ebook img

Hamiltonian-Dirac Simulated Annealing PDF

22 Pages·2010·5.63 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hamiltonian-Dirac Simulated Annealing

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy PhysicaD240(2011)212–232 ContentslistsavailableatScienceDirect Physica D journalhomepage:www.elsevier.com/locate/physd Hamiltonian–Dirac simulated annealing: Application to the calculation of vortex states G.R.Flierla,P.J.Morrisonb,∗ aDepartmentofEarth,Atmospheric,andPlanetarySciences,MassachusettsInstituteofTechnology,Cambridge,MA02139-4307,USA bDepartmentofPhysicsandInstituteforFusionStudies,TheUniversityofTexasatAustin,Austin,TX,78712,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Asimulatedannealingmethodforcalculatingstationarystatesformodelsthatdescribecontinuousmedia Availableonline22September2010 isproposed.ThemethodisbasedonthenoncanonicalPoissonbracketformulationofmedia,whichis usedtoconstructDiracbracketswithdesiredconstraints,andsymmetricbracketsthatcauserelaxation Keywords: withthedesiredconstraints.Themethodisappliedtotwo-dimensionalvortexdynamicsandavarietyof Vortexdynamics numericalexamplesisgiven,includingthecalculationofmonopoleanddipolevortexstates. Hamiltonian ©2010ElsevierB.V.Allrightsreserved. NoncanonicalPoissonbracket Lie–Poissonbracket Diracbracket Simulatedannealing 1. Introduction generatedynamicsthatisanenergyextremizingrearrangement, while preserving additional properties such as linear or angular TheEuleriandescriptionofmediahasaHamiltonianformula- momentum.Here,thisisdoneforavarietyofnumericalexamples tionintermsofnoncanonicalPoissonbrackets(see[1–6]andrefer- in the context of vortex dynamics. A preliminary version of our method was reported in [17] where some results for contour encestherein),bracketsthatarenotofthestandardformbecause dynamicscalculationswerepresented. Eulerianvariablesarenotcanonicalvariables.Incorporatingdissi- The paper is organized as follows: in Section 2 we develop pationintosomekindofgeneralformalismdatestoRayleigh,but the needed theory, which includes a description of the various theuseofsymmetricbracketsinconjunctionwithnoncanonical bracketformulations.Thespecificcaseoftwo-dimensionalvortex Poissonbracketsforthispurposewasproposedin[7–9].Unlikethe dynamics isused to illustrate thegeneral ideas. This is followed widelystudiedbutmoresimplisticCahn–Hilliardgradientflows in Section 3 by numerical examples that illustrate various kinds (seee.g.[10]),theformulationoftheseauthorswasconcernedwith ofdynamics,includingvortexstateswithtwo-foldandthree-fold brackets that generate a dynamics compatible with the laws of symmetryanddipolestates.InSection4two-layerquasigeostropic thermodynamics,aformulationthatwastermedmetriplecticdy- dynamics is considered with monopolar vorticity in each layer. namicsin[11].Thesesystemsarecompleteinthesensethaten- Finally,inSection5weconclude. ergyisconservedwhileentropyisproduced.Dissipativebrackets havealsobeensuggestedforincompletesystemsthathavenono- 2. Theory tionofentropybutdissipateenergywhilepreservingCasimirin- variants[12–15].See[16]forageneraldiscussion.Thelatterwere AsmentionedinSection1,thetheorybehindourformulation proposedasameansforcomputation,particularly[13–15]inthe has several basic parts: a noncanonical Poisson bracket defined contextoffluidmechanics,wheretheformalismwasusedandpro- on functionals or observables (see e.g. [2,6,18]), a Dirac bracket posedforcalculatingstationaryvortexstatesbyakindofsimulated basedonsuchanoncanonicalPoissonbracket(seee.g.[19,20]for annealingdynamics. traditionalDiracbracketsandseee.g.