NJC PAPER View Article Online View Journal | View Issue Halogen bonding in the crystal structures of e. c 1,2-diiodo alkenes† n e M. Lic Citethis:NewJ.Chem.,2015, 0:43 Aported 39,8522 Christina Hettstedt, Peter Mayer and Konstantin Karaghiosoff* 3n 2:U 3 0 Received(inMontpellier,France) The crystal structures of 1,2-diiodoolefins are governed by extensive halogen bonding involving I(cid:2)(cid:2)(cid:2)I, 202n 3. 14thMay2015, I(cid:2)(cid:2)(cid:2)O and I(cid:2)(cid:2)(cid:2)C interactions. These interactions are discussed considering nine new crystal structures 1/25/butio Accepted4thAugust2015 determinedinourlaboratoryandseveraladditionalcrystalstructuresfromtheliteraturethatcomplement ed on s Attri DOI:10.1039/c5nj00821b ourdata. adon www.rsc.org/njc om nlm wo oC ugust 2015. Der a Creative IHnaltorgoendbuoncdtiinognis currently a widely discussed topic in the aAasntdytph1iec,2ah,l3ae,l4xo-agtmeetnrpalfbelouinosdrpor-d5oo,v6ni-ddoeridioadbnoydtbhteheneczoeon-tcher8eyrsotaarlss4t,o4hf0e-pbhaipceycnreaipdztiionnree. 0 Aund literature.Inthelast15yearsanincreasingnumberofreviews andtetraiodoethene.9Theotherpossiblecase–halogenbonds n 2ed (approximately 50) have been published on this subject. This in crystals where the halogen bond donor and acceptor are os Published cle is licen ytcyeepanertsuorfi(efosinratgedorem1taboiulleetcdwualmasriencinvhetaesnrtiaigscmattioednaniwndadstehtdaeiisltcohonevloeyrrieyndothafbeholauasltotgtfweewno iignneccnlluubddoeensddsidtnrountchotuerrasenasmdofnecimtormooglpeeoncuu,nloedxys–gceisonn,mtaauihncahilnolggeesens.g.doiriosadcuipns-essyeasdst.ehmTahlaoiss- s Article. This arti mbofoanctderyrisinatgallsseceeinegnriecnfe.e.e42r–Mi6n)ag.n3Hyaastlhowegoeernlletbaicosanildnisnsavyernestthirgeealteitcivoacnnhste5imnhiatsvhtereybfaieenelndd faucncDecptiiitooondrao(lIoi(cid:2)tl(cid:2)ie(cid:2)eIfs,inIi(cid:2)ne(cid:2)s(cid:2)tOhhe,aIov(cid:2)ri(cid:2)ng(cid:2)Nagn,iIac(cid:2)d(cid:2)fd(cid:2)rCait(mipo)e)n.waolrkhaplroogveindebgoonoddeaxcacmepptloesr s e c publishedandhalogenbondinghasprovedtobeimportantin forsuchstructures.Inthesecompoundshalogenbondingshould c A n medicinal chemistry as well as in chemical biology.6 In 2013, playakeyroleindeterminingthefeaturesofthecrystalstructure. e Op theofficialIUPACdefinitionwasreleasedwhichstatesamongst In order to put light on the importance of halogen bonding as others that typical halogen bonds R–X(cid:2)(cid:2)(cid:2)Y–Z are formed directinginteractionintheformationofthestructureinthesolid betweenahalogenbonddonor(R–X,X=electrophilichalogen statewehavedeterminedandinvestigatedthecrystalstructures atom, e.g. I , CH Br, halonium ion) and a halogen bond ofaseriesof1,2-diiodoolefines(Fig.1).Inthispaperouraimis 2 3 acceptor Y (Y = lone pair possessing atom, a p-system or an toinvestigateweakhalogenbondsofiodinewiththelessstrong anion).7 Additionally, the contact distance of X(cid:2)(cid:2)(cid:2)Y has to be halogen bond acceptors oxygen, iodine itself and aromatic, shorterthanthesumofthevanderWaalsradii,theR–Xbond aliphaticoracetylenicp-systems.Thesystemsweincludeinthis length should be elongated and the contact angle R–X(cid:2)(cid:2)(cid:2)Y study consist of the new crystal structures of nine 1,2-diiodo- shouldbenearto1801.7 olefinesdeterminedinour laboratoryandthe crystal structures Generally,iodinecontainingmoleculesformstrongerhalo- ofseveral1,2-diiodolefinesfromtheliteraturethatcomplement gen bonds than corresponding bromine, chlorine or fluorine ourdata. containingderivatives.3cInmostcasesreportedintheliterature structuresshowinghalogenbondingwereobtainedbyforming co-crystalsbetweentwodifferentcompounds,oneofwhichacts DepartmentofChemistry,Ludwig-MaximiliansUniversity(LMU), Butenandtstr.5–13(HausD),81377Munich,Germany. E-mail:[email protected];Fax:+49-89-2180-77492; Tel:+49-89-2180-77426 †Electronic supplementary information (ESI) available: Containing additional analyticaldata,figuresofthedisorderanddataforthecrystalstructures.CCDC 988931,988932and1037178–1037184.ForESIandcrystallographicdatainCIFor Fig.1 Additional (E)-iodoolefines that have been synthesized from the otherelectronicformatseeDOI:10.1039/c5nj00821b correspondingalkyne. 8522 | NewJ.Chem.,2015,39,8522--8533 Thisjournalis©TheRoyalSocietyofChemistryandtheCentreNationaldelaRechercheScientifique2015 View Article Online Paper NJC Particular attention is directed towards how the molecules are arranged in the crystal with respect to the optimal space filling and at the same time optimal formation of weak inter- actions. This is of course dependent on the substituents and theiracceptorabilities,whichareconnectedtothedoublebond. Wewouldliketofindakindof‘‘ranking’’oftheinteractionsin terms of which interaction is responsible for the structural arrangementintheseweaksystemsandwhichinteractionsare e. subordinate. What is stronger in this case: hydrogen bonds c n (HBs)orhalogenbonds(XBs).Fromthissystematicconsidera- e M. Lic tion we try to find general trends that could be suitable for Ad 0:43 porte acrpypsltiaclaetinognisn.eeringofpurecompounds/crystalsconcerningfuture Fig.3 (Z)- and cyclic diiodo compounds from the literature with their 3n 2:U namesfromCSD. 