ebook img

Hamiltonian Dyson--Schwinger Equations of QCD PDF

0.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hamiltonian Dyson--Schwinger Equations of QCD

3 Hamiltonian Dyson–Schwinger Equations of QCD 1 0 2 n a J 8 ] DavideCampagnari andHugoReinhardt h ∗ t InstituteforTheoreticalPhysics,UniversityofTübingen - p AufderMorgenstelle14,72076Tübingen,Germany e E-mail:[email protected] h [ 1 Thegeneralmethodfortreatingnon-Gaussianwavefunctionalsin theHamiltonianformulation v 6 ofaquantumfieldtheory,whichwaspreviouslydevelopedandappliedtoYang–Millstheoryin 5 Coulomb gauge, is generalized to full QCD. The Hamiltonian Dyson–Schwinger equations as 5 1 wellasthequarkandgluongapequationsarederivedandanalysedintheIRandUVmomentum 1. regime.Theback-reactionofthequarksonthegluonsectorisinvestigated. 0 3 1 : v i X r a XthQuarkConfinementandtheHadronSpectrum, October8–12,2012 TUMCampusGarching,Munich,Germany Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ HamiltonianDyson–SchwingerEquationsofQCD DavideCampagnari 1. Introduction Coulomb gauge Yang–Mills theory has attracted a considerable amount of attention over the last few years. In the continuum, both the Hamiltonian [1, 2, 3, 4] and the Lagrangian [5, 6, 7, 8] approach havebeeninvestigated. IntheHamiltonian approach, inparticular, theuseofvariational methodswithGaussianwavefunctionalshasledtotheso-calledgapequationfortheinverseequal- time gluon propagator. The analytical and numerical solutions show an inverse gluon propagator which in the UV behaves like the photon energy but diverges in the IR, signalling confinement. The obtained propagator also compares favourably with the available lattice data [9]; deviations in the mid-momentum regime (and minor ones in the UV), which can be attributed to the gluon loopescaping theGaussianwavefunctionals, canbetakenintoconsideration bygoingbeyondthe purely Gaussian form. Totreat these non-Gaussian functionals the authors developed in Ref. [10] a method relying on Dyson–Schwinger Equations (DSEs) by exploiting the formal similarity be- tween vacuum expectation values in the Hamiltonian formalism and correlation functions in Eu- clideanquantumfieldtheory. Inthistalkwereportabouttheimplementationofthesetechniquesin thequarksectorofthetheory, inordertoinvestigate issueslikethespontaneous breaking ofchiral symmetry. The topic of chiral symmetry breaking in Coulomb gauge has been studied for example in Ref. [11]. While it has been shown that an infrared enhanced potential can account for chiral symmetrybreaking, thecalculated physical quantities, suchasthedynamicalmassandchiralcon- densate, turn out tobe fartoo small. It has been recently shown [12] that using a wave functional which includes the coupling of the quarks to the transverse gluon field improves the results to- wards the phenomenological findings. Weapply here thetechniques developed inRef. [10]tothe wavefunctional proposed inRef.[12]. Whilewedonotexpect considerably differentresultsfrom Ref. [12]for physical quantities, the approach presented here has abroader range of applications, andcouldeasilybeappliedtomorecomplicated wavefunctionals. 2. HamiltonianDyson–Schwinger Equations The derivation of the Hamiltonian DSEs in pure Yang–Mills theory has been presented in Ref. [10]. We summarize here briefly the essential steps leading from the choice of the wave functional tothepertinent DSEs. IntheSchrödingerpictureoftheYang–Millssectorwerepresentthegaugefieldandthecanon- icalmomentumoperators inthebasis A oftheeigenstates ofthefieldoperatorby | i d A Aˆ f =AF [A], A Pˆ f = F [A], (2.1) h | | i h | | i id A where F [A] A F isaphysical state. Thevacuum expectation value(VEV)ofanoperator K is ≡h | i therefore givenby K[A,P ] = DAJ F [A]K[A, d ]F [A]. (2.2) h i Z A ∗ id A InEq.