[17,21]forthenoncanonical We offer a new twist that overcomes difficulties obtained version), and a symmetric bracket that gives rise to relaxation in [13–15]—we extremize energy at fixed Casimir invariants by akintocollisionoperatorsinkinetictheory(seee.g.[15,16]).We using Dirac brackets to enforce constraints. In this way one can describetheseobjectshere. 2.1. Functionals ∗ Correspondingauthor.Tel.:+15124711527. Functionalsmapasetofdynamicalvariablesintonumbers.In E-mailaddresses:[email protected](G.R.Flierl), [email protected](P.J.Morrison). general one may have M dynamical variables denoted by χi(z), 0167-2789/$–seefrontmatter©2010ElsevierB.V.Allrightsreserved. doi:10.1016/j.physd.2010.08.011 Author's personal copy G.R.Flierl,P.J.Morrison/PhysicaD240(2011)212–232 213 wherei = 1,2,...,M,thatarefunctionsofz = (z1,z2,...,zN), Clearlythefunctionalderivativedependsingeneraluponspa- coordinatesforanN-dimensionaldomain,D,andfunctionalsof tiallocation—attimeswewillneedtobeexplicitaboutthistodis- thesevariableswillbedenotedbyF[χ]. tinguishxfromx′etc.;therefore,wewillusethenotation Forexample,whenthedynamicalvariableisasinglevorticity- δF[q] like variable, the case for the calculations of Section 3, the , δ ( ) functionalF[q]mapsthefunctionq(x)intoR.Herex = (x,y)is q x apointinD,aplanarregion,takenforthenumericalcalculations explicitlyshowingthattheindependentvariableisx.Thus(7)takes here to be a 2-torus. Examples of such observables include the theperspicuousform angularmomentum, δ ( ) q x L=−1∫ dx|x|2q(x), (1) δq(x0) =δ(x0−x), 2 D aquantitythatwillbeneededintheevaluationofPoissonbrackets andtheHamiltonianfunctional, below. ∫ ∫ 1 H =− dx dx′q(x)G(x,x′)q(x′), (2) 2.2. NoncanonicalPoissonbrackets 2 D D where G is the relevant Green’s function; for two-dimensional AgeneralnoncanonicalPoissonbracketisabinaryoperatoron vorticitydynamicsitsatisfies∇2G(x)=δ(x). functionalsoftheform Note,thekineticenergyofthefluidonaninfinitedomaincan ∫ ∫ δF[χ] δG[χ] haveaninfinitepartassociatedwiththe1/rfar-fieldwhenthenet {F,G}= dNz′ dNz′′ δχi(z′)Jij(z′,z′′)δχj(z′′), (10) vorticityisnon-zero;sincethelatterisconserved,thiscomponent D D χ of the energy is fixed. Subtracting it from the total gives the where denotes a set of dynamical variables with M elements, Hamiltonian,whichthusisnotquitethephysicalenergy.Asimilar i,j = 1,...,M, that depends on a coordinate z of a space of situationarisesfortheangularmomentumwhereaboundaryterm dimension N. In (10), J is the cosymplectic operator that must isremovedfromthequantityL.InthefollowingwewillrefertoH ensurethatthebracketsatisfies:antisymmetry,{F,G}=−{G,F}, astheenergyandLastheangularmomentum. andtheJacobiidentity,{{F,G},H}+{{G,H},F}+{{H,F},G}=0, In addition to the functionals (1) and (2), there is q(x ), the forallfunctionalsF,G,H.Notethat,becauseoftheformof(10), 0 functional that is the evaluation of q at a particular point of its bilinearityandtheLeibnitzderivationpropertiesaremanifest.Itis domain, notrequiredthatJbenondegenerate.Whenitisdegenerate,i.e. ∫ hasanontrivialnullspace,thereexistCasimirinvariants,C,that q(x )= dxδ(x −x)q(x). (3) satisfy{C,G}=0forallfunctionalsG.(Seee.g.[6,17]forreview.) 0 0 D ThePoissonbracketforvortexdynamics[22,2,23]isthefollow- This latter functional is needed when casting the equations of ing: motionintoHamiltonianform,asisdoneinSection2.5below. ∫ [δF[q] δG[q]] Thetimerateofchangeoffunctionalswillbegeneratedbymak- {F,G}= dx′q(x′) , , (11) inguseofvariousbrackets,andtheseinvolveanotionoffunctional D δq(x′) δq(x′) orvariationalderivative.Thiskindofderivativedescribeshowthe where[A,B]=zˆ·∇A×∇Bwithzˆaunitvectornormaltothepla- valueofthefunctionalchangesaswemakesmallchangestoits narregion;thus,[A,B]isanordinarybracketthatcanbewritten argument.Thusweconsiderthefirstvariation, inCartesiancomponents,oritcanbewrittenintermsofwhatever