ebook img

Hamiltonian approach to Yang-Mills theory in Coulomb gauge - revisited PDF

0.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hamiltonian approach to Yang-Mills theory in Coulomb gauge - revisited

Hamiltonian approach to Yang-Mills theory in Coulomb gauge - revisited¶ H. Reinhardt∗, D. R. Campagnari∗, M. Leder∗, G. Burgio∗, J. M. Pawlowski†, M. Quandt∗ and A. Weber∗∗ 1 1 0 ∗InstitutfürTheoretischePhysik,UniversitätTübingen,AufderMorgenstelle14,72076Tübingen,Germany 2 †InstitutfürTheoretischePhysik,UniversitätHeidelberg,Philosophenweg16,69120Heidelberg,Germany ∗∗InstitutodeFísicayMatemáticas,UniversidadMichoacanadeSanNicholásdeHidalgo,EdificioC-3,Ciudad n Universitaria,58040Morelia,Michoacán,Mexico a J 6 Abstract. I briefly review resultsobtained within the variational Hamiltonian approach toYang-Mills theory in Coulomb 2 gauge and confront them with recent lattice data. The variational approach is extended to non-Gaussian wave functionals including three- and four-gluon kernels inthe exponential of the vacuum wave functional and used to calculate the three- ] gluonvertex.AnewfunctionalrenormalizationgroupflowequationforHamiltonianYang–MillstheoryinCoulombgauge h issolvedforthegluon andghost propagator under theassumption ofghost dominance. Theresultsarecompared tothose t obtainedinthevariationalapproach. - p e h INTRODUCTION of Gauss’ law, resulting in the gauge fixed Yang–Mills [ Hamiltonian[6] 1 In recent years there have been substantial efforts de- 1 v voted to non-perturbative studies of continuum Yang– H = dDx J−1[AAA]PPP J[AAA]PPP +BBB2 +H , (1) 8 YM 2 c Mills theory. Among these are variational solutions of Z 09 theYang–MillsSchrödingerequationinCoulombgauge H = g2 dD((cid:0)x,x′)J−1[AAA]r a(x)J[AAA](cid:1)Fab(x,y)r b(x), c [1–3]. In this approachthe energydensityis minimized 2 5 Z 1. usingGaussian-typeansätzeforthevacuumwavefunc- where P a(x)=d /id Aa(x) is the canonical momentum tional. In this talk I will first briefly review results ob- 0 (electricfield)operatorand tained within the Tübingen approach [2] using a modi- 1 1 fiedGaussianwavefunctional.ThenIwillpresentanew J[AAA]=Det(−DDD(cid:209)(cid:209)(cid:209) ) (2) : approachtoHamiltonianquantumfieldtheory,whichal- v lowstousenon-Gaussianwavefunctionalsinvariational istheFaddeev–Popovdeterminant.Furthermore i X calculations [4]. The approach is illustrated by using a r a(x)=−fabcAAAbPPP c (3) r wavefunctionalwithcubicandquarticgluonictermsin a the exponentialand appliedto calculate the three-gluon isthecolorchargeofthegluonsand vertex.Finally,Iwilldiscussanewfunctionalrenormal- izationgroup(FRG)approachtotheHamiltonianformu- Fab(x,y)=hx,a|(−DDD(cid:209)(cid:209)(cid:209) )−1(−(cid:209)(cid:209)(cid:209) 2)(−DDD(cid:209)(cid:209)(cid:209) )−1|y,bi (4) lationof Yang–Millstheory[5] andpresentresultssup- portingthefindingsof the variationalapproach[2, 3]. istheso-calledCoulombkernel.Inthepresenceofmat- ter fields with color charge density r a(x), the gluon m charge r a(x) in the Coulomb term is replaced by the total charge r a(x)+r a(x) and the vacuum expectation m VARIATIONALAPPROACH valueofFab(x,y)acquiresthemeaningofthestaticnon- AbelianCoulombpotential,seeeq.(16)below. Instead ofworkingwith gaugeinvariantwave function- The gauge fixed Hamiltonian eq. (1) is highly non- als, it is usually more convenient to fix the gauge. A local due to the Coulomb kernel Fab(x,y), eq. (4), and particularlyconvenientchoice of gaugeis the Coulomb due to the Faddeev–PopovdeterminantJ[AAA], eq. (2). In gauge (cid:209)(cid:209)(cid:209) ·AAA = 0, which allows an explicit resolution addition,the latteralso occursinthe functionalintegra- tion measure of the scalar product of Coulomb gauge wavefunctionals ¶ Invited talk given by H. Reinhardt at “T(r)opical QCD 2010”, hy |O|y i= DAJ[AAA]y ∗[AAA]Oy [AAA]. (5) September26–October1,2010,Cairns,Australia. 1 2 1 2 Z Whiletheeliminationofunphysicaldegreesoffreedom I (kkk)= Nc d3q 1−(kkkˆ·qqqˆ)2 d(qqq−kkk) . via gauge fixing is often beneficial (and sometimes un- d 2 (2p )2 w (qqq)(qqq−kkk)2 Z avoidable) in practical calculations, the price to pay is h i (12) theincreasedcomplexityofthegaugefixedHamiltonian eq. (1). The non-trivialFaddeev–Popovdeterminantre- Theghostformfactord(kkk)measuresthedeviationfrom flectstheintrinsicallynon-linearstructureofthespaceof theQEDcase,whered(kkk)=1.Furthermore,d−1(kkk)rep- gaugeorbitsanddominatestheIRbehaviorofthetheory. resentsthedielectricfunctionoftheYang–Millsvacuum, OnceCoulombgaugeisimplemented,anyfunctionalof andtheso-calledhorizoncondition the(transverse)gaugefieldisaphysicalstate. d−1(0)=0 (13) TreatingtheHamiltonian(1)intheordinaryRayleigh- Schrödingerperturbationtheoryonefindstoleadingor- ensuresthattheYang–Millsvacuumisadualsupercon- dertheusualone-loopb functionwithb =−11N [7]. 0 3 c ductor [9]. Minimization of the vacuum energy hH i Our main interest lies, however, in the IR sector of the YM withrespecttothekernelw (kkk)leadstothegapequation, theory,whichrequiresanon-perturbativetreatment. whichafterrenormalizationreads[2],[10] In ref.[2] the vacuumenergydensitywas minimized usingthefollowingansatzforthevacuumfunctional w 2(kkk)=kkk2+c 2(kkk)+c +D I(2)(kkk)+ 2 Y [AAA]= N exp −1 d3k w (kkk)Aa(kkk)Aa(−kkk) . +2c (kkk)[D I(1)(kkk)+c1], (14) J[AAA] 2 (2p )3 i i (cid:20) Z (cid:21) where (6) p For this wave functional the static gluon propagator is D I(n)(kkk)=I(n)(kkk)−I(n)(0), w (kkk)≡w (kkk)−c (kkk), givenby1 N d3q hAa(−kkk)Ab(qqq)i=d abt (kkk)(2p )3d (kkk−qqq) 1 , (7) I(n)(kkk)= 4c (2p )3 1+(kkkˆ·qqqˆ)2 V(qqq−kkk) i j ij 2w (kkk) Z (cid:16)w n(qqq)−w n((cid:17)kkk) × , (15) sothatw (kkk)representsthe(quasi-)gluonenergy. w (qqq) To the order considered in ref. [2], i.e., up to two and loopsintheenergy(whichcorrespondstooneloopinthe d2(kkk) associated Dyson–Schwinger equations), it was shown V(kkk)≡g2hFi= (16) kkk2 [8]thattheFaddeev–Popovdeterminant,eq.