(2.2) thefunctional integration runs overtransverse fieldconfigurations satisfying theCou- lomb gauge condition, ¶ Aa=0, and is restricted to the first Gribov region; J =Det(G 1) is the i i A −A 2 HamiltonianDyson–SchwingerEquationsofQCD DavideCampagnari Faddeev–Popov determinant whicharisesfromthegaugefixing,and GaAb(~x,~y) −1= d ab¶ 2 gfacbAci(~x)¶ i d (~x ~y) (2.3) − − − (cid:2) (cid:3) (cid:0) (cid:1) is the inverse Faddeev–Popov operator, with g being the coupling constant and fabc being the structure constants ofthe su(N )algebra. c In a similar manner, a state F in the fermionic Fock space possesses a “coordinate” repre- | i sentation x F F (x †,x ), (2.4) h | i≡ where x ,x † arecomplexGrassmannfields. TheVEVofafermionic operator inthisstateisgiven by O[yˆ,yˆ†] = Dx †Dx e−x †(L +−L −)x F ∗(x ,x †)O yˆ,yˆ† F (x †,x ), (2.5) Z (cid:10) (cid:11) (cid:2) (cid:3) wheretheL aretheprojectorsontostatesofpositiveandnegativeenergyofthefreeDiractheory. ± TheDiracfieldoperators actonfunctionals according to d yFˆ (x †,x )= L x +L F (x †,x ), (cid:18) − +dx †(cid:19) (2.6) d yˆ†F (x †,x )= L x †+L F (x †,x ). (cid:18) + −dx (cid:19) Wehaveputexplicitlyahatoverthefermionoperators yˆ†inEq.(2.6)todistinguishthemfromthe Grassmann (classical) fields x ,x † used inthe“coordinate” representation. Theexponential factor occurring inthefermionicfunctional integration inEq.(2.5)arisesfromthecompleteness relation forfermioniccoherent states, seee.g.Ref.[13]. ThevacuumstateofQCDcanbeassumedtobeoftheform 1 Y [A,x ,x †]=:exp S [A] S [x ,x †,A] , (2.7) A f (cid:26)−2 − (cid:27) where S is afunctional ofthe gauge fieldonly, while S contains the fermion and fermion-gluon A f interaction parts. Dyson–Schwingerequations arederived bystarting fromtheidentity [10] d 0= DADx †Dx df JAe−x †(L +−L −)x Y ∗[A,x ,x †]K[A,x ,x †]Y [A,x ,x †] (2.8) Z n o withf A,x ,x † . ∈{ } Toproceedfurther,weneedanexplicitansatzforthevacuum wavefunctionalEq.(2.7). Since weareinterested heremainlyinthequarksector,wechoosethesimpleGaussianform S = d3xd3yAa(~x)w (~x,~y)Aa(~y) (2.9) A i i Z forthe Yang–Mills part. Itshould bestressed, however, that this isin no way necessary, and non- Gaussian generalization can betaken aswell[10];werestrict ourselves totheform Eq.(2.9) only forpedagogical reasons. Forthequarkwavefunctional wechoosetheansatz[12] S = d3xd3yx m†(~x)Kmn(~x,~y)x n(~y), x =L x . (2.10) f + A Z − ± ± 3 HamiltonianDyson–SchwingerEquationsofQCD DavideCampagnari −1 −1 =2 + =2 + + − Figure1: HamiltonianDSEsforthequark(left)andgluonpropagator(right). Filleddotsstandfordressed propagatorsandemptycirclesforproperfunctions.Thesmallemptyboxesrepresentthevariationalkernels. Curlylinesrepresentgluons,dashedlinesghosts,andstraightlinesfermions. The kernel K contains both the purely fermionic part and the coupling ofthe quarks tothe trans- A versegluons, Kmn(~x,~y)=d mnb s(~x,~y)+g d3zV(~x,~y;~z)~a ~Aa(~z)tmn. (2.11) A a Z · Here, b and~a are the usual Dirac matrices, t are the generators of the group in the fundamental a representation (or, in general, in the representation to which the fermion fields belong), and the functions sandV arethevariational kernels. With these choices for the wave functional the resulting DSEs are represented diagrammati- callyinFig.1. 3. VariationalApproach to QCD The Hamilton operator of QCD in Coulomb gauge [14], resulting from the resolution of Gauss’slawinthecanonically quantized theory, canbewrittenas 1 d d 1 H = d3xJ 1 J + d3xFa(~x)Fa(~x) QCD −2Z A− d Aa(~x) Ad Aa(~x) 4Z ij ij i i + d3xy m†(~x) ia ¶ +b m y m(~x) g d3xy m†(~x)a Aa(~x)tmny n(~x) i i i i a Z − − Z (cid:2) (cid:3) + d3xd3yJ 1r a(~x)J Fab(~x,~y)r b(~y). (3.1) Z A− A A InEq.(3.1) Fa(~x)=¶ Aa(~x) ¶ Aa(~x)+gfabcAb(~x)Ac(~x) (3.2) ij i j j i i j − isthespatialpartofthefieldstrength tensor, Fab(~x,~y)= d3zGac(~x,~z)( ¶ 2)Gcb(~z,~y) (3.3) A A z A Z − istheso-calledCoulombkernel,whicharisesfromthelongitudinalcomponentoftheelectricfield, and d r a(~x)=y m†(~x)tmny n(~x)+ fabcAb(~x) (3.4) a i id Ac(~x) i isthetotalcolourchargedensity. The energy density can be evaluated as expectation value of the Hamiltonian Eq. (3.1). The Hamiltonian DSEs in the general form Eq. (2.8) enter this calculation twice: first to express the VEVsoftheoperators yˆ,yˆ† intermsoftheGrassmannfieldsx ,x †,andsecondtoturntheresult- ing expressions, which involve propagators and vertex functions, in afunctional of the variational kernels. Inthis calculation wehave tointroduce approximations, and weevaluate theenergy den- sityuptotwoloops(seeRef.[10]formoredetails). 4 HamiltonianDyson–SchwingerEquationsofQCD DavideCampagnari 4. GapEquations Thevariation oftheenergydensity withrespecttoV fixesthevectorkernel 1+s(~p)s(~q) V(~p,~q)= , (4.1) −W (~p+~q)+|~p|1−s2(1~p+)+s22(s~p()~p)s(~q)+|~q|1−s2(1~q+)+s22(s~q()~p)s(~q) whereW = 1 AA 1 istheinversegluonpropagator. Replacing thekernelsoccurring ontheright- 2h i− handsidebytheirtree-levelforms,i.e. W (~p)= ~p ands(~p)=0,weobtain | | 1 V (~p,~q)= , (4.2) 0 − ~p+~q + ~p + ~q | | | | | | which isexactly theleading-order perturbative expression forthe quark-gluon vertexformassless fermions[15]. Equation (4.1) can be inserted back into the expression for the energy density, and taking functional derivatives withrespect to w (~p)ands(~p)weobtainthegluonandquarkgapequations. Asafirstapproximation,wewillignorethes-dependenceofthedenominatorofEq.(4.1). Keeping thewholedenominatorstructurewouldgiverisetomorecomplicatedexpressionswhich,however, havethesameIRandUVasymptoticbehaviour. Theapproximated gapequation forthescalarquarkkernel sreads g2C d3q s(~q) 1 s2(~p) pˆ qˆs(~p) 1 s2(~q) F ~p s(~p)= F(~p ~q) − − · − | | 2 Z (2p )3 − (cid:2) 1(cid:3)+s2(~q) (cid:2) (cid:3) (4.3) g2C d3q X(~p,~q) 1+s(~p)s(~q) s(~q) s(~p) F + − , 2 Z (2p )3 W (~p+~q) 1+(cid:2) s2(~q) W (~p(cid:3)+(cid:2)~q)+ ~q +(cid:3)~p | | | | (cid:2) (cid:3)(cid:2) (cid:3) where F = F is the Coulomb propagator and X is a tensor structure arising from the traces in A h i Dirac space. The first term on the right-hand side of Eq. (4.3) was obtained by Adler and Davis [11]; the second term is due to the coupling of the quarks to the transverse gluons. Asmentioned intheIntroduction, inRef.[12]thecouplingtotransverse gluonswasalsotakenintoaccount. The authors of Ref. [12] used the same wave functional Eq. (2.10) as in this work but did a quenched calculation. As a consequence the effect of the Yang–Mills kinetic energy operator on the quarks wsneglected. Trading the scalar kernel s in favour of the mass function M, Eq. (4.3) takes the following simpleform C d3q ~p M(~q) pˆ qˆ ~q M(~p) ~p M(~p)=g2 F F(~p ~q)| | − · | | | | 2 Z (2p )3 − E(~q) (4.4) C d3q X(~p,~q) ~p M(~q) ~qM(~p) +g2 F | | −| | , 2 Z (2p )3 W (~p+~q) W (~p+~q)+ ~p + ~q E(~q) | | | | (cid:2) (cid:3) with E(~p)= ~p2+M2(~p). (4.5) p 