HANDBOOKOFALGEBRA VOLUME3 ManagingEditor M.HAZEWINKEL,Amsterdam EditorialBoard M.ARTIN,Cambridge M.NAGATA,Okayama C.PROCESI,Rome R.G.SWAN,Chicago P.M.COHN,London A.DRESS,Bielefeld J.TITS,Paris N.J.A.SLOANE,MurrayHill C.FAITH,NewBrunswick S.I.AD’YAN,Moscow Y.IHARA,Tokyo L.SMALL,SanDiego E.MANES,Amherst I.G.MACDONALD,Oxford M.MARCUS,SantaBarbara L.A.BOKUT’,Novosibirsk ELSEVIER AMSTERDAM•BOSTON•HEIDELBERG•LONDON•NEWYORK• OXFORD•PARIS•SANDIEGO•SANFRANCISCO•SINGAPORE•SYDNEY•TOKYO HANDBOOK OF ALGEBRA Volume 3 edited by M. HAZEWINKEL CWI,Amsterdam 2003 ELSEVIER AMSTERDAM•BOSTON•HEIDELBERG•LONDON•NEWYORK• OXFORD•PARIS•SANDIEGO•SANFRANCISCO•SINGAPORE•SYDNEY•TOKYO ELSEVIERSCIENCEB.V. SaraBurgerhartstraat25 P.O.Box211,1000AEAmsterdam,TheNetherlands ©2003ElsevierScienceB.V.Allrightsreserved ThisworkisprotectedundercopyrightbyElsevierScience,andthefollowingtermsandconditionsapplytoitsuse: Photocopying Singlephotocopiesofsinglechaptersmaybemadeforpersonaluseasallowedbynationalcopyrightlaws.Permission ofthePublisherandpaymentofafeeisrequiredforallotherphotocopying,includingmultipleorsystematiccopying, copyingforadvertisingorpromotionalpurposes,resale,andallformsofdocumentdelivery.Specialratesareavailablefor educationalinstitutionsthatwishtomakephotocopiesfornon-profiteducationalclassroomuse. PermissionsmaybesoughtdirectlyfromElsevierScienceviatheirhomepage(http://www.elsevier.com) byselecting ‘Customersupport’andthen‘Permissions’.Alternativelyyoucansendane-mailto:[email protected],orfaxto: (+44)1865853333. IntheUSA,usersmayclearpermissionsandmakepaymentsthroughtheCopyrightClearanceCenter,Inc.,222Rosewood Drive,Danvers,MA01923,USA;phone:(+1)(978)7508400,fax:(+1)(978)7504744,andintheUKthroughtheCopy- rightLicensingAgencyRapidClearanceService(CLARCS),90TottenhamCourtRoad,LondonW1P0LP,UK;phone: (+44)2076315555;fax:(+44)2076315500.Othercountriesmayhavealocalreprographicrightsagencyforpayments. DerivativeWorks Tablesofcontentsmaybereproducedforinternalcirculation,butpermissionofElsevierScienceisrequiredforexternal resaleordistributionofsuchmaterial. PermissionofthePublisherisrequiredforallotherderivativeworks,includingcompilationsandtranslations. ElectronicStorageorUsage PermissionofthePublisherisrequiredtostoreoruseelectronicallyanymaterialcontainedinthiswork,includingany chapterorpartofachapter. Exceptasoutlinedabove,nopartofthisworkmaybereproduced,storedinaretrievalsystemortransmittedinanyform orbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,withoutpriorwrittenpermissionofthe Publisher. Addresspermissionsrequeststo:ElsevierScienceGlobalRightsDepartment,atthefaxande-mailaddressesnotedabove. Notice NoresponsibilityisassumedbythePublisherforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructionsorideascontainedin thematerialherein.Becauseofrapidadvancesinthemedicalsciences,inparticular,independentverificationofdiagnoses anddrugdosagesshouldbemade. Firstedition2003 LibraryofCongressCataloging-in-PublicationData AcatalogrecordfromtheLibraryofCongresshasbeenappliedfor. BitishLibraryCataloguing-in-PublicationData AcatalogrecordfromtheBritishLibraryhasbeenappliedfor. ISBN:0444512640 ISSN:15707954 (cid:2)∞ThepaperusedinthispublicationmeetstherequirementsofANSI/NISOZ39.48-1992(PermanenceofPaper). PrintedinTheNetherlands. Preface Basicphilosophy Algebra,asweknowittoday,consistsofagreatmanyideas,conceptsandresults.Area- sonable estimate of the numberof these different“items” would be somewherebetween 