δF[χ;η]= d F[χ +ϵη] =∫ dNz δF[χ]ηi, (4) tphleecitnicdeoppeenradteonrtJv=aria−b[lqe,s·m]aignhdttbhee.JFaocrobthiiisdeenxtaimtypclaenthbeecporsoyvmed- dϵ ϵ=0 D δχi directlybythetechniquesdescribedin[2].Thewell-knownquan- whererepeatedindicesaretobesummedhere(andwillbehence- titiesC[q]= dxC(q)withCarbitrary,afamilyofintegralsthat D forthunlessotherwisestated).Usingtheintegraloverzasaninner includesthenetvorticityandenstrophy,areCasimirinvariants.It product,thequantityδF/δχ canbeinterpretedasagradientand iseasytoshow{C,G}=0forallG. δF[χ;η]astheFréchetderivativeactingonη(z). DynamicsisgeneratedfromthenoncanonicalPoissonbracket Fromthisdefinition,thefunctionalderivativesoftheexamples accordingto (1)–(3),arereadilyobtained, ∂ q ={q,H}, (12) δL[q] |x|2 ∂t =− , (5) δq 2 theusualPoissonbracketHamiltonianform.Wewillrefertothis δH[q] ∫ dynamicsasH-dynamics.With(7)and(11),wecanshowthat δq =− Ddx′G(x,x′)q(x′), (6) {q(x),G} = ∫ dx′q(x′)[δq(x), δG[q]] δ ( ) δq(x′) δq(x′) q x D δq0 =δ(x0−x), (7) = ∫ dx′q(x′)[δ(x−x′), δG[q]] δq(x′) wherein(6)thesymmetricnatureofGhasbeenused.Withthe D streamfunctionψthatsatisfies,∇2ψ =q,wecanwrite [ δG[q]] = − q(x), , (13) ∫ δq(x) ψ(x)= Ddx′G(x,x′)q(x′), (8) using the identity Ddxf[g,h] = −Ddxg[f,h], obtained by integrationbypartsandneglectofsurfaceterms.Wenowhave andthereforethefunctionalderivativeoftheHamiltonianis δH[q] ∂ [ δH[q]] =−ψ(x). (9) q(x)={q(x),H}=− q(x), =[q,ψ], (14) δq(x) ∂t δq(x) Author's personal copy 214 G.R.Flierl,P.J.Morrison/PhysicaD240(2011)212–232 whichistheusualformforthetwo-dimensionalEulerequations. is,atmost,afunctionoftimebutnotx.Thereforefrom Functionalsevolveaccordingto {F,G} ={F,G}−Ai{F,C}, (21) D i ∂ F ={F,H}; (15) weseethattheevolutionofF under(11)isgivenby ∂ t ∫ [δ δ ] ∫ [δ δ ] F G F C since{C,H} = 0fortheCasimirinvariants,theyareindeedcon- {F,G} = dxq , −Ai dxq , i D δ δ δ δ q q q q stantintimeforanychoiceoftheHamiltonian. D D ∫ [δ δ δ ] F G C = dxq , −Ai i . (22) δ δ δ 2.3. NoncanonicalDiracbrackets D q q q Thus,theflowdevelopsaccordingto From any bracket of the form of (10) and any choice of con- straintfunctionalsCisuchthattheantisymmetricmatrix{Ci,Cj}is ∂ q=−[Ψ,q], (23) ∂ nonsingular,onecanconstructageneralizedDiracbracketasfol- t lows: where {F,G}D ={F,G}−{F,Ci}Cij{Cj,G}, (16) Ψ =ψ+Aici and whereCij :={Ci,Cj}−1.Eq.(16)definesabracketthatisobviously Ai =−∫ dxq[c,c]−1∫ dxc[ψ,q]. (24) antisymmetricandcanbeproventosatisfytheJacobiidentity(cf. i j j D D AppendixCof[21]).Underthisform,theconstraintsCi,areCasimir Thisformfollowsfrom{C,H}using(11)ordirectlyfrom invariants, j ∂ ∫ ∂ {C,G} =0 forallG. (17) {C,H}= C = dxc q. i D j ∂ j j∂ t t D Forthematrix{Ci,Cj}tobeinvertible,wemusthaveanevennum- Thus,Diracbracketdynamicsisthe‘‘advection’’ofqbyΨ,whichis berofconstraints,andnoneoftheC’scanbeCasimirinvariants i theusualstreamfunctionwiththeadditionoftheconstraintfields oftheoriginalnoncanonicalbracket;todistinguishthosefromthe multipliedbythetimedependentcoefficientsAi. onesusedintheDiracconstruction,wewillrefertothelatteras InSection3wewillusetheinvariantsC =−LandC equalto 1 2 Diracconstraints. thestrainmoment,definedby DiracconstructedsuchbracketsoutofcanonicalPoissonbrack- ∫ etswiththegoalofquantizingclassicalfieldtheories,butherewe S = dxxyq. (25) usenoncanonicalPoissonbrackets,andtheaimisthepurelyclas- D sicalimpositionofconstraintsonthedynamics.Althoughonecan WiththesechoicesweseethatΨ obtainsarotationalpiecemul- constructDiracbracketsoutofanyevennumberofconstraints,we tipliedbyA ,aglobalquantity,andapiecethatisastrainingfield willgenerallyuseonlytwoorfourglobalconstraints,i.e.onesthat 1 multipliedbyA ,alsoaglobalquantity,viz. involveintegrationanddonotdependexplicitlyonz.Forpoint- 2 