3 0 202n 3. Results and discussion ed on 1/25/s Attributio S1,y2n-Dthiieosdisoolefines1–8(Fig.1)wereallsynthesizedby1,2-addition dn wnloaommo pofroIc2edtourtehse.10coTrhreesupnosnydminmgeatrciectaylledniieosdoacocleofridniengesttoerslit5eraantdur6e oC ust 2015. Da Creative tahreeInnCeuawIllcaacntadasleywszeetrdheepprrtoreacpneadsreuidsroefmrpouemrbsltiswhheeercdeorborbyetsDapiuonanenddeinetxgaclae.lp(kFtyinfgoe.rs2t)vh.i1ae1 uger acetal 7, where a mixture of the cis (7a) and trans (7b) deriva- Ad 0 un tiveswasformed.Fromthismixturethetwoisomerscouldbe n 2ed separated by fractional crystallization and were structurally os Published cle is licen iGnevneesrtiaglarteemdavriakssicnognlceecrrnyisntgalthXe-racyrydstiffalrasctrtuiocntu.res Article. This arti Swienrgeleocbrtyasitnaelds,sbuyitraebclreysftoarllXiz-aratiyodnifffrroamctioEnt,OoAfca.lFlicgo.m6poshuonwdss ss their molecular structures. A feature of most structures is a e c Ac disorderofthediiodoalkenemoleculesovertwopositions.Only en the structures of compounds 7a, 7b and 5 show no disorder. p O Herewediscussthehigheroccupiedpositionsofthedisordered atoms.Forthediphenyldiiodide1andthealcoholderivative4 the disorder concerns over 80% of the molecule. Hence the Fig.4 (E)-DiiodoolefinesfromtheliteraturewiththeirnamesfromCSD. valuesoftheatomdistancesandhalogenbondsofthesemole- culeshavetobetreatedcarefullyindiscussionandcomparison TheazideWIFVAJ13depictedinthebottomofFig.4would with other data. Nevertheless, we include these data in the fit perfectly in the topic of this comparison but the quality of comparisons here, because the detected values of compounds the structural data is inadequate. That’s why we exclude this 1 and 4 lie in the medium range of all here discussed com- datafromthisdiscussion.Wealsofoundthecrystalstructures pounds. Figures showing the disorder of all compounds are ofC H I 14andC H I 14inCSDwhichwouldalsofitverywell contained in the ESI.† Of the literature compounds from CSD 2 4 2 2 2 2 in the discussion here. Unfortunately the structures are from there is only one disordered (RIDTOO12). The structures of all the year 193514 and thusthe cif filescontain not enoughdata literaturecompoundsdiscussedhereandsomeadditionalones forshowingthestructureswithmodernmethods. for the statistics with their names from CSD are depicted in Fig.3and4. Crystalstructures The crystal structure of 8 contains the second shortest CQO bond (1.186(4) Å, Fig. 5) and the shortest C–I (trans) bond (2.109(4)Å)ofourstructureswhichislocatedundertheshorter C–I bonds in this discussion (Fig. 8). The carboxyl group is stronglytwistedoutofthedoublebondplane(82.7(4)1forOMe and(cid:3)104.7(5)1forCQO)comparedtodimethylfumarate,which Fig.2 Syntheticpathwayofthenew1,2-diiodoolefinicesters5and6. iscompletelyplanar.15 Thisjournalis©TheRoyalSocietyofChemistryandtheCentreNationaldelaRechercheScientifique2015 NewJ.Chem.,2015,39,8522--8533 | 8523 View Article Online NJC Paper the molecules form layers parallel to the bc-plane that are stackedalongthea-axis(Fig.7). Lookingatthesmaller,oxygencontainingmoleculesfromthe literature(RIDTOO,12GIWTEM,16GIWTIQ,16NIMGOF17),where no large substituent or phenyl ring is attached to the double bond,somecommonfeaturesandalsodifferencesinthecrystal structurescomparedto8canbedetected. RIDTOO12 is the only carboxylic acid containing molecule, e. that does not form I(cid:2)(cid:2)(cid:2)O halogen bonds (the less occupied c n disordered part seems to form an I(cid:2)(cid:2)(cid:2)O halogen bond but its e M. Lic arrangement fits perfectly in the network built up by the I(cid:2)(cid:2)(cid:2)I Ad 0:43 porte itnhtaetraccatuiosenst)h.eThmeosltercuuclteusretoisfodrommidniamteedrs.byThheysderodgiemnebrsonadres 3 2:30 Un Fdiigsc.u5sseSdtahtiesrteic,asledpiastrraitbeudtioinncoisf/ttrhaensCQandOliatetoramtudreistcaonmcepsouonfdaslladniidodoiudress. arranged in a way that a complex network is formed under 202n 3. Thetrendgoestolongerbondscomparedtotheliteraturevalueof1.19Å.22 assistance of I(cid:2)(cid:2)(cid:2)I halogen bonds that are the shortest here ed on 1/25/s Attributio ThereferenceofAllenetal.21(1.199Å)ismoreappropriate. o((F1b0isg.e2.r(1v30e))1d.)Aw(dh3d.i8cit0hi1om(n1ao)lslytÅ,p)trhoienbmatebrolmyleiocnuledlcaicuralsatterrsutIch(cid:2)t(cid:2)ua(cid:2)trIethiasetoatmwlmisotdisnitsgptaloanfncaealsrl adon The crystal structure is governed by the shortest I(cid:2)(cid:2)(cid:2)O othercarboxylgroupsisduetohalogenbonding. om nlm halogenbonds(3.005(3)Å)occurringinthiswork(Fig.9)with InGIWTIQ16thehydrogenatthedoublebondissubstituted wo ugust 2015. Doer a Creative C a(pd1nao1in7raos.l4mro.(2foT)sth1ht)ielstihnoianxetytaegirnreCadnc–itcaIi(cid:2)aso(cid:2)tnhe(cid:2)Osaislaaongngegeinnlneetebr(ar1oat7nec3ddt.i1oab(nc1yc)bb1e)eoptattwhonerdieoanadnidConQnteehaOeot(cid:2)foio(cid:2)tm(cid:2)hdIseian,lneaognnaldees btagolrysoaoaucpmdoiiemmsthpetwyrleslitsgeitnrleoytdeudrpoicff.uoTetnrhnoeifenscttsthecteedrrydisvcotiaauilnbhscltreyredubarcsootenguedornefp.tblhTaoehnnesedumsbb.yosTtl8ieht1cue.u2elc(ne9ats)r1blfeooaarnxdmydsl 0 Aund both carbonyl groups function as halogen bond acceptors, participates in I(cid:2)(cid:2)(cid:2)O halogen bonding (3.089(6) Å). The I(cid:2)(cid:2)(cid:2)O n 2ed forcingthemoleculetoformfourhalogenbonds.Duetothis, halogen bond ranges among the shorter ones of the here os Published cle is licen Article. This arti s s e c c A n e p O Fig.6 Overview over the asymmetric units or molecular structures of our compounds 1–8 with the specific atom numbering. Symmetry codes: 1[(a)(1(cid:3)x,1(cid:3)y,2(cid:3)z)];3[(a)(1(cid:3)x,y,1.5(cid:3)z)];8[(a)(2(cid:3)x,(cid:3)y,1(cid:3)z)].DIAMONDrepresentation,thermalellipsoidsaredrawnat50%probabilitylevel. 