(2),canbe representedas isthenon-AbelianCoulombpotential,wheretheapprox- imation J[AAA]=exp − d3xd3yAa(x)c ab(x,y)Ab(y) , (8) i ij j (−DDD(cid:209)(cid:209)(cid:209) )−1·(−(cid:209)(cid:209)(cid:209) 2)·(−DDD(cid:209)(cid:209)(cid:209) )−1 (cid:20) Z (cid:21) where (cid:10) ≈ (−DDD(cid:209)(cid:209)(cid:209) )−1 ·(−(cid:209)(cid:209)(cid:209) 2(cid:11))· (−DDD(cid:209)(cid:209)(cid:209) )−1 (17) 1 d 2lnJ[AAA] has been used(cid:10). In the gap(cid:11)equation(cid:10)(14), c1 and(cid:11)c2 are c iajb(x,y)=−2*d Aai(x)d Abj(y)+=d abtij(x)c (x,y) (tifionni,tew)hreerneoormneailmizaptoiosenscthoenshtoanritzso.nFcoorntdhieticornit(i1ca3l),sbooluth- (9) w (kkk)andc (kkk)areinfrareddivergent,whichimpliesthat istheghostloopandrepresentsameasureofthecurva- thetransversegluonpropagatorvanishesatk→0,while ture[2]oftheCoulombgaugefixedconfigurationspace. ExpressingtheghostGreen’sfunctionas w (0)≡lim(w (kkk)−c (kkk))=c . (18) 1 k→0 d h(−D(cid:209)(cid:209)(cid:209) )−1i= g(−D ), (10) A perimeter law of the ’t Hooft loop requires c1 = 0 andthisvalueisalsofavoredbythevariationalprinciple [10]. Furthermore, for c =0 the IR limit of the wave whered(kkk)istheghostformfactor,itsDyson–Schwin- 1 functional(6)is gerequationreadstoone-looporder d−1(kkk)=g−1−I (kkk), (11) y [AAA]=N (cid:213) y (kkk), y (kkk=0)=1, (19) d kkk which is the exact vacuum wave functional in 1+1 1 Hereandinthefollowing,tij(kkk)≡dij−kikj/kkk2 denotesthetrans- dimensions [11]. The renormalization parameter c2, on verseprojectorinmomentumspace. theotherhand,hasnoinfluenceontheIRorUVbehavior 0.45 lattice 0.4 Gaussian functional 0.35 Non-Gaussian functional 0.3 p) 0.25 D( 0.2 0.15 0.1 0.05 0 0 2 4 6 8 10 p FIGURE 1. Gluon propagator obtained with a Gaussian FIGURE 2. The numerical solution for the static non- (dashed line) and a non-Gaussian functional (straight line), AbelianCoulombpotential[3]. comparedtothelatticedatafromRef.[12]. an inverse gluon propagator which in the UV behaves ofthesolutionsofthegapequation(14).Onlythemid- like the photon energy but diverges in the IR, signal- momentum regime of w (kkk) is weakly dependent on c 2 ingconfinementinagreementwiththeIRanalysis(20), [2]. Since we are mainly interested in the IR properties (21),(22).Figures1and2showtheresultinggluonen- wewillputc =0. 2 ergy w (kkk) and non-Abelian Coulomb potential(16) for The coupled integral equations (11) and (14) can be the solution b =1. Their IR behavior is in agreement solved analytically in the IR (for the critical solution with the results of the IR analysis. The obtained prop- satisfying the horizon condition (13)) using power law agator also compares favorably with the available lat- ansätze[2,13] ticedata[12].Thereare,however,deviationsinthemid- w (kkk)∼k−a , d(kkk)∼k−b . (20) momentum regime (and minor ones in the UV) which can be attributed to the missing gluon loop, which es- Under the assumption of a trivial scaling of the ghost- capes the Gaussian wave functionals. These deviations gluonvertexonefindsthatinDspacedimensionstheIR arepresumablyirrelevantfortheconfinementproperties, exponentssatisfythesumrule whicharedominatedbytheghostloop(whichisfullyin- cludedundertheGaussianansatz),butarebelievedtobe a =2b +2−D. (21) importantforacorrectdescriptionofspontaneousbreak- ingofchiralsymmetry[16]. Thissumruleensuresthatc (kkk)hasthesameIRbehavior asw (kkk),cf.eq.(18).Furthermore,inD=3onefindstwo solutions[13] NON-GAUSSIAN WAVEFUNCTIONALS b ≃0.8 and b =1. (22) Inref.[4]thevariationalapproachtoYang–Millstheory in Coulomb gaugewas extendedto non-Gaussianwave The latter givesrise to a Coulomb potential(16) which functionalsoftheform is strictly linear at large distances. In D = 2 only one solutionb = 25 isfound,implyinga = 45 andaCoulomb |y [AAA]|2=exp(−S[AAA]), (24) potential (16) rising as V(r) ∼ r4/5 [14]. Furthermore 1 1 in D=2 onlythe critical solutionsatisfying(13)exists S[A]= w AAA2+ g AAA3+ g AAA4, (25) 3 4 [14]. On the lattice, on the other hand,one finds a =1 Z 3!Z 4!Z inD=3andalinearlyrisingpotential[15].IntheUV- wherew ,g ,g arevariationalkernels. 3 4 regimethecoupledequations(11)and(14)canbesolved Representing the Faddeev–Popov determinant by a perturbativelyandonefindsatlargemomentak≫1[2] functionalintegraloverghostfieldsfromtheidentity w (kkk)∼k, d(kkk)∼1/ log(k). (23) d 0= DA J[AAA]e−S[AAA]K[AAA] , (26) d A Thefullnumericalsolutionsoftheabpoveequationswere Z (cid:16) (cid:17) given, for D=3 space dimensions, in refs. [2] and [3], withK[AAA]anarbitraryfunctionalofthegaugefield,one where the critical solutionsb =0.8 and b =1, respec- canderive,inthestandardfashion,DSEsforthevarious tively,werefound,andforD=2inref.[14].Onefinds gluon and ghost Green functions. These DSEs are the = −2 1 0.5 0 FIGURE3. TruncatedDSEforthethree-gluonvertex,under theassumptionofghostdominance. 2,0) -0.5 p -1 (A f3 -1.5 usual DSEs of Landau gauge Yang–Mills theory, how- -2 ever,in D=3 dimensionsandwith the bare verticesof -2.5 this work the usual Yang–Millsaction replaced by the variational lattice -3 kernelsw ,g ,g .ItshouldbestressedthattheseHamilto- 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 3 4 nianDSEsarenotequationsofmotionintheusualsense, p butratherrelationsbetweentheGreenfunctionsandthe FIGURE 4. Form factor f of the three-gluon vertex for so far undeterminedvariationalkernels. By using these 3A orthogonalmomentaandcomparisontolatticedataforthed= DSEs, theenergydensitycan bewritten asa functional 3Landau-gaugevertex[20].Themomentumscaleisarbitrary ofthevariationalkernels, and has been adjusted to make the sign change occur at the samepoint.ThelatticedataareshownbycourtesyofA.Maas. hH i=E[w ,g ,g ]. (27) YM 3 4 Byusingaskeletonexpansion,thevacuumenergycanbe gluonvertex writtenatthedesiredorderofloops.Confiningourselves G ·G (0) totwoloops,thevariationofthevacuumenergyEq.(27) f := 3 3 , (29) withrespecttothekernelg fixesthelatterto 3A G (0)·G (0) 3 3 3 g abc(ppp,qqq,kkk)=2igfabc where G (30) is the perturbativevertex, given by Eq. (28) ijk with W (ppp) replaced by |ppp|. Furthermore,we consider a d (p−q) +d (q−k) +d (k−p) ij k jk i ki j particular kinematicconfiguration,where two momenta × . (28) W (ppp)+W (qqq)+W (kkk) havethesamemagnitude Equation(28)is reminiscentof the lowest-orderpertur- ppp2=ppp2=p2, ppp ·ppp =cp2. (30) 1 2 1 2 bativeresult[17],withtheperturbativegluonenergy|ppp| replacedbythenon-perturbativeoneW (ppp). To evaluatetheformfactor f (p2,c), we use theghost 3A Withthisresult,variationofhH iwithrespecttow and gluon propagators obtained with a Gaussian wave YM yieldsthe gapequation(14),which now,however,con- functional[3] as input. The IR analysis of the equation tains on the r.h.s. in addition the gluon loop Ig(kkk) [4], for f3A(p2,c) [Eq. (29)] performed in Ref. [13] shows which escapes the Gaussian wave functional (6). The thatthisformfactorshouldhaveapowerlawin theIR, presenceofthegluonloopIg(kkk)inthegapequationmod- withanexponentthreetimestheoneoftheghostdress- ifiestheUV behaviorandallowsustoextract,fromthe ingfunction;thisisconfirmedbyournumericalsolution non-renormalizationof the ghost-gluon vertex, the cor- [4].Theresultforthescalarformfactor f fororthogo- 3A rect first coefficient of the b function. In order to esti- nalmomenta, f(p2,0),isshowninFig.4,togetherwith matethesizeofthegluon-loopcontributiontothegluon lattice results for d =3 Landau gauge Yang–Mills the- propagator,weuse thegluonandghostpropagatorsob- ory.Ourresultandthelatticedatacomparefavorablyin tained with a Gaussian wave functional[3] to calculate the low-momentum regime. In particular, in both stud- the gluon loop. The result is shown in Fig. 1, together ies,thesignchangeoftheformfactoroccursroughlyat withlatticedatafromRef.[12].Theagreementbetween thesamemomentumwherethegluonpropagatorhasits the continuumand the lattice results is improvedin the maximum.(ThescaleinFig.4isarbitrary.) mid-momentum regime by the inclusion of the gluon loop,i.e.,thethree-gluonvertex,asobservedalsoinLan- daugauge[18]. HAMILTONIANFLOW ThetruncatedDSEforthethree-gluonvertexG under 3 the assumption of ghost dominance is represented dia- TheadvantageofthevariationalapproachtotheHamil- grammaticallyinFig.3.Possibletensordecompositions tonianformulationisitscloseconnectiontophysics.The ofthethree-gluonvertexaregiveninRef.[19].Forsake price to pay is the apparent loss of manifest renormal- of illustration, we confine ourselves to the form factor ization groupinvariance.Renormalizationgroupinvari- corresponding to the tensor structure of the bare three- ance is naturally built-in in the functional renormaliza- tion group approach to the Hamiltonian formulation of k∂ −1= − − Yang–Millstheoryproposedinref.[5]. k IntheFRG approachthequantumtheoryofafieldj isinfraredregulatedbyaddingtheregulatorterm FIGURE5. Truncatedflowequationofthegluonpropagator. 1 1 Thebareverticesatk=L aresymbolizedbysmalldotsandthe D Sk[j ]= 2j ·Rk·j ≡ 2 j Rkj (31) regulatorinsertionk¶kRbyacrossedsquare. Z to the classical action, which in the Hamiltonian ap- proachis givenby thelogarithmofthe wave functional k∂ −1= + k (24). The regulator function R (p) is an effective mo- k mentumdependentmasswiththeproperties FIGURE6. Truncatedflowequationoftheghostpropagator lim R (p)>0, lim R (p)=0, (32) k k p/k→0 k/p→0 which ensures that R (p) suppresses propagation of k and the perturbative initial conditions at the large mo- modeswith p.kwhilethosewith p&kareunaffected mentumscalek=L , and the full theory at hand is recovered as the cut-off scale k is pushed to zero. Wetterich’s flow equation for theeffectiveactionG [f ]ofafieldf isgivenby dL (p)=dL =const., w L (p)=p+a. (38) k 1 1 With these initial conditions, the flow equations for the k¶ G [f ]= Tr k¶ R , (33) k k 2 G (2)[f ]+R k k ghost and gluon propagators are solved under the con- k k straintofinfraredscalingfortheghostformfactor.The d nG [f ] G (n) [f ]= k (34) resultingfullflowoftheghostdressingfunctionisshown k,1...n df 1...df n inFig.7. aretheone-particleirreduciblen-pointfunctions(proper AstheIRcut-offmomentumkisdecreased,theghost vertices).Thegenericstructureoftheflowequation(33) formfactordk(ppp)(constantatk=L )buildsupinfrared isindependentofthedetailsoftheunderlyingtheory,but strengthandthefinalsolutionatk=kminisshowninFig. isamereconsequenceoftheformoftheregulatorterm 9togetherwiththeoneforthegluonenergyw kmin(ppp)in (31), being quadratic in the field. By taking functional Fig.8.ItisseenthattheIRexponents,i.e.,theslopesof derivatives of Eq. (33) one obtains the flow equations the curvesdkmin(ppp), w kmin(ppp) do notchange as the min- for the (inverse) propagators and proper vertices. The imal cut-off kmin is lowered. Let us stress that we have generalflowequation(33)stillholdsfortheHamiltonian assumed infrared scaling of the ghost form factor but formulation of Yang–Mills theory provided that f is not the horizon condition d−1 (p = 0)= 0. The latter k=0 interpretedasthesuperfieldf =(AAA,c,c¯). was obtained from the integration of the flow equation TheFRG flow equationsembodyan infinitetowerof but notput in by hand(the same is also true for the in- coupledequationsfortheflowofthepropagatorsandthe frared analysis of the Dyson–Schwinger equations fol- propervertices.Theseequationshavetobetruncatedto lowing from the variational Hamiltonian approach, i.e., get a closed system. We shall use the following trun- assumingscalingtheDSEsyieldthehorizoncondition). cation: we only keep the gluon and ghost propagators, The infrared exponentsextracted from the numerical whichwewriteintheform solutions of the flow equations are a =0.28 and b = p2 G (2) =2w (ppp), G (2) = . (35) k,AA k k,c¯c d (ppp) k Inaddition,wekeeptheghost-gluonvertexG (3) ,which 1e+04 k,Ac¯c we assume to be bare, i.e., we do not solve its FRG 1e+03 flowequation.Moreover,weshallassumeinfraredghost dominance and discard gluon loops. Then the resulting 1e+02 flowequationsoftheghostandgluonpropagatorreduce 1e+01 totheonesshowninFigs.5and6. Theseflowequationsaresolvednumericallyusingthe 1e+00 regulators 1e-05 1e-02 RA,k(ppp)=2prk(ppp), Rc,k(ppp)=p2rk(ppp), (36) p 1e+011e+04 1e+04 1e+02 1e+00 1e-02 1e-04 k k2 p2 r (ppp)=exp − , (37) k p2 k2 FIGURE7. Flowdk(p)oftheghostformfactor. (cid:20) (cid:21) approaches and highlights the inclusion of a consistent -3 k ~10 UV renormalizationprocedure in the present approach. min k ~10-4 The above results encourage further studies, which in- 100 min -5 cludes the flow of the potential between static color k ~10 min sourcesaswellasdynamicquarks. 10 ACKNOWLEDGMENTS We wish to thank P. Watson for useful discussions. -7 -5 -3 -1 1 3 10 10 10 10 10 10 Financial support by the DFG under contracts No. p [GeV] Re856/6-2,3andbytheCusanuswerkisgreatlyacknowl- FIGURE8. Inversegluonpropagatorw atthreeminimalcut- edged. offvalueskmin. REFERENCES 4 10 1. A.P.Szczepaniak,andE.S.Swanson,Phys.Rev.D65, -3 k ~10 025012(2001),hep-ph/0107078. min 103 k ~10-4 2. C.Feuchter,andH.Reinhardt,Phys.Rev.D70,105021 min (2004),hep-th/0408236. -5 k ~10 3. D.Epple,H.Reinhardt,andW.Schleifenbaum,Phys. 2 min 10 Rev.D75,045011(2007),hep-th/0612241. 4. D.R.Campagnari,andH.Reinhardt,Phys.Rev.D82, 105021(2010),1009.4599. 1 10 5. M.Leder,J.M.Pawlowski,H.Reinhardt,andA.Weber, Phys.Rev.D83,025010(2011),1006.5710. 0 6. N.H.Christ,andT.D.Lee,Phys.Rev.D22,939–958 10 10-7 10-5 10-3 10-1 101 103 (1980). p [GeV] 7. D.R.Campagnari,H.Reinhardt,andA.Weber,Phys. Rev.D80,025005(2009),0904.3490. FIGURE9. Inverseghostformfactordatthreeminimalcut- 8. H.Reinhardt,andC.Feuchter,Phys.Rev.D71,105002 offvalueskmin. (2005),hep-th/0408237. 9. H. Reinhardt, Phys. Rev. Lett. 101, 061602 (2008), 0803.0504. 10. H.Reinhardt,and D.Epple,Phys. Rev.D76, 065015 0.64. They satisfy the sum rule found in [13] resulting (2007),0706.0175[hep-th]. from the DSE obtained in the variational approach but 11. H.Reinhardt,andW.Schleifenbaum,AnnalsPhys.324, are smaller than the ones of the DSE. Moreover, the 735–786(2009),0809.1764. present approach allows to prove the uniqueness of the 12. G.Burgio,M.Quandt,andH.Reinhardt,Phys.Rev.Lett. sum rule (21) [5], analogously to the proof in Landau 102,032002(2009),0807.3291. gauge[21]. 13. W.Schleifenbaum,M.Leder,andH.Reinhardt,Phys. Rev.D73,125019(2006),hep-th/0605115. Replacing the propagators with running cut-off mo- 14. C.Feuchter,andH.Reinhardt,Phys.Rev.D77,085023 mentumscalekundertheloopintegralsoftheflowequa- (2008),0711.2452. tionbythepropagatorsofthefulltheory, 15. G.Burgio,M.Quandt,andH.Reinhardt,Phys.Rev.D81, 074502(2010),0911.5101. dk(ppp)→dk=0(ppp), w k(ppp)→w k=0(ppp), (39) 16. A.Yamamoto,andH.Suganuma,Phys.Rev.D81,014506 (2010),0911.5391. amountstotakingintoaccountthetadpolediagrams[5]. 17. D.Campagnari,A.Weber,H.Reinhardt,F.Astorga,and Then the flow equations can be analytically integrated W.Schleifenbaum,Nucl.Phys.B842,501–528(2011), 0910.4548. and turn into the DSEs obtained in the variational ap- 18. C.S.Fischer,A.Maas, andJ.M.Pawlowski,Annals proach [2], with explicit UV regularization by subtrac- Phys.324,2408–2437(2009),0810.1987. tion.2Thisestablishestheconnectionbetweenthesetwo 19. J.S.Ball,andT.-W.Chiu,Phys.Rev.D22,2550(1980). 20. A.Cucchieri,A.Maas,andT.Mendes,Phys.Rev.D77, 094510(2008),0803.1798. 2 Insteadofthecompleteright-handsideofEq.(14)onereallyobtains 21. C.S.Fischer, andJ. M. Pawlowski,Phys. Rev. D80, onlytheIR-dominantcontributionc 2.However,itturnsout[5]thatthe 025023(2009),0903.2193. numericalsolutionoftheequationsisthesameasinRef.[2]overthe wholemomentumrange.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.