wiseconstraints,Ci(∫z),thege∫neralbrackethasthefollowingform: A1 = Dddxx(xx2y[−ψ,y2q)]q and {F,G}D = ×{F,{FG,}C−i(z′D)}CdNij(zz′′,Dz′′d)N{Czj′(′z′′),G}. A2 =−D21Ddxdx(x(2x2+−y2y)2[)ψq,q]. (26) D We will refer to dynamics generated by Dirac brackets as HD- The time dependence in the Ai applies the two fields in just the dynamics. right combination to keep the C constant. Although the angular i ForthenumericalexamplestreatedinSections3and4wewill momentumisalreadyconservedbyvortexdynamics,thisisnot useglobalDiracconstraintsoflinearform, necessarily the case when quantities evolve according to Dirac brackets(cf.Section3.1andAppendixDof[21]).Choosing−Las ∫ C = dxc(x)q(x), (18) oneofourDiracconstraintsguaranteesthatitremainsconserved. i i D Although (21) resembles the procedure suggested in [15] of addingtermstoHwithLagrangemultipliers,itisdifferentinthat wherethec andtheinitialconditionwillbechosenbyintuition i thecoefficientschangeintimetoensurethattheDiracconstraints andbyconsideringthedesiredsymmetriesofthefinalstate.With remainconstant.Furthermore,atleastoneoftheconstraintsmust this form for the Dirac constraints, the Dirac bracket is readily evaluatedusingδCi/δq(x)=ci(x)whichgivese.g. nthoattbteheavcoenctsotran{Cto,fHm}oistinoonnu-nzedreor.theoriginaldynamicstoensure j ∫ ∫ [δ ] F {C,C}= dxq[c,c] and {F,C}= dxq ,c . i j i j i δq i 2.4. Symmetricbrackets D D Inthecaseoftwoconstraints,therequiredmatrixissimple: Ageneralsymmetricbracketanalogousto(10)isgivenby C=1/{C01,C2} −1/{C01,C2}. (19) ((F,G))G =∫DdNz′∫DdNz′′ δδχFi[(χz′])Gij(z′,z′′)δδχGj[(χz′]′), (27) Togeneratedynamics,wenotethatforaglobalfunctionalG, where the metric operator G is chosen to ensure ((F,G))G = (( , )) theterm G F G andtobesemidefinite.Wemayalsowanttobuildde- generaciesintoGsothatthereexistdistinguishedfunctionalsD Ai =Cij{Cj,G} (20) thatsatisfy((D,G))G =0forallG. Author's personal copy G.R.Flierl,P.J.Morrison/PhysicaD240(2011)212–232 215 Herewewillbeinterestedinaspecificformof(27)thatisagen- using ∇2Φ = [q,ψ]. Therefore, because ((H,H)) ≥ 0, when α > , α < eralizationofthesymmetricbracketsgiveninpreviouswork[11, 0 Htendstomaximize,whileif 0,Htendstominimize. 13,15,16],viz. Finally,theDSAformisgivenby ∫ ∫ ∫ ((F,G))= dNz′ dNz′′{F,χi(z′)}Kij(z′,z′′){χj(z′′),G}, (28) ((q(x),H))D = dx′{q(x),q(x′)}DΦD(x′) (33) D D D withKadefinitesymmetrickernelthatcanbechosenatwill,e.g., with toeffectsmoothing.Withthisform,theCasimirinvariantsof{F,G} ∫ willautomaticallybedistinguishedfunctionalsD.Wewillreferto ΦD(x) = dx′K(x,x′){q(x′),H}D dynamicsinvolvingthiskindofbracketasSA-dynamics,whereSA D ∫ standsforsimulatedannealing. = dx′K(x,x′)[q(x′),ψ(x′)+Aic(x′)]. (34) Thesymmetricbracketof(28)canbeevenfurthergeneralized i D asfollows: UsingthedefinitionoftheDiracbracket(16)and(13)gives ∫ ∫ ((F,G)) = dNz′ dNz′′{F,χi(z′)} K (z′,z′′){χj(z′′),G} , {q(x),q(x′)} = {q(x),q(x′)}−{q(x),C}Cij{C,q(x′)} D D ij D D i j D D = [q(x′),δ(x−x′)]−[c(x),q(x)]Cij[q(x′),c(x′)]. (29) i j whichisoftheformof(28)butwithaDiracbracketreplacing{,}. ThereforetheDSAbracketbecomes Whenthisisthecase,thesetofdistinguishedfunctionalswillbe ((q(x),H)) = [Φ (x),q(x)]+[Bic(x),q(x)] D D i tDhieraucncioonnstorfatinhtesCuasseidmiinrtinhveacroiannsttsruocftitohneobfr{aFck,eGt}{F.W,Ge}wwiiltlhretfheer = [ΦD+Bici,q] (35) D todynamicsgeneratedbythiskindofbracketasDSA-dynamicsfor with Diracsimulatedannealingdynamics. ∫ IfaHamiltonian-likefunctionalF isusedtogeneratedynamics, Bi =Cij dx′c(x′)[q(x′),Φ (x′)]. (36) j D thenallthreeofthebrackets(27)–(29)havethepropertydF/dt ≥ D 0.Forexample,underSAdynamics, Again,theqfieldevolvesbyadvection,withthe‘flow’including correctionstomaintaintheDiracconstraints. dF =α((F,F))≥0, (30) dt 2.5. Variousdynamics whenK