8524 | NewJ.Chem.,2015,39,8522--8533 Thisjournalis©TheRoyalSocietyofChemistryandtheCentreNationaldelaRechercheScientifique2015 View Article Online Paper NJC e. c n e M. Lic Ad Fig.9 Statistical distribution of the intermolecular I(cid:2)(cid:2)(cid:2)O halogen bond 0:43 porte lceonmgtphosuonfdaslalnddiiooduidrse.sThdeiscmuasxsiemduhmerdeis,tsaenpcaeraistethdeinsucmis/otrfatnhesavannddlieterrWatauarles 3n 2:U radiioftheinvolvedatoms(3.50Å). 3 0 1/25/202bution 3. (F(daig)).((2x7,(cid:3)0.Nx5,e(cid:3)(cid:3)twyyo,,r1(cid:3)k(cid:3)0in.5zt)h,+e(bzc)).r(yxDs,It0Aa.Ml5sOt(cid:3)rNuycD,tu0rr.e5ep+orefszte)h,ne(tcad)tii(eo2snt(cid:3),etrxh8,e.(cid:3)rSm0y.am5lme+lleyipt,rs0yo.ci5dos(cid:3)daezrse):, ed on s Attri drawnat50%probabilitylevel. dn ao om nlm wo oC ust 2015. Da Creative uger Ad 0 un n 2ed os Published cle is licen lFeign.g1th0soSftaaltlisdtiiicoadliddeisstrdibisuctuiossnedofhethree,sinetpearrmatoeldecinulcairs/It(cid:2)r(cid:2)a(cid:2)nIshaanlodgleitnerbatounrde Article. This arti craodmiipoofuthnedsinavnodlvoeudrsa.tTohmesm(3a.x9i6mÅu)m. distanceisthesumofthevanderWaals s s e c c A n the I(cid:2)(cid:2)(cid:2)O halogen bond compared to the value found in the e Op crystalstructureofGIWTOQ.16Themoleculesformalsochains interconnectedviatheI(cid:2)(cid:2)(cid:2)Ohalogenbondswhichresultsinthe Fig.8 Statistical distribution of the C–I atom distances of all diiodides formationoflayers. discussedhere,separatedincis/transandliteraturecompoundsandours. C I 18wasexcludedbecauseoftheveryshortC–Idistance(1.987(3)Å), If both substituents at the double bond of GIWTEM16 are 22 F CI19 and C I 20 are included in the literature trans category. cis Diido replaced by CH OH groups as it is the case for NIMGOF17 the 3 24 2 compounds, which are mostly cyclic, have shorter C–I atom distances moleculesformhydrogen-andI(cid:2)(cid:2)(cid:2)Ohalogenbonds(3.429(1)Å) thanlinearonesandthosewithtransconfiguration.Theyareevenshorter asalreadydescribedintheoriginalliterature.17Themolecules thantheliteraturevaluegivenfortheC –Idistance(2.095Å).21 Ar do not form dimers via hydrogen bonds and due to the high flexibilityofthemoleculethereagainisthepossibilitytoform detected distances (Fig. 9). Additionally, the molecules form I(cid:2)(cid:2)(cid:2)I halogen bonds (3.875(3) Å) which range like the I(cid:2)(cid:2)(cid:2)O also long I(cid:2)(cid:2)(cid:2)I halogen bonds (3.938(9) Å, Fig. 10). All inter- intermoleculardistancesamongstthelongerones(Fig.10).All molecular interactions lead to the formation of a complex intermolecularinteractionsformacomplexnetwork. network. Substitution of one CH OH group by a phenyl ring leads 2 The bulkiness of the CH OMe group included in the mole- to compound 4. As observed for the carboxyl groups in the 2 culesofGIWTEM16insteadofHorMeseemstobehighenough previouslydiscussedcrystalstructures,herethephenylringis to prevent the molecules from I(cid:2)(cid:2)(cid:2)I halogen bond formation. twistedoutofthedoublebondplane((cid:3)80.9(7)1).Thehydroxyl Themoleculesformchainsviahydrogenbondsparalleltothe groups make hydrogen bonds (Fig. 11) forming right twisted bc-plane.Againthecarboxylgroupistwistedoutofthedouble helical chains along the c-axis with four molecules forming a bondplaneby80.3(9)1andtheCQObondformsI(cid:2)(cid:2)(cid:2)Ohalogen turn(Fig.12). bonds (3.308(8) Å) which ranges amongst the longer here The distance between the turns d(O1(cid:2)(cid:2)(cid:2)O1f) is 7.532(3) Å. detected intermolecular I(cid:2)(cid:2)(cid:2)O distances (Fig. 9). The steric Startingfromtheasymmetricunitthemoleculesinthecrystal increase of the CH OMe substituent leads to an elongation of also form a helix interconnected by I1(cid:2)(cid:2)(cid:2)I2e halogen bonds 2 Thisjournalis©TheRoyalSocietyofChemistryandtheCentreNationaldelaRechercheScientifique2015 NewJ.Chem.,2015,39,8522--8533 | 8525 View Article Online NJC Paper e. c n e M. Lic 0:43 Aported Fhiaglo.1g1enCbroynstdasl s(It2ructoturI1eg)ofin4c.luOdnesetthurreneotfutrhneshoeflixthfeorhmeelixdfboyrmtheedI(cid:2)v(cid:2)i(cid:2)aI 2:3Un hydrogenbonds(O1toO1j;O1jtoO1h;O1htoO1g)d(O–H)=0.84(2)Å, 2023 n 3.0 dre(Osid1(cid:2)u(cid:2)e(cid:2)sOa1rde)=om2.i6tt9e3d(3fo)rÅc,l+aritOy.1–SyHm1(cid:2)m(cid:2)(cid:2)eOtr1ydc=od16es9:.6(a(2))(1(cid:3).0So.2m5e+(xI),C1Q.25C((cid:3)I)Pyh, Fuingi.t.13All CAl–lHintheyrmdroolgeecnulaartoimntseraarcetioonmsitetemdanfoartincglarfirtyo.mSytmhemaestyrymcmoedterisc: ded on 1/25/ns Attributio 0(rie).7p(15r.e5+s(cid:3)ezn)xt,,a(1tcio(cid:3))n(1y,.,2t1h5.e5(cid:3)r+mxza,)l,0e(.2jl)li5(pxs+,oyiy,d,1s0+a.2rze5),d(+kr)az(w)1,.n5(g(cid:3)a)t(xx5,,01y%,(cid:3)3pyr+,o2bz.5)a,b+(hilzi)t)y(.xDl,eIyvA,eM2l.O+NzD), (cid:3)p((adr1))o(b(+(cid:3)(cid:3)a00bz.i.)2l2.i5t5Dy+I+lAexMv,xe1O,l..21N5.2D(cid:3)5ry(cid:3)e,p(cid:3)ry0e,s.20e5n.7t+5atzi+o),n(ze,)),t(h1(ce.2)rm5(1(cid:3)a.2lx5e,l0l(cid:3)i.p2s5xo,+id0sy.2,a(cid:3)5re0+.7d5yra,+w0zn.)2,5a(ft)+(5x0,z%y),, ao om nlm wo ugust 2015. Doer a Creative C catholsemoRcpeoopofrulraienmcsdippnoog5nrtCdatiHhnnec2gOebsHitonrnubsdcyttauaabnriamgllilzeeidtsnhog(ymTltahiebnselateetssirtnrignugrcoEtiuunSrpIte†e,)ar.asacsitniiontndhsiecaccthaesadenbgoeyf 0 Aund completely. In the molecular structure of 5 the C1–I1 (2.118(1) Å) n 2ed atomdistanceisalittleelongatedcomparedtotheC2–I2(2.109(1)Å) Published ocle is licens bdtooisnotdaunrlecnoegt(ht1he.,r1w9sh7tri(c1uh)ctcÅuo)rmeospfa5(r6e,iss8wt)heblelutlotontihngeetsvhatelCumQeoeOfd8iub.TmohnedraCcnQogmeOpoaaftroaemldl Article. This arti cstrryustcatulsretrsu(cFtiugr.e5t)haenpdhleonnyglerrintghaisnatlhsoetliwteisrtaetduroeuvtaolufeth.2e1dInoutbhlies s bond plane (91.0(5)1), same observations can be made for the s ce carbonylgroup(51.0(6)1),butthisangleissmallerthanexpected c A n andobservedfortheabovediscussedstructures. Ope Fig.12 Helix along the c-axis in the crystal structure of 4. All C–H The crystal structure of 5 is governed by I(cid:2)(cid:2)(cid:2)O (3.143(1) Å) hydrogenatomsareomittedforclarity.Symmetrycodes:(a)((cid:3)0.25+x, and I(cid:2)(cid:2)(cid:2)C(p) (3.372(1) Å) halogen bonds (Fig. 15). The inter- 1.25(cid:3)y,0.75+z),(b)(1.5(cid:3)x,1(cid:3)y,(cid:3)0.5+z),(c)(1.25(cid:3)x,0.25+y, 0.25+z).DIAMONDrepresentation,thermalellipsoidsaredrawnat50% molecular I(cid:2)(cid:2)(cid:2)O distance ranges among the shorter ones com- probabilitylevel. paredtoallstructureshereandisthesecondshortestinteraction ofthiskindobservedforoursubstances(Fig.9). TheintermolecularI2(cid:2)(cid:2)(cid:2)C7(p)distanceistheshortestofall (3.927(3) Å) with I2 as the halogen bond donor and I1 as the substancesinthiscomparisonandhighlydirectional(Fig.14). corresponding acceptor. The turns of this second helix are TheC2–I2bondpointsdirectlytowardstheC7–C8bondofthe threetimesaslargeasthehelixformedbythehydrogenbonds phenylringoftheadjacentmolecule.Thetwokindsofhalogen (d(O1(cid:2)(cid:2)(cid:2)O1g) = 22.597(2) Å) (Fig. 12). The molecules within the bondsmakethemoleculesformchainsalongtheb-axisinthe helixformchainsalongthec-axisviaI1(cid:2)(cid:2)(cid:2)C7fcontacts(3.563(1)Å). crystalstructureof5(Fig.15)andinfactthereisnointeraction In the crystal structure there are also I(cid:2)(cid:2)(cid:2)O1a (3.420(3) Å) betweenthechainsotherthanvanderWaalsinteractions. contacts(Fig.13).TheI1(cid:2)(cid:2)(cid:2)I2einteractionisoneofthelongest, Changingtheesterfrommethyltoethylasinthecaseof6 here observed I(cid:2)(cid:2)(cid:2)I halogen bonds (3.927(3) Å, Fig. 10). The there again can be observed a different arrangement of the I(cid:2)(cid:2)(cid:2)C(p) interaction is the atom distance concerning in the moleculesinthecrystal(Fig.16). mediumrange(Fig.14).AlthoughthedirectionoftheC–Ibond TheC–Ibondsof6aremuchmoresimilarthanthoseofthe andtheorientationofthephenylringindicatealmostnointer- methylester 5. The C1–I1 bond (2.116(5) Å) that is part of action.TheI(cid:2)(cid:2)(cid:2)Ohalogenbondrangesamongthelongesthere I(cid:2)(cid:2)(cid:2)C(p)interactions(3.530(3) Å)isthelongerone.Thephenyl detectedintermolecularI(cid:2)(cid:2)(cid:2)Ointeractions(Fig.9).Consequently substituentandtheestercarbonylgrouparetwistedoutofthe themaininteractionsthatareresponsibleforthisarrangement double bond plane about 87.2(5)1 and 104.0(5)1, respectively. ofthemoleculesinthecrystalarethehydrogenbonds.However, Thelattervalueiscomparablewiththevaluethatcanbefound despite the quite long I(cid:2)(cid:2)(cid:2)I distances, I(cid:2)(cid:2)(cid:2)I halogen bonds are in the crystal structure of the diester 8. The I(cid:2)(cid:2)(cid:2)C(p) halogen 8526 | NewJ.Chem.,2015,39,8522--8533 Thisjournalis©TheRoyalSocietyofChemistryandtheCentreNationaldelaRechercheScientifique2015 View Article Online Paper NJC increase caused by the insertion of the CH group pushes the 2 molecules away from each other and the intermolecular inter- actionsbecomeweaker.ThisresultsalsoinlongerI(cid:2)(cid:2)(cid:2)Ointer- actions(3.326(2)Å,3.498(2)Å)comparedtothevaluesthatcan bedetectedinthecrystalstructureof5.Comparedtoallvalues for the I(cid:2)(cid:2)(cid:2)O interactions in this comparison, the data of 6 belongtothelongerones(Fig.9). Changing the substituent from an ester to an ethyl acetal, e. therearetwodifferentisomers.Forthe(Z)isomer(7a)thetwo c n C–I distances are clearly different; the longer C2–I2 distance e M. Lic (2.115(3)Å)isassociatedwiththephenylbondedcarbonatom Ad 0:43 porte aCn1d–I1I2ddiosetasnncoet(f2o.r0m91a(3n)yÅh)alofogremnsboI1n(cid:2)d(cid:2)s(cid:2)O. I21bwhiathlotgheensbhoonrtdesr 3n 2023 2:n 3.0 U Fleign.g1th4soSftaaltlisdtiiicoadliddiesstrdibisuctuiosnseodfhtheerein,steerpmaroalteecdulinarcIi(cid:2)s(cid:2)/(cid:2)tCra(pn)shaanlodglietenrbatounrde h(3e.r3e30o(b2s)eÅrv)etdha(tFirga.n9g)e.TbhetiwseoebnsetrhveatlioonngiesruI(cid:2)n(cid:2)u(cid:2)Osuhaal,lobgeecnaubsoenfdosr ed on 1/25/s Attributio craodmiipoofuthnedsinavnodlvoeudrsa.tTohmesm(3a.x6i5mÅu)m. distanceisthesumofthevanderWaals h2o.ua1ltoÅog)fe22nthwbeoodunoldduibnblgeeeabxospnleigdchteptdlae.2lno,7enT(g6ha5et.i2op(nh4e)o1n)fybtlhureitnCngo–iItsbtcholaentadrml(ytuytcpwhiicslatielkldey adon inthestructuresdiscussedbefore.Themoleculesformzig-zag om nlm chains along the b-axis interconnected via the