50000and200000.Manyofthesehavebeennamedandmanymorecould(andperhaps should) have a “name”, or other convenient designation. Even the nonspecialist is quite likelytoencountermostofthese,eithersomewhereintheliteraturedistinguisedasadef- initionoratheoremortohearaboutthemandfeeltheneedformoreinformation.Ifthis happens, one should be able to find at least something in this Handbook;and hopefully enough to judge whether it is worthwhile to pursue the quest at least. In addition to the primaryinformationreferencestorelevantarticles,booksorlecturenotesshouldhelpthe readertocompletehisunderstanding. To make this possible we have providedan indexwhich is more extensivethan usual, andnotlimitedtodefinitions,theoremsandthelike. ForthepurposesofthisHandbook,algebrahasbeendefinedmoreorlessarbitrarilyas theunionofthefollowingareasoftheMathematicsSubjectClassificationScheme: –20 (Grouptheory) –19 (K-theory;thiswillbetreatedatanintermediatelevel) –18 (Categorytheoryandhomologicalalgebra;includingsomeoftheusesofcategoryin computerscience,oftenclassifiedsomewhereinsection68) –17 (Nonassociativeringsandalgebras;especiallyLiealgebras) –16 (Associativeringsandalgebras) –15 (Linearandmultilinearalgebra,Matrixtheory) –13 (Commutativeringsandalgebras;herethereisafinelinetotreadbetweencommu- tative algebrasand algebraicgeometry;algebraic geometryis definitely nota topic thatwillbedealtwithinthisHandbook;therewill,hopefully,onedaybeaseparate Handbookonthattopic) –12 (Fieldtheoryandpolynomials) –11 Thepartofthatalsousedtobeclassifiedunder12(Algebraicnumbertheory) –08 (Generalalgebraicsystems) –06 (Certainparts;butnottopicsspecifictoBooleanalgebrasasthereisaseparatethree- volumeHandbookofBooleanAlgebras) v vi Preface Planning Originally (1992), we expected to cover the whole field in a systematic way. Volume 1 wouldbedevotedtowhatisnowcalledSection1(seebelow),Volume2toSection2,and soon.Adetailedandcomprehensiveplanwasmadeintermsoftopicswhichneededtobe coveredandauthorstobeinvited.Thatturnedouttobeaninefficientapproach.Different authorshavedifferentprioritiesandtowaitforthelastcontributiontoavolume,asplanned originally,wouldhaveresultedinlongdelays.Therefore,wehaveoptedforadynamically evolvingplan.Thisalsopermitstotakenewdevelopmentsintoaccount. This means that articles are published as they arrive and that the reader will find in thisthird volumearticles fromfive differentsections. The advantagesof thisscheme are two-fold:acceptedarticles will be publishedquicklyand the outline of the series can be allowedtoevolveasthevariousvolumesarepublished.Suggestionsfromreadersbothas to topics to be covered and authors to be invited are most welcome and will taken into seriousconsideration. Thelistofthesectionsnowlooksasfollows: Section1: Linearalgebra.Fields.Algebraicnumbertheory Section2: Categorytheory.Homologicalandhomotopicalalgebra.Methodsfromlogic (algebraicmodeltheory) Section3: Commutativeandassociativeringsandalgebras Section4: Otheralgebraicstructures.Nonassociativeringsandalgebras.Commutative andassociativeringsandalgebraswithextrastructure Section5: Groupsandsemigroups Section6: Representationsandinvarianttheory Section7: Machinecomputation.Algorithms.Tables Section8: Appliedalgebra Section9: Historyofalgebra Foramoredetailedplan(2002version),thereaderisreferredtotheOutlineoftheSeries followingthispreface. Theindividualchapters Itisnottheintentionthatthehandbookasawholecanalsobeasubstituteundergraduate orevengraduate,textbook.Thetreatmentofthevarioustopicswillbemuchtoodenseand