ebook img

Hamilton decompositions of 6-regular abelian Cayley graphs PDF

122 Pages·2016·1.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hamilton decompositions of 6-regular abelian Cayley graphs

MMiicchhiiggaann TTeecchhnnoollooggiiccaall UUnniivveerrssiittyy DDiiggiittaall CCoommmmoonnss @@ MMiicchhiiggaann TTeecchh Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2010 HHaammiillttoonn ddeeccoommppoossiittiioonnss ooff 66--rreegguullaarr aabbeelliiaann CCaayylleeyy ggrraapphhss Erik E. Westlund Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Mathematics Commons Copyright 2010 Erik E. Westlund RReeccoommmmeennddeedd CCiittaattiioonn Westlund, Erik E., "Hamilton decompositions of 6-regular abelian Cayley graphs", Dissertation, Michigan Technological University, 2010. https://doi.org/10.37099/mtu.dc.etds/206 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Mathematics Commons HAMILTON DECOMPOSITIONS OF 6-REGULAR ABELIAN CAYLEY GRAPHS By ERIK E. WESTLUND A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Mathematical Sciences) MICHIGAN TECHNOLOGICAL UNIVERSITY 2010 (cid:13)c 2010 Erik E. Westlund This dissertation, “Hamilton Decompositions of 6-Regular Abelian Cayley Graphs”, is hereby ap- proved in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the field of Mathematical Sciences. DEPARTMENT: Mathematical Sciences Signatures: Dissertation Advisor Donald L. Kreher, Ph.D. Department Chair Mark S.Gockenbach, Ph.D. Date To my family. Contents List of Figures xii List of Tables xiii Acknowledgments xv Abstract xvii 1 Cayley Graphs and Hamilton Cycles 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Hamilton Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Hamilton decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Cayley Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.1 Lovász Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Alspach Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Pseudo-Cartesian Products 11 2.1 The Pseudo-Cartesian Product of Cycles . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Edge Color-Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Hamilton Decompositions for Graphs of Odd Order 19 3.1 Lifting to the 6-Regular Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Decompositions for Odd Order Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 22 vii 4 A Decomposition for Non-Minimal Connection Sets 27 4.1 Using a Subgroup of Index 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Hamilton Decompositions Using Quotient Graphs 37 5.1 Preliminaries and Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 Decomposing Layered Pseudo-Cartesian Products . . . . . . . . . . . . . . . . . . . . 39 5.3 Decompositions for Low-Order Quotient Graphs . . . . . . . . . . . . . . . . . . . . 49 5.3.1 Odd-order quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3.2 Even-order quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6 Conclusions and Further Research Problems 65 6.1 Open cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.1.1 Quotient connection sets with involutions . . . . . . . . . . . . . . . . . . . . 66 6.1.2 General connection sets with involutions . . . . . . . . . . . . . . . . . . . . . 66 6.2 Fundamental Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A Data 69 1.1 Abelian Groups of Order 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 1.2 Abelian Groups of Order 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 1.3 Abelian Groups of Order 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 1.4 Abelian Groups of Order 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 B Source code 81 2.1 MAGMA code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.2 C code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.2.1 Constructing the Cayley graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.2.2 Hamilton cycles via a randomized greedy algorithm . . . . . . . . . . . . . . 85 2.2.3 Obtaining Hamilton decompositions . . . . . . . . . . . . . . . . . . . . . . . 87 2.2.4 Outputting to LATEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 viii 2.3 Shell Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 2.4 Mathematica Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Bibliography 99 Index 103 ix

Description:
This dissertation, “Hamilton Decompositions of 6-Regular Abelian Cayley Graphs”, is hereby ap- proved in partial fulfillment of the requirements for the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.