I(cid:2)(cid:2)(cid:2)O contacts. wo ugust 2015. Doer a Creative C TpHabahecierlkeirteeywdateroienhfnoatvorhmeefutchhrrteayhlsboetograerlidnnteotberrgolaiinvncdeteisoa,bnnwesthowbepeerteteiwnmaelsaestlnoesritpishcaethchecienhfndailirelnaiensnd,gcfweo(Fhraiinagcd.hli1tta7thrl)eee. 0 Aund geometricalflexibility.Sameobservationscanalsobemadein n 2ed thecrystalstructureofMIQKUU,23theonlyacyclicciscompound os Article. Published This article is licen tSFhyigem.rmm15aeltreCyllhicpaosidonesidsas:lo(aanr)eg(xdt,hr1aew+bn-ya,axzti)s5,i(0nb%)th(pxe,ro(cid:3)cbr1yas+btailyilt,syztrl)eu.vDcetIuAl.rMeOofNtDheremperethsyelnetsatteiorn5., tcftorhooemtmThmphetleohe(Zlteeea)cllriiuyrstaleodenrmiaffgisteeeurmqrree7uen.ainttHettcheroeroimegfCindp–to.haIreahetado(lEmot)ogeditnshisoebtmao(nZnec)rdeisss7ocbiamnnietnhbree7ta(hoE.be)Isniecsrrocvyomesndteatrarlan7sidbst s s e c c A n e p O Fig.16 Chainsalongtheb-axisinthecrystalstructureoftheethylester6. Symmetrycodes:(a)(x,(cid:3)1+y,z),(b)(x,1+y,z),(c)(1(cid:3)x,2(cid:3)y,1(cid:3)z), (d)(1(cid:3)x,1(cid:3)y,1(cid:3)z).DIAMONDrepresentation,thermalellipsoidsare drawnat50%probabilitylevel. Fig.17 ZigzagchainsgovernedbyshortintermolecularI(cid:2)(cid:2)(cid:2)Ocontactsin bondlengthliesinthemediumrangeofallhalogenbondsofthis b-direction, in the crystal structure of compound 7a. Symmetry codes: sortheredetected(Fig.14)andisresponsiblefortheformationof (a)(0.5(cid:3)x,0.5+y,1.5(cid:3)z),(b)(0.5(cid:3)x,(cid:3)0.5+y,1.5(cid:3)z),(c)(x,(cid:3)1+y,z). chains that are dominating the crystal structure of 6. The steric DIAMONDrepresentation,thermalellipsoidsaredrawnat50%probabilitylevel. Thisjournalis©TheRoyalSocietyofChemistryandtheCentreNationaldelaRechercheScientifique2015 NewJ.Chem.,2015,39,8522--8533 | 8527 View Article Online NJC Paper Fig.18 Crystalstructureofcompound7b.Viewofthechainsalongthe Fig.20 I(cid:2)(cid:2)(cid:2)C(p)Halogenbondsinthecrystalstructureof4formingchains ce. c-axisresultingfromintermolecularI(cid:2)(cid:2)(cid:2)C(p)interactions.Symmetrycodes: inb-direction.Symmetrycodes:(a)(x,1+y,z),(b)(x,(cid:3)1+y,z).DIAMOND AM. d Licen (tah)e(rxm,0al.5e(cid:3)llipys,o(cid:3)id0s.5ar+ezd),ra(bw)n(xa,t05.50(cid:3)%yp,ro0b.5ab+ilzit)y.DleIvAeMl.ONDrepresentation, representation,thermalellipsoidsaredrawnat50%probabilitylevel. 0:43 porte In molecules 2 (containing I3) and 3 (containing I5) the 3n 2:U are with 2.124(5) Å (C1–I1) and 2.131(5) Å (C2–I2) longer. The phenyl rings are also twisted out of the double bond plane 3 0 202n 3. corresponding dihedral angle of the phenyl ring (73.4(6)1) is ((cid:3)86.6(8)1forM2and72.1(8)1forM3).Eachmoleculeformsa ed on 1/25/s Attributio l(da3ir.s4gc4ue1rss(5eb)duÅtb)edtfoheresep.tiwTtehisitsiitnIs2g(cid:2)i(cid:2)an(cid:2)nCcg7lul(eps)iiosinnstmeirnaacllteIi(cid:2)or(cid:2)nt(cid:2)hCisa(pnth)ienhsaethlcooegnesdtnrsuhbcotourntredessst hIcnoenlbincoaetlchtcehhdaeilvniciaethsIa(cid:2)tth(cid:2)(cid:2)ceIaanhlatbeloerngceaontninvbegorntmeddoslien(cItu3o(cid:2)le(cid:2)es(cid:2)aIc6Mha1o3t.a8hn8ed4r(bM6y)2sÅya,mrIe4mi(cid:2)n(cid:2)e(cid:2)ttIer5yrc-. dn observedinthiscomparison(Fig.14)andthecorrespondingC2–I2 3.885(5)Å,Fig.21)thatrangeinthemiddleofallheredetected ao om nlm bondiselongatedcomparedtotheotherone.Theseinteractions I(cid:2)(cid:2)(cid:2)I interactions (Fig. 10). The helices itself are not connected wo oC resultintheformationofchainsalongthec-axis(Fig.18)ascould with each other. Looking at the angles of the halogen bonds, ust 2015. Da Creative ablestoKweebeeepnionibogsdetihrnveeedpahniendnotyhxleysgucebrnysstaittraueleosntbrtsuaecsrtvuaerdce.oonfst5a.nNtoanidntcehraacntgioinngs taahrneedrnetehaaerroettohtwelirnotewadoriff(aIer3re(cid:2)e(cid:2)nn(cid:2)tIe6at–reCnt2od5reen1c5cti9ae.ns0g.(2uT)l1aw,roI(5I(cid:2)6o(cid:2)(cid:2)f(cid:2)(cid:2)I(cid:2)4tIh–3eC–C1f61o7u1r7931a..25n((g22l))e11s), Augder theoxygencontainingsubstituentagainstaHleadsustocom- I4(cid:2)(cid:2)(cid:2)I5–C26 97.7(2)1). These values indicate that I4 and I6 act 0 un n 2ed pound 3. In this crystal structure the C–I bond lengths are as halogen bond donors and I3 and I5 act as halogen bond Published ocle is licens adprlieaffnetheree(n8dt0oa.m9n(id2n)at1hn).etHipnehtreeernmaylloslroeincIug(cid:2)l(cid:2)ai(cid:2)srCit(nwpt)ieshrtaeacdltoioogunentsowbfhotinhcdhesdra(o3nu.g5be7lse3u(b1no)dnÅedr) atlehcnecgedtphotosnroosrf.aRthteoemmaacsrck(eIap4bt/Iloe6r)iasatrotehmasstho(tIhr3te/eIrc5o)crobrmeescppaauornseedditnhtogetCohp–eIpCobs–oiIntebdoswnaodsf s Article. This arti htfoharelmolgocenhngaebirnosonandlesosn(Fginitght.he1ia9s-)a.dxiHisscehureessaiwdoentoh(tFaaivigle.cao1nn4)n.eexTcahtmeedpmvleioalttehhcaeutlIes(cid:2)sh(cid:2)(cid:2)oCowf(ps3), ehaxnepldieccetthseeda,rcechoaanrirnsaisdnegirneidtnegrpcaotrhnaenlleeXclBtteoddtehvfiienaicteIi(cid:2)oll(cid:2)n(cid:2)eCdo(pgfe)tshinoetfeItrUhaPceAtiuConn2i.stTcaherleel s ce that a decrease in steric hindrance leads to a maximum of arrangedbetweentwohelixstrands(Fig.22).Theindependent c A intermolecularinteraction. occurrenceofI(cid:2)(cid:2)(cid:2)CandI(cid:2)(cid:2)(cid:2)Ihalogenbondsinthesamecrystal n pe The largest change in crystal packing is caused by the sub- structureletsusconclude,thatinthiscasetheenergyofboth O stitutionoftheHtomethyl.Theasymmetricunitofcompound interactions is very similar. This left twisted helical chain 2containsthreeindependentmolecules.Molecule1(containsI1) arrangementisverysimilartothecrystalstructureof4. formsI(cid:2)(cid:2)(cid:2)C(p)halogenbonds(3.543(5)Å)whoselengthslieinthe Changingmethyltophenyl,asitisthecaseforcompound1 mediumrangeofallheredetectedI(cid:2)(cid:2)(cid:2)C(p)interactions(Fig.14). again I(cid:2)(cid:2)(cid:2)C(p) halogen bonds (3.543(3) Å) are the dominant The phenyl ring of M1 is twistedout of the double bondplane about (cid:3)79.0(1)1. These molecules form chains along the b-axis viatheI(cid:2)(cid:2)(cid:2)C(p)interactions(Fig.20). Fig.19 Crystal structure ofcompound 3. View of the chains along the Fig.21 Helicaldoublestrandchainsalongtheb-axisinthecrystalstruc- a-axisresultingfromintermolecularI(cid:2)(cid:2)(cid:2)C(p)interactions.Symmetrycodes: tureof2,formedbyI(cid:2)(cid:2)(cid:2)Ihalogenbonds.Symmetrycodes:(a)(x,1+y,z), (a)(1(cid:3)x,y,1.5(cid:3)z),(b)(0.5(cid:3)x,0.5(cid:3)y,2(cid:3)z),(c)(0.5+x,0.5(cid:3)y,(cid:3)0.5+z), (b)(x,(cid:3)1+y,z),(c)((cid:3)x,(cid:3)0.5+y,0.5(cid:3)z),(d)((cid:3)x,0.5+y,0.5(cid:3)z),(e)(1+x, (d)(1.5(cid:3)x,0.5(cid:3)y,1(cid:3)z),(e)(1+x,y,(cid:3)1+z).DIAMONDrepresentation, y,(cid:3)1+z).DIAMONDrepresentation,thermalellipsoidsaredrawnat50% thermalellipsoidsaredrawnat50%probabilitylevel. probabilitylevel. 8528 | NewJ.Chem.,2015,39,8522--8533 Thisjournalis©TheRoyalSocietyofChemistryandtheCentreNationaldelaRechercheScientifique2015 View Article Online Paper NJC In the molecular structure of RUWRUX26 there are two diiodoolefinicmoietiesnearbyandtwistedinawaythatmakes conjugationofthedoublebondunlikely.Themoleculeitselfis quiteflexibleandistwistedinawaythatamaximumhalogen bondformationispossible.Theasymmetricunitpersistsoftwo moleculeswithallinalleightiodineatoms.Sevenofthemform halogenbonds. e. c n Discussion and conclusion e M. Lic Ad 0:43 porte Lstoroukcitnugresatofthtehesicmoimlapriotuiensdsthdaitsccuanssebdeafboouvned, aincothmepectriytsiotanl 3n 3 2:0 U betweentheformationofhydrogenbondsandtheformationof 202n 3. halogen bonds can be observed when both is possible. Also a ed on 1/25/s Attributio Fthhiagelo.c2g-2eanxibTsohinnedhtsheealicrecersbysfeottawrlmesetqrnuucathdtuesrehstaropafend2d.ssTuohbfeuqnumiatsodlweschhuiaclpehesfdothrumantitsfsto.rraDmnIdAIsM(cid:2)(cid:2)aO(cid:2)lCoNn(pDg) ciasolwmparpyesesteisnteitoe.nmAlblteaotcwibdeeesnathntehdedadlocimoffheinorealsnnttfohirnamltoehgraeycndtriboonogennadnibndognaadlclscoewpthhtioecrrhss adon representation,thermalellipsoidsaredrawnat50%probabilitylevel. subordinate themselves. When halogen bonds occur in the om nlm crystalstructure thenthe participatinghalogenbondacceptor wo ugust 2015. Doer a Creative C ioownfvaterearrrllalaancpinttieotodefnr.ta.hTcTethhiCeoisn1lis–anIto1tteeflrritmnhaeogisalweitcniytuphileastrhhtdeweiriasesdttaeojnadbccseeoenuristvtepinodhfte(hFtnheiygelm.sd1ueo4dbu)is.ubtiAmltelusreobanonttnhgidees letrihenkvaseeturCirsseOec2olcReapastoreilrmyiPslaahlnregconeotyrnlattihlaswcatatnwycssiosintwnegdadlrietroiasountntetrseoi.dfc.TtehhTffeihescidsthosouawbpbospleeuerlnbvdsoaintniidnodnupacllaeern.tasTenhugtoees 0 Aund plane ((cid:3)80.5(8)1) as observed for the phenyl substituents of all concludethattheenergyofthehalogenbondishigherthanthe Published on 2cle is licensed saotctihttiIueonrenntchttohemiescprmreoypsuotllnaaedlccesusdtldreubsiscycftoauursrbmseiecodcyfhchlEaieciMnrlesUa.cZ(VtFIoiiWagn.e2th42ti3hws)e.hirneertaeerromentoweleopchmueloanrlyelicnsutuleebrs-- methnoeeUsrctgnlryyydshetthrayedlerxsmoctrglouuelcsneticuobunroleenofdfwostrihmnaesnavdtveiioarI(cid:2)yn(cid:2)t,sh(cid:2)Imaehgacaleollnonmegjrueoanglleabscttiuoaonltneed.mRsIaeDnreTtOrceoOlne1v2caewnrnhtiefnorger Article. This arti ianrethtweisatseydmlmaregterliycouuntito.fBtohtehdsouubbslteitubeonntds polfanboetahltmhooulegchulneos tchoentIa(cid:2)i(cid:2)n(cid:2)Oinghfaulongcetinonbaolngdrofuoprminactliuodnedcainntbheemmaodleec.uIlseathnatoxcyoguelnd ss I(cid:2)(cid:2)(cid:2)C(p)halogenbondsoccurinthiscrystalstructureduetothe act ashalogenbondacceptor,thenitfunctionsassuch.Inthe e c esteroracidgroupsoccurringhere,theincludedcarbonylgroup Ac sterichindranceofthelargesubstituents.Onemoleculeofthe en asymmetric unit forms I(cid:2)(cid:2)(cid:2)I halogen bonds (3.835(4) Å) and alwaysformsthehalogenbond.ThoseCQOfunctionsseemsto Op chainsinterconnectedviathose.Theothermoleculeformsalso be the stronger halogen bond acceptor than the OH or OR groups that are also present. Exceptions are small molecules chains but those are interconnected by I(cid:2)(cid:2)(cid:2)O halogen bonds likeRIDTOO12wherestrongerinteractionslikehydrogenbonds (3.347(5)Å). are possible. Also exceptions are rigid molecules with stericly InthecrystalstructureofULEFUN25themoleculecontainstwo demanding substituents in the cis configuration like 7a and terminaldiiodoolefinicmoietiesandisgenerallyquiteflexible.The MIQKUU,23 where very weak or even no halogen bonds under moleculesarearrangedinawaythatleadstomaximumhalogen participationoftheoxygenoccur. bondformation,fouroutoffouriodineatomsformhalogenbonds, Asonecanclearlyseeforthecrystalstructuresthatarebuilt includingI(cid:2)(cid:2)(cid:2)I,I(cid:2)(cid:2)(cid:2)OandI(cid:2)(cid:2)(cid:2)C(p)interactions. up by the molecules arranged in chains (7b, 1, 2, 3, 5) mostly I(cid:2)(cid:2)(cid:2)C(p) interactions are responsible for the chains. In the crystalstructureof5thechainsarebuiltupbyI(cid:2)(cid:2)(cid:2)Ointeractions supportedbytheI(cid:2)(cid:2)(cid:2)C(p)halogenbonds,resultinginthestrongest I(cid:2)(cid:2)(cid:2)C(p)andthesecondstrongestI(cid:2)(cid:2)(cid:2)Ointeractions. When there are only iodine and a p-system present in a moleculetoactashalogenbondacceptorasisthecasefor1,2, 3, C I and C I then, except for C I and parts of the crystal 2 2 2 4 2 4 structure of 2, the heteroatomic I(cid:2)(cid:2)(cid:2)C(p) interaction is always preferredinthecrystalstructureinsteadofthehomoatomicI(cid:2)(cid:2)(cid:2)I halogenbond.Inthisstudynoiodineinteractionswitholefinic Fig.23 I(cid:2)(cid:2)(cid:2)C(p) Halogen bonds in the crystal structure of 1 forming double bonds could be observed. The main interactions occur chains.Symmetrycodes:(a)(1(cid:3)x,1(cid:3)y,2(cid:3)z),(b)((cid:3)x,1(cid:3)y,1(cid:3)z),(c) ((cid:3)1+x,y,(cid:3)1+z),(d)(1+x,y,1+z),(e)(2(cid:3)x,1(cid:3)y,3(cid:3)z).DIAMOND betweenaniodineatomandthep-systemofaphenylring.Inthe representation,thermalellipsoidsaredrawnat50%probabilitylevel. crystalstructureofC2I2thehalogenbondacceptoristheCRC Thisjournalis©TheRoyalSocietyofChemistryandtheCentreNationaldelaRechercheScientifique2015 NewJ.Chem.,2015,39,8522--8533 | 8529 View Article Online NJC Paper Chemical shifts are referred to Me Si (1H, 13C) as external 4 standards.Allspectraweremeasured,ifnotmentionedother- wise, at 25 1C. The assignment of the signals in the 1H and 13CNMRspectraisbasedon2D(1H,1H-COSY45,1H,13C-HMQC and1H,13C-HMBC)experiments.Massspectrometricdatawere Fig.24 StructuresofKAFBOJandKAFBIDfromtheliterature. obtainedwithaJEOLMstationJMS700spectrometerusingthe directEImode.Themolecularstructuresinthecrystallinestate triplebond.InthecrystalstructureofRETRIR27whereaphenyl were determined by single crystal X-ray diffraction. For data e. ring and a triple bond are included in the same molecule, the collectionanXcalibur3diffractometerequippedwithaSpellman c n triplebondisthefavoredhalogenbondacceptor. generator (voltage 50 kV, current 40 mA) and a Kappa CCD e M. Lic FortheI(cid:2)(cid:2)(cid:2)Ihalogenbondformationitisnoticeablethatthey detector with an X-ray radiation wavelength of 0.71073 Å was Ad 0:43 porte olickceuRrIeDitThOeOr,i1n2GcrIyWstTalIQst,1r6uNctIuMreGsOcFo,n17si2stainngdo4f.Tsmheasllteerrimcdoelemcualneds usosfetdw.aTrhe2e9daantdactohleledctaitoanrwedauscpteiornforwmitehdtwhiethCtrhyseAClirsysRAEliDsCsoCfDt- 3n 3 2:0 U of the substituents of those molecules is either small or the ware.30ThestructuresweresolvedwithSIR-92orwithSIR-2004, 202n 3. substituents cannot act as halogen bond acceptor or both. That refined with SHELXL-97 and finally checked using PLATON.31 ed on 1/25/s Attributio gOwiirvtehtshhetyihgeohceicorudiroindineintaehteocomcnrsytsettnhatel.sTpthrouescrsteiubtrihleiestyomtfoolalecrcogunelrveefslregaxeriebalanebdmleiontloteectruwalicestst. mTmheeetnhtasobdsa.on32rdpAtrlielofrniensleewmvaeenrnettdscoaartrareeacgntiedvdepnbayirnaSmCTeaAtbLelEres31oA.fBCthSCPeDAXCC-rK1a0ym3m7u1el7tai9ssuc(ar1en)-, adon themselvesinawayofmaximumhalogenbondformationwhere 1037183 (2), 1037178 (3), 1037181 (4), 1037184 (5), 1037182 (6), om nlm also I(cid:2)(cid:2)(cid:2)I halogen bonds occur. Stating which intermolecular 988932(7a),988931(7b)and1037180(8). wo ugust 2015. Doer a Creative C citnwrytiessWtrtaaiinlcthtsgito:rtnu2hciitlssuefdrbteo,asmc4okifgnrircagoonhumttn)ipdnooufstuhntcedhhsesm2ismtaorinluleadccrtu4iutlryeiass(lrdiseaemrhsrpaaairrntdkegaleybtmhpleeoe,sncostoipbniplnseoi.dstiehtree- S(1yn(etEhq/.Ze,s)-e13s.,032-Dige,th4oxmy-1m,2o-ld)iioandod-13-p,3h-ednieytlhporxoyp-1e-nph(7ean,y7lb)p.rIoopdyinnee 0 Aund ing the diversity of interactions (O(cid:2)(cid:2)(cid:2)H, I(cid:2)(cid:2)(cid:2)O, I(cid:2)(cid:2)(cid:2)I, I(cid:2)(cid:2)(cid:2)C(p)) (817.04 mg, 4 mmol) were dissolved in CHCl3 (5 mL) and n 2ed occurringinthecrystalstructureof4.Intherelevantpartofthe refluxedfor19hwhilestirring.Aftercoolingtoroomtemperature Published ocle is licens twchriyetshletasfolsusbtrromutchotulcerrceyusoltefasl2isntthrauetrcueturanrrebesusatortleheledytoIum(cid:2)r(cid:2)n(cid:2)iInsahitnaeldtohgebeyncrhybseotlnaicldasslt.rcuNhceatvuienrres- tsThohedeirusemoalcuttthiiooinonsmuwlifaxasttuedr(re1ie0wdmawsLiq)thuaneNndacw2hSaeOsdh4weadintdhwitathh5ew%saot(levwre/(nv1)t0swmoalLus)teitovwanipcooef.- s Article. This arti hhofyadl4orgoaegrneenbsombnoadnlsldeisrs.btThehrceaeeucstoiemrrteehsseparoesnltdahriegnegm.IhoneleltichxuelbecusryilasttraeulpcsotbrnuyncettuhctreeedIo(cid:2)f(cid:2)b(cid:2)2yI 4rsao5tl7eid.d9.2(4T450h%e[M,st8+e]4r,2efo.o5iu0snommd:ge4)r.5icH7.mR92Mix2tS5ur((E1e0Io)0:f%m7)/w.zacsalocbdtafoinre(dC1a3sHy1e6lIl2oOw2i)sh= s ce the asymmetric unit contains two independent molecules that 7a: d (270.17 MHz, CDCl ) 7.38–7.26 (5H, m, H ), 3.92 c H 3 Ar A n form helices that are symmetry generated and also twisted into (1H,s,CH),3.42,3.36(4H,AB-system,2JHH=9.4Hz,CH2),1.17 e Op eachotherwithoutconnection.Forthestericdemandmethyland (6H,t,3JHH=7.1Hz,CH3). CH2OHseemstobeequivalentinthiscase. dC (67.93 MHz, CDCl3) 143.8 (Ci), 128.9 (Cp), 128.5 (Cm), Discussingthequestion,whetherthetwistingofthephenyl 127.8 (C ), 122.4 (QCI), 115.7 (Ph–CI), 99.1 (CH), 62.6 (CH ), o 2 ringattheCQCdoublebondiscorrelatedduetotheformation 15.1(CH ). 