professionalfor that. Basically, the levelis graduateand up,and such materialas can be foundinP.M.Cohn’sthreevolumetextbook“Algebra”(Wiley)will,asarule,beassumed. An importantfunctionof the articles in this Handbookis to provideprofessionalmathe- maticiansworkinginadifferentareawithsufficientinformationonthetopicinquestionif andwhenitisneeded. Each chapter combines some of the features of both a graduate-level textbook and a research-level survey. Not all of the ingredients mentioned below will be appropriate in eachcase,butauthorshavebeenaskedtoincludethefollowing: Preface vii – Introduction(includingmotivationandhistoricalremarks) – Outlineofthechapter – Basicconcepts,definitions,andresults(proofsorideas/sketchesoftheproofsaregiven whenspacepermits) – Commentsontherelevanceoftheresults,relationstootherresults,andapplications – Reviewoftherelevantliterature;possiblysupplementedwiththeopinionoftheauthor onrecentdevelopmentsandfuturedirections – Extensivebibliography(severalhundreditemswillnotbeexceptional) Thefuture Of course, ideally, a comprehensive series of books like this should be interactive and have a hypertextstructure to make finding material and navigationthrough it immediate and intuitive. It should also incorporate the various algorithms in implemented form as wellaspermitacertainamountofdialoguewiththereader.Plansforsuchaninteractive, hypertext, CD-Rom-based version certainly exist but the realization is still a nontrivial numberofyearsinthefuture. Kvoseliai,July2003 MichielHazewinkel KaumnenntmandieDingebeimrichtigenNamen, soverlierensieihrengefährlichenZauber (Youhavebuttoknowanobjectbyitspropername forittoloseitsdangerousmagic) E.Canetti This Page Intentionally Left Blank Outline of the Series (asofJune2002) PhilosophyandprinciplesoftheHandbookofAlgebra ComparedtotheoutlineinVolume1thisversiondiffersinseveralaspects. First,thereisamajorshiftinemphasisawayfromcompletenessasfarasmoreelemen- tarymaterialisconcernedandtowardsmoreemphasisonrecentdevelopmentsandactive areas. Second,theplanisnowmoredynamicinthatthereisnolongerafixedlistoftopicsto becovered,determinedlonginadvance.Insteadthereisamoreflexiblenonrigidlistthat cananddoeschangeinresponsetonewdevelopmentsandavailabilityofauthors. Thenewpolicyistoworkwithadynamiclistoftopicsthatshouldbecovered,toarrange these in sections and larger groups according to the major divisions into which algebra falls,andtopublishcollectionsofcontributionsastheybecomeavailablefromtheinvited authors. Thecodingbystylebelowisasfollows. – Author(s)inbold,followedbychaptertitle:articles(chapters)thathavebeenreceived andarepublishedorreadyforpublication. – Chaptertitleinitalic:chaptersthatarebeingwritten. – Chaptertitleinplaintext:topicsthatshouldbecoveredbutforwhichnoauthorhasyet beendefinitelycontracted. – ChaptersthatareincludedinVolumes1–3havea(x;yypp.)afterthem,where‘x’isthe volumenumberand‘yy’isthenumberofpages. ComparedtotheplanthatappearedinVolume1thesectionon“Representationandin- varianttheory”hasbeenthoroughlyrevised.Thechangesofthiscurrentversioncompared totheoneinVolume2(2000)arerelativelyminor:mostlytheadditionofsome5topics. Section1.Linearalgebra.Fields.Algebraicnumbertheory A. LinearAlgebra G.P.Egorychev,VanderWaerdenconjectureandapplications(1;22pp.) V.L.Girko,Randommatrices(1;52pp.) A.N.Malyshev,Matrixequations.Factorizationofmatrices(1;38pp.) L.Rodman,Matrixfunctions(1;38pp.) CorrectiontothechapterbyL.Rodman,Matrixfunctions(3;1p.) ix
Description: