ebook img

Handbook of Antioxidants (Oxidative Stress and Disease) PDF

744 Pages·2001·37.109 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of Antioxidants (Oxidative Stress and Disease)

B d i t E d bn EHRIQUE CflDEIlflS LESTER PACKER Handbook of flntioxidanti OXIDATIVE STRESS AND DISEASE Series Editors Lester Packer, Ph.D. Enrique Cadenas, M.D., Ph.D. University of Southern California School of Pharmacy Los Angeles, California 1. Oxidative Stress in Cancer, AIDS, and Neurodegenerative Diseases, edited by Luc Montagnier, Rene Olivier, and Catherine Pasquier 2. Understanding the Process of Aging: The Roles of Mitochondria, Free Radicals, and Antioxidants, edited by Enrique Cadenas and Lester Packer 3. Redox Regulation of Cell Signaling and Its Clinical Application, edited by Lester Packer and Junji Yodoi 4. Antioxidants in Diabetes Management, edited by Lester Packer, Peter Rosen, HansJ. Tritschler, George L. King, and Angelo Azzi 5. Free Radicals in Brain Pathophysiology, edited by Giuseppe Poll, Enrique Cadenas, and Lester Packer 6. Nutraceuticals in Health and Disease Prevention, edited by Klaus Kramer, Peter-Paul Hoppe, and Lester Packer 7. Environmental Stressors in Health and Disease, edited by Jurgen Fuchs and Lester Packer 8. Handbook of Antioxidants: Second Edition, Revised and Expanded, edited by Enrique Cadenas and Lester Packer Related Volumes Vitamin E in Health and Disease: Biochemistry and Clinical Applications, edited by Lester Packer and Jurgen Fuchs Vitamin A in Health and Disease, edited by Rune Blomhoff Free Radicals and Cxidation Phenomena in Biological Systems, edited by Marcel Roberfroid and Pedro Buc Calderon Biothiols in Health and Disease, edited by Lester Packer and Enrique Cadenas Handbook of Antioxidants, edited by Enrique Cadenas and Lester Packer Handbook of Synthetic Antioxidants, edited by Lester Packer and Enrique Cadenas Vitamin C in Health and Disease, edited by Lester Packer and Jurgen Fuchs Lipoic Acid in Health and Disease, edited by Jurgen Fuchs, Lester Packer, and Guido Zimmer Flavonoids in Health and Disease, edited by Catherine Rice-Evans and Lester Packer Additional Volumes in Preparation Handbook of fintioxidanti Second [dition Reviced and Expanded edited by Enrique Eadenas Lester Packer University of Southern California School of Pharmacy Los Angeles, California Marcel Dekker, Inc. New York • Basel DEKKER ISBN: 0-8247-0547-5 This book is printed on acid-free paper. Headquarters Marcel Dekker, Inc. 270 Madison Avenue, New York, NY 10016 tel; 212-696-9000; fax: 212-685-4540 Eastern Hemisphere Distribution Marcel Dekker AG Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland tel: 41-61-261-8482; fax: 41-61-261-8896 World Wide Web http://www.dekker.com The publisher offers discounts on this book when ordered in bulk quantities. For more infor¬ mation, write to Special Sales/Professional Marketing at the headquarters address above. Copyright © 2002 by Marcel Dekker, Inc. All Rights Reserved. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Current printing (last digit): 10 987654321 PRINTED IN THE UNITED STATES OF AMERICA Series Introduction Oxygen is a dangerous friend. Overwhelming evidence indicates that oxidative stress can lead to cell and tissue injury. However, the same free radicals that are generated during oxidative stress are produced during normal metabolism and thus are involved in both human health and disease. Free radicals are molecules with an odd number of electrons. The odd, or unpaired, electron is highly reactive as it seeks to pair with another free electron. Free radicals are generated during oxidative metabolism and energy production in the body. Free radicals are involved in: Enzyme-catalyzed reactions Electron transport in mitochondria Signal transduction and gene expression Activation of nuclear transcription factors Oxidative damage to molecules, cells, and tissues Antimicrobial action of neutrophils and macrophages Aging and disease Normal metabolism is dependent on oxygen, a free radical. Through evolution, oxygen was chosen as the terminal electron acceptor for respiration. The two unpaired electrons of oxygen spin in the same direction; thus, oxygen is a biradical, but not a very dangerous free radical. Other oxygen-derived free radical species, such as superoxide or hydroxyl radicals, formed during metabolism or by ionizing radiation are stronger oxidants and are therefore more dangerous. In addition to research on the biological effects of these reactive oxygen species, research on reactive nitrogen species has been gathering momentum. NO, or nitrogen monoxide (nitric oxide), is a free radical generated by NO synthase (NOS). This enzyme modulates physiolog¬ ical responses such as vasodilation or signaling in the brain. However, during inflammation, synthesis of NOS (iNOS) is induced. This iNOS can result in the overproduction of NO, caus¬ ing damage. More worrisome, however, is the fact that excess NO can react with superoxide to produce the very toxic product peroxynitrite. Oxidation of lipids, proteins, and DNA can result, thereby increasing the likelihood of tissue injury. iii iv Series Introduction Both reactive oxygen and nitrogen species are involved in normal cell regulation, in which oxidants and redox status are important in signal transduction. Oxidative stress is increasingly seen as a major upstream component in the signaling cascade involved in inflammatory re¬ sponses, stimulating adhesion molecule and chemoattractant production. Hydrogen peroxide, which breaks down to produce hydroxyl radicals, can also activate NF-/cB, a transcription fac¬ tor involved in stimulating inflammatory responses. Excess production of these reactive species is toxic, exerting cytostatic effects, causing membrane damage, and activating pathways of cell death (apoptosis and/or necrosis). Virtually all diseases thus far examined involve free radicals. In most cases, free radicals are secondary to the disease process, but in some instances free radicals are causal. Thus, there is a delicate balance between oxidants and antioxidants in health and disease. Their proper balance is essential for ensuring healthy aging. The term oxidative stress indicates that the antioxidant status of cells and tissues is altered by exposure to oxidants. The redox status is thus dependent on the degree to which a cell’s components are in the oxidized state. In general, the reducing environment inside cells helps to prevent oxidative damage. In this reducing environment, disulfide bonds (S—S) do not sponta¬ neously form because sulflhydryl groups kept in the reduced state (SH) prevent protein misfold- ing or aggregation. This reducing environment is maintained by oxidative metabolism and by the action of antioxidant enzymes and substances, such as glutathione, thioredoxin, vitamins E and C, and enzymes such as superoxide dismutase (SOD), catalase, and the selenium-dependent glutathione and thioredoxin hydroperoxidases, which serve to remove reactive oxygen species. Changes in the redox status and depletion of antioxidants occur during oxidative stress. The thiol redox status is a useful index of oxidative stress mainly because metabolism and NADPH- dependent enzymes maintain cell glutathione (GSH) almost completely in its reduced state. Oxidized glutathione (glutathione disulfide, GSSG) accumulates under conditions of oxidant exposure, and this changes the ratio of oxidized to reduced glutathione; an increased ratio indicates oxidative stress. Many tissues contain large amounts of glutathione, 2-4 mM in erythrocytes or neural tissues and up to 8 mM in hepatic tissues. Reactive oxygen and nitrogen species can directly react with glutathione to lower the levels of this substance, the cell’s primary preventative antioxidant. Current hypotheses favor the idea that lowering oxidative stress can have a clinical benefit. Free radicals can be overproduced or the natural antioxidant system defenses weakened, first resulting in oxidative stress, and then leading to oxidative injury and disease. Examples of this process include heart disease and cancer. Oxidation of human low-density lipoproteins is considered the first step in the progression and eventual development of atherosclerosis, leading to cardiovascular disease. Oxidative DNA damage initiates carcinogenesis. Compelling support for the involvement of free radicals in disease development comes from epidemiological studies showing that an enhanced antioxidant status is associated with reduced risk of several diseases. Vitamin E and prevention of cardiovascular disease is a notable example. Elevated antioxidant status is also associated with decreased incidence of cataracts and cancer, and some recent reports have suggested an inverse correlation between antioxidant status and occurrence of rheumatoid arthritis and diabetes mellitus. Indeed, the number of indications in which antioxidants may be useful in the prevention and/or the treatment of disease is increasing. Oxidative stress, rather than being the primary cause of disease, is more often a secondary complication in many disorders. Oxidative stress diseases include inflammatory bowel diseases, retinal ischemia, cardiovascular disease and restenosis, AIDS, ARDS, and neurodegenerative diseases such as stroke, Parkinson’s disease, and Alzheimer’s disease. Such indications may

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.