3 of halogen bonding to iodine the two isomers KAFBOJ28 and 7b: d (270.17 MHz, CDCl ) 7.38–7.19 (5H, m, H ), 8.83 H 3 Ar KAFBID28canbeconsidered(Fig.24).InthecaseofKAFBOJ28 (1H,s,CH),3.77,3.66(4H,AB-system,2J =9.5Hz,CH ),1.33 HH 2 clearhalogenbondingofiodinetothep-systemcanbeobserved (6H,t,3J =7.1Hz,CH ). HH 3 inthecrystal.Ontheotherhand,inthecaseofKAFBID28only d (67.93MHz,CDCl )147.2(C),128.6(C ),128.5(C ),128.3 C 3 i m p hydrogenbondingandnohalogenbondingisfound.Lookingat (C ),107.2(CH),106.5(QCI),96.8(Ph–CI),63.0(CH ),15.3(CH ). o 2 3 the torsion angles, regarding the phenyl substituents the twist- (E)-Methyl 2,3-diiodo-3-phenylacrylate (5). Methyl 3-phenyl- ing of the phenyl ring of KAFBOJ is with 74.4(7)1 much larger propiolate (0.44 mL, 3 mmol) was dissolved in MeCN (10 mL) thanthetwistinginKAFBID(37.6(6)1).Thelargertwistinginthe and I (1 eq., 761.4 mg, 3 mmol) and CuI (5 mol%, 28.6 mg, 2 caseofKAFBOJismostprobablycausedbytheeffectofhalogen 0.15 mmol) were added in one portion. The reaction mixture bonding,whichfitswelltotheobservationsmadeintherelated was refluxed for 20 h. After cooling to room temperature, the diiodoolefins1–7. reaction mixture was quenched with a 5% (w/v) solution of sodium thiosulfate (10 mL) and washed with water (10 mL) Experimental section twice.ThesolutionwasdriedwithNa SO andthesolventwas 2 4 evaporated. Compound 7 was isolated as a colourless solid Materialsandmethods (94%,1.17g). All chemicals were commercially available and were used as d (270.17MHz,CDCl)7.49–7.28(5H,m,H ),3.93(3H,s,CH). H 3 Ar 3 received.NMRspectrawererecordedwithaJEOLEX400Eclipse d (67.93 MHz, CDCl )166.9(CQO),145.1 (C), 129.3(C ), C 3 i Ar instrumentoperatingat400.128MHz(1H)and100.626MHz(13C). 128.7(C ),128.0(C ),98.6(C–I),85.7(C–I),53.7(CH ). Ar Ar 3 8530 | NewJ.Chem.,2015,39,8522--8533 Thisjournalis©TheRoyalSocietyofChemistryandtheCentreNationaldelaRechercheScientifique2015 View Article Online Paper NJC 8 CHIO6624395.91100(2)Colorlessblock0.200.20(cid:4)(cid:4)0.10MonoclinicP2/c18.6795(4)7.5937(2)8.5520(4)90108.798(5)90533.59(4)22.4645.8710.7106936010h10(cid:3)rr9k9(cid:3)rr10l10(cid:3)rr5167 10529230.029860 4.77–32.460.0174,0.0420 0.0211,0.04270.9690.499,0.671(cid:3) (cid:4) M. Licence. 7b CHIO131622458.06100(2)Colorlessplate0.3230.181(cid:4)0.021MonoclinicP2/c110.7818(7)10.2566(6)14.5072(9)90109.917(7)901508.32(16)42.0174.1590.7106986414h14(cid:3)rr13k13(cid:3)rr19l19(cid:3)rr13331 371929190.049166 4.3–28.30.0307,0.0656 0.0472,0.05931.0290.682,1.285(cid:3) Ad 1/25/2023 2:30:43 bution 3.0 Unporte 7a CHIO131622458.06100(2)Colorlessplate0.4170.176(cid:4)(cid:4)0.053MonoclinicP2/n111.3978(4)7.2145(2)18.1044(6)9098.253(3)901473.30(8)42.0654.2580.7106986415h15(cid:3)rr99k(cid:3)rr24l14(cid:3)rr24970 364732150.042166 4.2–28.30.0231,0.0566 0.0294,0.05311.0980.68,1.06(cid:3) Access Article. Published on 20 August 2015. Downloaded on This article is licensed under a Creative Commons Attri 456 CHIOCHIOCHIO98210822111022385.95413.96427.99173(2)100(2)173(2)ColorlessplateColorlessblockColorlessblock0.350.100.40.150.200.15(cid:4)(cid:4)(cid:4)(cid:4)(cid:4)(cid:4)0.050.050.10TetragonalMonoclinicMonoclinicI4/aC2/cP2/n1123.9673(5)20.5998(15)12.8366(5)23.9673(5)7.1799(2)7.0467(2)7.5322(3)18.253(2)14.2790(6)90909090120.835(11)96.053(4)9090904326.7(2)2318.1(4)1284.41(9)16842.3702.3722.2135.7695.3994.8760.710690.710690.710692816152079228h2928h2817h18(cid:3)(cid:3)(cid:3)rrrrrr20k295k59k9(cid:3)(cid:3)(cid:3)rrrrrr7l931l3120l20(cid:3)(cid:3)(cid:3)rrrrrr108661330816765 2116287637601501226427470.03260.05960.0364161133156 4.32–33.584.18–32.504.26–32.350.0225,0.04120.0250,0.05310.0232,0.0424 0.0386,0.04320.0367,0.05470.0416,0.04490.8900.9400.9170.443,0.3040.758,1.3950.957,0.878(cid:3)(cid:3)(cid:3) n e p O 3 CHI862355.93100(2)Colorlessblock0.220.12(cid:4)(cid:4)0.05MonoclinicC2/c10.1365(4)15.9425(6)5.7295(2)9094.279(4)90923.31(6)42.5606.7390.7106964014h14(cid:3)rr22k22(cid:3)rr8l8(cid:3)rr9343 136111260.031175 4.17–30.090.0176,0.0404 0.0245,0.04151.0270.626,0.592(cid:3) pounds1–8 2 CHI982369.95200(2)Colorlessblock0.300.15(cid:4)(cid:4)0.10MonoclinicP2/c118.9368(9)7.6070(3)22.9348(12)90109.349(6)903117.2(3)122.3655.9930.71069201623h22(cid:3)rr9k9(cid:3)rr19l28(cid:3)rr15609 609843520.0363319 4.17–26.00.0282,0.0525 0.0457,0.05520.8570.822,1.536(cid:3) m o ucturedataofc 1 CHI14102432.02173(2)Colorlessplate0.400.25(cid:4)(cid:4)0.08Monoclinic/nP215.7078(3)17.4128(8)7.0077(4)90110.984(6)90650.30(6)22.2064.8060.710694007h7(cid:3)rr21k21(cid:3)rr8l8(cid:3)rr8934 126610990.030367 4.14–25.980.0162,0.0368 0.0210,0.03741.0580.462,0.339(cid:3) str Table1Crystal Compound FormulaMT,[K]Color,habitCryst.size,[mm]CrystalsystemSpacegroupa,[Å]b,[Å]c,[Å]1a,[]1b,[]1g,[]3]V,[ÅZ3(cid:3)r,[gcm]calcd1(cid:3)m],[mmIrradiation,[Å]F(000)Indexranges ReflnscollectedReflnsuniqueReflnsobsdRintParamsrefined1yrange,[],wRR124s[I2(I)],wRR12(alldata)GooFd,pmax3(cid:3)d,[enm]pmin Thisjournalis©TheRoyalSocietyofChemistryandtheCentreNationaldelaRechercheScientifique2015 NewJ.Chem.,2015,39,8522--8533 | 8531
Description: