 20M07, 20M35, 28A05, 68Q32, 68Q42, 68Q70, 68R10, 68T05 Keywords: finite automata, Hopcroft’s algorithm, regular languages, regular expressions, finite transducers, weighted automata, automata on infinite words, automata on trees, picture l anguages, algorithmic learning, descriptional complexity, Boolean circuits, synchronizing automata, road colouring problem, varieties of languages, profinite topology, descriptive set theory, equational theories, language equations, forest algebras ISBN Vol. I 978-3-98547-002-0 ISBN Vol. II 978-3-98547-003-7 ISBN Set 978-3-98547-006-8 (set of both volumes) Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de. Published by EMS Press, an imprint of the European Mathematical Society – EMS – Publishing House GmbH Institut für Mathematik Technische Universität Berlin Straße des 17. Juni 136 10623 Berlin, Germany https://ems.press 2021 EMS Press © Cover drawing of Jacques de Vaucanson’s digesting duck (canard digérant) published in Scientific American Vol. 80 (3), 1899. Fractal tree on the first page by Nicolas Janey. Typeset using the authors’ LaTeX sources: Marco Zunino, Savona, Italy Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany Printed on acid free paper ♾ 9 8 7 6 5 4 3 2 1 Dedicatedtothememoryof ProfessorZoltánÉsik (1951–2016) Preface The Handbook of Automata Theory has its origins in the research programme Au- toMathA (Automata:from Mathematics to Applications, 2005–2010), a multidisci- plinary programme of the European Science Foundation at the crossroads of mathe- matics,theoreticalcomputerscience,andapplications.Itisdesignedtoprovideabroad audienceofresearchersandstudentsinmathematicsandcomputersciencewithacom- prehensiveoverviewofresearchinautomatatheory. Automata theory is one of the longest established areas in computer science. It wasbornoversixtyyearsago,withtheseminalworkofKleene,whofirst formalised the early attemptsof McCullochandPitts, andwas originallymotivatedbythe study ofneuralnetworks. Formanyyears,itsmainapplicationshavebeencomputerdesign, compilationofprogramminglanguages,andpatternmatching.Butoverthelasttwenty years,applicationsofautomatatheoryhaveconsiderablydiversified,andnowinclude verificationmethodstocopewithsuchemergingtechnicalneedsasnetworksecurity, mobileintelligentdevices,andhighperformancecomputing. Atthesame time,themathematicalfoundationsofautomatatheoryrely on more and more advanced parts of mathematics. While only elementary graph theory and combinatorics were required in the early sixties, new tools from non-commutative algebra(semigroups,semiringsandformalpowerseries),logic,probabilitytheory,and symbolic dynamics have been successively introduced, and the latest developments borrowideasfromtopologyandgeometry. Itwastimetogatherthesemathematicaladvancesandtheirnumerousapplications in a reference book. The Handbook of Automata Theory is intended to serve this purpose.Itcomprisesthirty-ninechapters,presentedintwovolumes: VolumeI: Theoreticalfoundations VolumeII: Automatainmathematicsandselectedapplications Together, the two volumes cover most of the topics related to automata. Volume I presents, in the first part, the basic models of the theory: finite automata working on finite words, infinite words, finite trees and infinite trees, transducers, weighted automata and max-plus automata, and two-dimensional models. In the second part, complexity and algorithmic issues are discussed extensively, including connections with circuit complexity and finite model theory. In the third part, the algebraic and topologicalaspectsofautomatatheoryaretreated. VolumeII first offers a wide range of connectionsbetween automataand mathe- matics, includinggroup theory, numbertheory, symbolicdynamics, finitemodelthe- ory, and fractal-type images. Secondly, selected applications are covered, including viii Preface message-passingsystems,symbolicmethods,synthesis,timedautomatonmodel,veri- ficationofhigher-orderprograms,analysisofprobabilisticprocesses,naturallanguage processing,formalverificationofprograms,andquantumcomputing. Much of this material had never been published in a book before, making the Handbookauniquereferenceinautomatatheory. DuetothelengthoftheHandbook,thechaptersaredividedintotwovolumes.For the convenienceof the reader, the front matterand the index appear in both volumes (paginatedwithromannumerals). Asthisprojectstartedovertenyearsago,somerecentdevelopmentsmaynothave been addressed. Nevertheless, the reader will be able to find updates and possible correctionson https://ems.press/isbn/978-3-98547-006-8 Acknowledgements. IwouldliketothanktheEuropeanScienceFoundation,andin particular the Standing Committee for Physical & Engineering Sciences (PESC), for funding the research programme AutoMathA within their Research Networking Pro- gramme(2005–2010).TheHandbookwouldnothavebeenpossiblewithouttheirmoral andfinancialsupport.TheprogrammeAutoMathAbroughttogetheraresearchcommu- nityofwidescope;itsjointworkandeffortshavebeenvitalforcomposingthepresent handbook. The AutoMathA project was initially launched by Jorge Almeida (Lis- boa),StefanoCrespiReghizzi(Milano)andmyself.Letmealsothanktheothermem- bers of the AutoMathA Steering Committee: Jacques Duparc, Jozef Gruska, Juhani Karhumäki,MikołajBojańczyk,SørenEilers, StuartW.Margolis,TatianaJajcayova, VéroniqueBruyère,WernerKuich,WolfgangThomas,andZoltánÉsik.Sadlyandun- expectedly,ZoltánÉsik passedawayduringthe finalstagesoftheHandbookproject. WededicatetheHandbooktothememoryofthisgreatscientistandfriend.Theconstant supportoftheAutoMathASteeringCommitteeduringthepreparationofthishandbook was an invaluable help. Narad Rampersad’s assistance during the early stage of the Handbookwasalsoparticularlyappreciated. All the authors are particularly indebted to Jeffrey Shallit. As one of the few nativeEnglish-speakingauthorsofthebook,Jeffreyhasacceptedthedauntingtaskof reviewingallthechaptersintheirentirety.Henotonlydetectedaconsiderablenumber of English mistakes, buthe also greatly improvedthe style and mathematicalcontent ofthechapters.Iwouldthereforeliketoexpressmydeepestthankstohim. TheadvisoryboardconsistingofSørenEilers(Copenhagen)andWolfgangThomas (Aachen)wasinstrumentalindefiningtheearlyversionoftheHandbookproject.Iam particularlyindebtedtoWolfgangThomasforhisadviceandconstantencouragement andhelpduringthelonggestationperiodofthishandbook. Ofcourse,thishandbookwouldnothavebeenpossiblewithouttheauthorsofthe thirty-nine chapters. I would like to thank them all for their high quality scientific contributionandtheirperseveranceduringthechapterreviewprocess. Preface ix For their patience and extreme care in the production of the Handbook, I would liketothankthetypesetterMarcoZuninoandallthepeopleofEMSPressIhavebeen working with: Apostolos Damialis, Sylvia Fellmann, Thomas Hintermann, Manfred Karbe,VeraSpillner,andSimonWinter. SpecialthankstoNicolasJaneywhokindly designedthefractaltreeonthefirstpage. Jean-ÉricPin Managingeditor Paris,2021