isnegativeandα,aparameterthatmeasuresthe‘dissi- ij pative’timescale,ispositive.Thisinequalityfollowsfromthesym- Variouskindsofdynamicalsystemsthatcanbegeneratedby metrybuiltintothebracket.Infact,thesignofαcanbechosento thebracketsdescribedabovearelistedbelow: makethedynamicsminimizeormaximizeF.Thuswehaveafor- ∂ mal‘H-theorem’,akintothatoftheBoltzmannequation,andthe Hamiltonian:∂ F ={F,F}, (37) t rudimentsforpossiblybuildingrigoroustheoremsaboutasymp- ∂ toticstability. HamiltonianDirac: F ={F,F} , (38) ForourvortexexamplewiththeHof(2), ∂t D ∫ ∫ ∂ ((q(x),H)) = dx′ dx′′{q(x),q(x′)}K(x′,x′′){q(x′′),H} SimulatedAnnealing:∂ F =σ{F,F}+α((F,F)), (39) t D D ∫ ∂ = − dx′[δ(x−x′),q(x′)] DiracSimulatedAnnealing:∂ F =σ{F,F}D+α((F,F))D. (40) t D ∫ IntheseequationsF representsanarbitraryobservableandF isa × dx′′K(x′,x′′)[q(x′′),ψ(x′′)] singlefunctionalthatisusedtogeneratethetimeadvancement. D Eqs. (37) and (38) are ideal and conserve energy in principle, = [Φ(x),q(x)], although this will not be precisely the case when numerically σ α where we have used (13) and (14) and defined an effective solved. In (39) and (40) the parameters and can be used to streamfunctionby weight the contributions of the ideal and dissipative dynamics, respectively. For our runs we will choose σ ∈ {0,1} and α ∈ ∫ Φ(x)= dx′K(x,x′)[q(x′),ψ(x′)]. (31) {−1,1}.ForthefunctionalF,weshallusetheHamiltonian,H,but remarkthatitcanmoregenerallybeassumedtohavetheform D Aspointedoutin[13,14]forthespecialcasewhereK(x,x′)= F =H+−C +λiP, (41) δ(x − x′), the resulting dynamical equation is still an advective i i i equation,butwithanalterednon-divergentflowfield,sothatqis where the Cs are Casimir invariants and the Ps are dynamical conservedpointwiseandallthemomentsofqareconserved.The invariants that commute with the particular Hamiltonians H of specificformofinequality(30),whichreliesonthesymmetryof interest—we also require that the Ps commute with any Dirac K,canbeshowndirectly.WedosoforthecasewhenK isthe Green’sfunctionGthatsatisfies∇2G(x)=δ(x).Weobtain constraintsemployed.ThepresenceofthePsinF generatesdy- namicsinmovingframes.Forexample,ifoneaddsthelinearor ∫ ((H,H)) = − dx′Φ(x′){q(x′),H} angularmomentumtoH,then(39)generatesdynamicsinauni- formly translating or rotating frame, respectively. Consequently, D ∫ extremalpointsof(41)arestationarystatesinmovingframes.Un- = − dx′Φ(x′)[q(x′),ψ(x′)] likethePsof(41),theHandtheDiracconstraintsinDSA-dynamics D areusedtoholdthevorticesinplace. ∫ ∫ WiththeaboveassumptionsonF,thedynamicsgeneratedby = − dx′Φ(x′)∇2Φ(x′)= dx′|∇Φ(x′)|2, (32) (37) clearly conserves all Casimir invariants for any H, and the D D Author's personal copy 216 G.R.Flierl,P.J.Morrison/PhysicaD240(2011)212–232 and for C ̸= 0 it is easy to show that k > 0. The eigenvalues 0 for this problem are λ = 1/k = n2, where n ∈ N, and the n n correspondings√etoforthonormaleigenfunctionsiscomposedof u = sin(nx)/ π. Choosing u = au , for some m ∈ N, gives n m C = a2/k , which determines a, and H = C /λ . Thus, the 0 m 0 m maximum value of H occurs for the smallest eigenvalue, λ = 1 1. Had we chosen u to be a linear combination of two or more eigenfunctions,thenitisnotdifficulttoshowtheresultingvalueof Hwouldbesmaller.Thus,thisexampleconstitutesawell-defined extremizationproblem. However,whenweseektominimizeH[u]subjecttoC[u] = C , we see that C plays no role. In this case we have the same 0 Euler–Lagrangeequation,eigenvalues,andeigenfunctions,butwe wishtominimizeH = C /λ .Becauseλ = m2,withm ∈ N, 0 m m canbemadearbitrarilylarge,infH[u] = 0,whichisofcoursethe minimum of H[u] without the constraint C. A rule of thumb for minimumproblemsisthattheconstraintwillonlycontributeifit containsfewerderivativesthanthefunctionalthatisdesiredtobe Fig. 1. H–L diagram showing the relationship between energy and angular minimizedandviceversaformaximumproblems. momentum for various vortex states, including the Kirchhoff elliptical vortex parameterizedbyaspectratio,a‘‘coarse-grained’’circularvortexparameterizedby Thesimplemaximumexampleabovewaschosentorepresent size,andafewvorticeswithacentralcoresurroundedbyanannularbandalso thesituationforvortexdynamicswhentheenergyismaximizedat parameterizedbysizeThepoint◦markstheaspectratiothreestabilitythreshold fixedCasimirinvariants.ThusitisnotasurprisethatSA-dynamics fortheKirchhoffellipses. shouldproducenicecircularvortexstates,andthisisevidenced by the successful numerical examples of [13,14]. However, if H chosenisitselfaninvariant.Similarly,thedynamicsgenerated by (38) conserves the Casimir invariants of {,} and the Dirac additional constraints are imposed one may obtain other states. Forexample,asstatedinSection2.5,itisknownthatequilibriain constraints for any choice of H, and the chosen H (cf. [21]). It is rotatingframesareextremaofH+λLandthus,assuggestedin[15], well-known that finite degree-of-freedom Hamiltonian systems onemightbeabletouseSA-dynamicstoobtainnonaxisymmetric cannot have asymptotically stable fixed points, for this would vortexstates.Inourteststhisapproachtendedtobesusceptible violateLiouville’stheorem.Thus,wedonotexpect(37)and(38)to λ toeitherformingverythinellipses,maximizing Lattheexpense possessasymptoticallystableequilibriainanyframeofreference. ofH,ortocreatingasponge-likestructure,minimizingH atthe However,thesesystemsareinfinite-dimensionalsystemsinwhich λ expenseof L.WewillseeinSection3thatweobtainbetterresults filamentationisknowntooccur(seee.g.Fig.4).Filamentationgives byusingDSA-dynamicswithadditionalconstraints. risetosteepgradientsandthusasmallamountofdissipationcan Asnotedabove,oursimpleminimizationproblemrepresents causerelaxation.Similarly,averagingoverfilamentationgivesrise the situation of vortex energy minimization at constant Casimir torelaxationbythemechanismofphasemixing,theessenceofthe invariants.TheCasimirinvariantsareaconsequenceofthefactthat Riemann–LebesguelemmaandLandaudamping.Thus,itwillnot vortexdynamicsisarearrangement,i.e.thattheformalsolutionis beasurprisetoseerelaxationinournumericalexperiments. givenby AsnotedinSection2.4,byconstructionthedynamicsof(39) and(40)conservetheCasimirinvariants,andthelatterconserves q(x,y,t)=q (x (x,y,t),y (x,y,t)), 0 0 0 tHhoewiemvepro,stehdecDhoirsaecncHonosrtrHain+ts∑, bλoitPhifsonroalnoyngHeracmoinltsoenrviaend,bHut. where x0(x,y,t) and y0(x,y,t) represent the inverted solutions satisfiesH˙ ≥ 0orH˙ ≤ 0dependingionthesignofα.Therefore, tothecharacteristicequations.Thusifonehasanisolatedsingle- signed patch of vorticity surrounded by zero vorticity, and one H canserveasaLiapunovfunctionalforasymptoticstability(see wantstominimizetheenergyofthispatchsubjecttocontinuous e.g.[24]).ThusasindicatedinSection1,thesebracketsgiveriseto rearrangement, then this can be accomplished by the spreading dynamicsthatisanenergyextremizingrearrangementsubjectto out of the patch concomitantly with the stretching of the patch theDiracconstraints,anditisthisdynamicsthatwefindusefulfor boundary,insuchawayastointerpenetrateregionsofzeroand numericallyobtainingequilibriumstates. patchvorticity(cf.Fig.15).Thusalthoughtheconstraintdoesnot preclude the march to zero energy, it does enforce a manner in 2.6. Kelvin’ssponge whichitcantakeplace.ThisisthemechanismofKelvin’ssponge. InSection3wewillseehowDSA-dynamicsaccomplishesthiswith Itiswell-knowninthecalculusofvariationsthatconstraints theinclusionofadditionalconstraints. aresometimesineffective[25].Forvortexdynamicsthissituation mayarisewhenoneattemptstominimizeenergyatfixedCasimir 3. Vortexexamples invariants. As anticipated by Kelvin [26], vorticity invariants do not preclude the minimum zero energy state, but may produce Inthissectionweconsideravarietyofexamples.InSection3.1 asponge-likestructurewithinterpenetratingregionsofvorticity we explore the various dynamics of Section 2.5 for two-fold (see [13] for another discussion and examples). Here we give a symmetricinitialconditionswiththevorticitybeingofsinglesign simple example that contains a central idea of when this effect and,whereapplicable,thetwo-foldsymmetricDiracconstraints occurs,anexamplewefindusefulforinterpretingournumerical of(1)and(25).InSection3.2,three-foldsymmetricevolutionwith results. single-signedvorticityisconsideredunderDSA-dynamics.Finally, Considerareal-valuedfunctionu(x)definedon[0,2π].First, inSection3.3weconsiderevolutionunderdipoleinitialconditions. suppose we wish to maximize the ‘energy’ functional H[u] = Forallthesingle-signed,i.e.monopolar,runstheunitoftimeis 2πdxu2subjecttotheconstraintC[u]=2πdxu2 =C ,withthe determinedbythevalueoftheintegratedvorticity.Forexample, b0oundaryconditionsu(0) = u(2π) = 0.T0hevariaxtiona0lproblem thistendstobearoundπforthemonopolarruns,givingaparticle δ(H − kC) = 0 givesthe Euler–Lagrangeequationku = −u, circulation time of about 4π. A Kirchhoff ellipse with an aspect xx Author's personal copy G.R.Flierl,P.J.Morrison/PhysicaD240(2011)212–232 217 condition being on the order of one unit. A pseudospectral code wasusedwithintegralsevaluatedassumsandtimeadvancement accomplishedbysecondorderAdams–Bashforth. Togivesomeinsightintothewaysenergyandangularmomen- tumchangeasavortexshapeschange,wehaveplottedH–Ldia- gramsforseveralvortexstructures:theKirchhoffellipticalvortex, a‘‘coarse-grained’’circularvortexwithalargerradiusbutsmaller valueofq(q=a−2forr <a),andcasesinwhichsomeofthevor- ticityhasbeenspreadintoanannularbandaroundasmallercore (q=1forr <band(1−b2)/(a2−b2)forb<r <a).Fig.1shows theenergy-angularmomentumrelationshipsasparametriccurves withaspectratiooravaryingalongthecurves.ThemaximumH andLoccurforallcaseswhenthevortexiscircularwithunitra- diusandq=1,correspondingtotheaspectratioorabeingunity. Forreference,wehavemarkedwithacirclethewell-knownstabil- itythresholdontheellipsecurve,wheretheaspectratioisequalto three.Ellipsesbelowthismarkarelinearlyunstable.Wewillfindit convenienttointerpretsomeofourresultsintermsofthisfigure. Fig.2. Theinitialconditionof(42).Thisvorticity(shading)andcorresponding streamfunction(contours)isusedfortherunsofFigs.3–18. 3.1. Single-signedvorticitywithtwo-foldsymmetry ratio2to1rotatesatΩ = 2/(2 + 1)2 = 2/9,givingaperiod ofabout28.3.Therunslastinguntilt =200,then,representabout Formostoftherunsofthissubsectionweuseaninitialcondi- 16revolutionsoftheparticlesand7oftheellipses. tionofthefollowingform: All runs were done at a resolution of 256 × 256 points with a total domain size of 8 or 16 units with the scale of the initial q=e−(r/r0)10 withr =1+ϵcos(2θ), (42) 0 (a)t=40. (b)t=80. (c)t=120. (d)t=200. Fig.3. Vorticity(shading)andstreamfunction(contours)undertheH-dynamicsof(37)withthetwo-foldsymmetricinitialconditionof(42)atthetimesshown. Author's personal copy 218 G.R.Flierl,P.J.Morrison/PhysicaD240(2011)212–232 √ (a)q. (b) q. Fig.4. Depictionoffilamen√tsformingundertheH-dynamicsof(37)withthesameparametersandinitialconditionasthoseofFig.3.Thesnapshotisatt=20.Panel(a)is thevorticityq,while(b)is qinordertoaccentuatethefilaments. (a)HandC1,2. (b)H−H(0)andC1,2−C1,2(0). Fig.5. Evolution(a)andrelativeevolution(b)oftheHamiltonianandthequantitiesC1 =−Lof(1)andC2 =Sof(25),underthepureH-dynamicsof(37)fortheinitial conditionofFig.2.Note,forclarityinpanel(b)H−H(0)hasbeenamplifiedby105andC1−C1(0)by103. (a)t=20. (b)t=100. Fig.6. Vorticity(shading)andstreamfunction(contours)underthepure(σ =0)SA-dynamicsof(39)withthetwo-foldsymmetricinitialconditionof(42)forthetimes shown.Theparameterα=1.ThecodemaximizesenergywhilepreservingtheCasimirinvariants(rearrangementofvorticity)arrivingatthecircularstate. Author's personal copy G.R.Flierl,P.J.Morrison/PhysicaD240(2011)212–232 219 definedby(25).Withthesechoicesfortheconstraintsandinitial condition,weexpectthesystemtoevolvetowardastatewithtwo- foldsymmetry. Fig.3showsthevorticityandcontoursofthestreamfunctionfor theH-dynamicsof(37).Observethatthesystemshedsfilaments, evolves toward an elliptical vortex state close to the Kirchhoff vortexinatimet &20,andthenrotatesuniformlyforalongperiod oftime.Fig.4showsanexampleoffilamentsheddingatanearly time.However,Fig.5showsthattheinvariantsHandC =−Lare 1 well-conserved,asseeninFig.5(b),butHdecreasesmonotonically atasmallrateandC hasanoscillatorybehaviorthatislikelydue 1 tothefactthatthe2-torusisnonaxisymmetric.Thestrainmoment C =SisnotaninvariantofH-dynamics,andthisisevidentfrom 2 the figure. The vortex may continue to axisymmetrize slowly as vorticityislostintofilamentsandspreadaroundthecore;interms oftheH–LdiagramofFig.1,thiswouldcorrespondtonumerical dissipationdecreasingHwhilepreservingL,goingfromtheellipse Fig.7. PlotsoftheHamiltonian,H,theangularmomentum,L=−C1,andthestrain towardsanannularstate. moment,C2 =S,(relativetotheirinitialvalues)vs.time,correspondingtoFig.6, Fig. 6 shows evolution with the same initial condition but forthepureSA-dynamicsof(39).TheenergyHapproachesamaximum,whilethe now under the pure SA-dynamics of (39), i.e. with σ = 0 and angularmomentumincreases. α = 1.Inafairlyshorttime,t ≈ 20,thesystemformsalong- livedaxisymmetricvortexstate.ForSA-dynamicstheHamiltonian wherer = x2+y2andθ = tan−1(y/x).Wechooseϵ = 0.4for should be maximized at fixed Casimir invariants, as described allsuchruns.ThisinitialconditionisdepictedinFig.2.Also,when in Section 2.5, but there is no reason the angular momentum Diracconstraintsareused,wewilltakeC1 =−L,wheretheangu- should be conserved. Indeed, in Fig. 7 it is seen that the system larmomentumLisdefinedin(1)andC = S,thestrainmoment reaches the axisymmetric vortex state as the energy grows to a 2 (a)t=40. (b)t=80. (c)t=120. (d)t=200. Fig.8. Vorticity(shading)andstreamfunction(contours)undertheHD-dynamicsof(38)withthetwo-foldsymmetricinitialconditionof(42)forthetimesshown.The DiracconstraintsC1andC2,minustheangularmomentumandthestrainmoment,of(1)and(25),respectively,wereused. Author's personal copy 220 G.R.Flierl,P.J.Morrison/PhysicaD240(2011)212–232 (a)HandC1,2. (b)H−H(0)andC1,2−C1,2(0). Fig.9. Evolution(a)andrelativeevolution(b)oftheHamiltonianandtheDiracconstraintsC1,2vs.time,correspondingtothepureHD-dynamicsofFig.8. (a)t=80. (b)t=120. (c)t=160. (d)t=200. Fig.10. Vorticity(shading)andstreamfunction(contours)underthepure(σ =0)DSA-dynamicsof(40)withthetwo-foldsymmetricinitialconditionof(42)forthetimes shown.Theparametersσ =0andα=1;thusthebracketseekstomaximizetheenergywhilestrivingtokeeptheC1andC2of(1)and(25)fixed.Observeforintermediate timesqapproachesafunctionofψ,butforlatetimeshorizontaltinesdevelop,andatlatertimesyetthesystembeginstoaxisymmetrize.Thelightercolorofthebackground att=200isduetotheproductionofnegativevorticityvianumericalerror.

Description:
G.R. Flierl, P.J. Morrison / Physica D 240 (2011) 212–232. 213 where i = 1,2 .. Finally, in Section 3.3 we consider evolution under dipole initial conditions. For all the .. in order to put energy into an off-center perturbation. This initial.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.