5 HamiltonianDyson–SchwingerEquationsofQCD DavideCampagnari 0.5 Gribov 0.45 withquarks 0.4 0.35 0.3 D(p) 0.25 0.2 0.15 0.1 0.05 0 0 1 2 3 4 5 6 7 8 p/√σ C Figure2: GluonpropagatorD=1/(2W )inthepresenceofquarksforthegapequation(4.6)assumingthe GribovformfortheYang–Millspart. PhysicaldimensionsaresetbytheCoulombstringtensions . C Thevariationoftheenergydensitywithrespecttothegluonkernelw combinedwiththegluon propagator DSEyieldsthegapequation forinversegluonpropagator W W 2(~p)=~p2+Yang–Millsterms d3q 1+s(~q)s(~p+~q) 2 2W (~p)+ ~q + ~p+~q g2 | | | | − Z (2p )3 1+(cid:2)s2(~q) 1+s2(~p+(cid:3) ~q) W (~p)+ ~q + ~p+~q 2 | | | | (cid:2) (cid:3)(cid:2) (cid:3)(cid:2) ~p ~q(cid:3)+(pˆ ~q)2 1+ · · , (4.6) ×(cid:20) ~q ~p+~q (cid:21) | || | wheretheusualYang–Millsterms(ghostloop,Coulombinteraction, andpossiblyadditionalterms stemmingfromanon-Gaussian ansatz)canbefoundinRef.[10]. Equations(4.3)and(4.6)formacoupled system,toghetherwiththeDSEfortheghostpropa- gator and the Coulomb form factor. The analysis of the full coupled set of equations is subject of ongoing work. Asa first estimate, we investigate the effect of the quark loop on the gluon propa- gator: wetaketheGribovformulaforthepureYang–Millsgluonpropagatoranduseforthescalar kernel s a form fitted from the data in Ref. [12]. The result is plotted in Fig. 2. As we see, the gluon propagatorlosessomestregthinthemid-momentum regime. Thisbehaviour isknownfrom Landaugaugestudies, andCoulombgaugeinvestigations onthelatticeconfirmthis[16]. 5. Conclusions Thegeneralmethodtotreatnon-Gaussianwavefunctionals intheHamiltonianformulationof a quantum field theory presented in Ref. [10] has been applied here to QCD in Coulomb gauge. Wehaveusedthequarkwavefunctional suggestedinRef.[12],whichincludesthecouplingofthe quarks tothetransverse gluons. Theresulting quark gapequations aresimilarinbothapproaches; the numerical solution of the equations and the comparison to the findings of Ref. [12] are the subject of ongoing work. As a first application we have presented here the effect of the back- coupling of the quarks on the gluon propagator. In future work we intend to expand the present approach toQCDatfinitetemperature [17]andbaryondensity. 6 HamiltonianDyson–SchwingerEquationsofQCD DavideCampagnari Acknowledgments The authors are grateful to M. Pak and P. Watson for useful discussions. This work was supported bytheDFGundercontracts No.Re856/9-1andbyBMBF06TU7199. References [1] D.Schutte,Phys.Rev.D31,810–821(1985). [2] A.P.Szczepaniak,andE.S.Swanson,Phys.Rev.D65,025012(2001). [3] C.Feuchter,andH.Reinhardt,Phys.Rev.D70,105021(2004). [4] D.Epple,H.Reinhardt,andW.Schleifenbaum,Phys.Rev.D75,045011(2007). [5] P.Watson,andH.Reinhardt,Phys.Rev.D75,045021(2007). [6] P.Watson,andH.Reinhardt,Phys.Rev.D77,025030(2008). [7] H.Reinhardt,andP.Watson,Phys.Rev.D79,045013(2009). [8] P.Watson,andH.Reinhardt,Phys.Rev.D82,125010(2010). [9] G.Burgio,M.Quandt,andH.Reinhardt,Phys.Rev.Lett.102,032002(2009). [10] D.R.Campagnari,andH.Reinhardt,Phys.Rev.D82,105021(2010). [11] S.L.Adler,andA.Davis,Nucl.Phys.B244,469(1984). [12] M.Pak,andH.Reinhardt,Phys.Lett.B707,566–569(2012). [13] F.A.Berezin,TheMethodofSecondQuantization,vol.24ofPureAppl.Phys.,AcademicPress, 1966. [14] N.H.Christ,andT.D.Lee,Phys.Rev.D22,939–958(1980). [15] D.R.Campagnari,Ph.D.thesis,Eberhard-Karls-UniversitätTübingen(2010). [16] G.Burgio,privatecommunication. [17] J.Heffner,H.Reinhardt,andD.R.Campagnari,Phys.Rev.D85,125029(2012). 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.