HalidePerovskites Halide Perovskites Photovoltaics,LightEmittingDevices,andBeyond EditedbyTze-ChienSumandNripanMathews TheEditors AllbookspublishedbyWiley-VCH arecarefullyproduced.Nevertheless, Prof.Tze-ChienSum authors,editors,andpublisherdonot NanyangTechnologicalUniversity warranttheinformationcontainedin PhysicalandMathematiccalSciences thesebooks,includingthisbook,to 21NanyangLink befreeoferrors.Readersareadvised SPMS-PAP-03-05 tokeepinmindthatstatements,data, 637371Singapore illustrations,proceduraldetailsorother Singapore itemsmayinadvertentlybeinaccurate. Prof.NripanMathews LibraryofCongressCardNo.:appliedfor NanyangTechnologicalUniversity MaterialsScience&Engineering BritishLibraryCataloguing-in-Publication BlockN4.1,NanyangAvenue Data N4.1-02-35 Acataloguerecordforthisbookis 639798Singapore availablefromtheBritishLibrary. Singapore Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat<http://dnb.d-nb.de>. ©2019Wiley-VCHVerlagGmbH& Co.KGaA,Boschstr.12,69469 Weinheim,Germany Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobe consideredunprotectedbylaw. PrintISBN:978-3-527-34111-5 ePDFISBN:978-3-527-80075-9 ePubISBN:978-3-527-80078-0 oBookISBN:978-3-527-80076-6 CoverDesign TataConsultingServices Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper 10 9 8 7 6 5 4 3 2 1 G.C.Papavassiliou(31stOct.1940to11thFeb.2018) wasborninLepiana,asmallremotevillagenearArtain Greece,twodaysafterthebeginningoftheItalian-Greek war.Despitethehumbleunderprivilegedlocation ofhisvillage,whichsuddenlytransformedintoawar zoneincludingthatofthecivilwar,hemanagedtoset upasmallchemistrylaboratoryinhisparent’sbasement whichincludedhomemadeelectroniccircuitsandalso self-taughtEnglishandFrenchthroughradio-provided Linguaphonelessons.HegraduatedfromtheChemistry Department(UniversityofAthens)in1968afterfulfillinghismilitaryservice. SincethenhewasemployedbytheNationalHellenicResearchFoundation (TheoreticalandPhysicalChemistryInstitute,TPCI).HisPh.D.wasawardedin 1972titled“Laser-RamanSpectraofAdsorbedMaterials.”Afterasuccessful careerandmultipleassessments/elections,hebecameDirectorofResearchas wellasservedtwiceasdirectorofTPCI.Finally,afterhisretirementin2009,he wasnamedResearcherEmeritusuntilhispassing. Hispublishedresearchworkfocusedonabroadsetoftopicssuchasmetallic nanoparticles,TCNQ-basedmetals,mixedvalencemetalcomplexes, semiconductingnanoparticles,organometallicconductors,charge-transfer complexesaswellashybridorganic–inorganiclow-dimensionalmaterialswith semiconducting,conducting,andsuperconductingproperties. Someofhispioneerworksareinthefieldsofquantumdots,organic superconductors,andhybridorganicinorganicsemiconductors(knownas perovskites).Specifically,hepublishedthefirst-everresearchinobservingand explainingthequantumsizeeffect(blueshift),whichmostlygoesunnoticed,in theJournalofSolidStateChemistry40,330–335(1981)titled“Luminescence SpectraandRamanExcitationProfilesinSmallCdSParticles.”Laterhe publishedthefirstasymmetricalTTF-basedorganicsuperconductorin1988in twopublicationsinSyntheticMetals,27,373–378and379–383(1988)titled “ConductingSolidsBasedonSomeNewUnsymmetricalTetraheterofulvalenes” and“LowTemperatureMeasurementsoftheElectricalConductivitiesofSome ChargeTransferSaltswiththeAsymmetricDonorsMDT-TTF,EDT-TTFand EDT-DSDTF(MDT-TTF) AuI ,anewsuperconductor(T =3.5Katambient 2 2 c pressure),”respectively.Inthefieldofperovskites,hisearlypioneeringworks dateprecedeby12yearsthemajorityofthecurrentrelatedpublications.Their noveltyincluded,insomecases,crucialdetailsregardingsynthesis,theuseof colloidalsuspensions,thenovelexcitonicenergytransferphenomenaobserved inmixturesofquasi-2D(q2D)perovskites,and,finally,thefirsteffortfor fabricatingroomtemperatureenergytransferq2D-perovskite-basedLED, beyondthe2011reported2Dperovskite-basedLED.Overall,hispublished workcounts177articles,receivingapproximately3000citations. Hehasbeenabeloved,humble,modestandlow-profileresearcher,amentor tohisstudentsaswellasmanycolleaguestowhomheeffortlessly communicatedhisknowledge.Finally,throughouttheyearshislaboratoryand infrastructurewerefreelyandkindlyprovidedtoanyonewhoneededthose. vii Contents PartI BasicPropertiesandEarlyWorksin Organic–InorganicPerovskites 1 1.1 Structural,Optical,andRelatedPropertiesofSomePerovskites BasedonLeadandTinHalides:TheEffectsonGoingfromBulk toSmallParticles 3 GeorgeC.Papavassiliou,GeorgeA.Mousdis,andIoannisKoutselas 1.1.1 Introduction 3 1.1.2 MaterialsBasedonSaturatedOrganicMoiety 4 1.1.2.1 BulkPerovskites(SC)MX 4 3 1.1.2.2 ParticulatePerovskites(SC)MX 5 3 1.1.2.3 BulkPerovskitesoftheType(BC) MX 8 2 4 1.1.2.4 ParticulatePerovskitesoftheType(BC) MX 8 2 4 1.1.2.5 BulkPerovskitesoftheType(SC) (BC) M X 10 n−1 2 n 3n+1 1.1.2.6 ParticulatePerovskitesoftheType(SC) (BC) M X 11 n−1 2 n 3n+1 1.1.2.7 SomeCommonFeaturesinthePropertiesof3Dandq-2D Systems 13 1.1.2.8 Low-Dimensional(LD)Perovskites 15 1.1.2.9 RelatedProperties 15 1.1.3 PerovskitesConsistingofNon-saturatedOrganicMoietyBC 16 1.1.4 OtherPerovskiteStructures 18 References 18 1.2 AbInitioandFirstPrinciplesStudiesofHalidePerovskites 25 JackyEvenandClaudineKatan 1.2.1 IntroductiontoAbInitioandDFTStudiesofAll-inorganic,3Dand LayeredHybridOrganicMetalHalidePerovskites 25 1.2.2 BrillouinZoneFolding,LatticeStrain,andTopologyoftheElectronic Structure 28 1.2.3 ImportanceofSpin–OrbitCoupling(SOC) 33 1.2.4 InterplayofSOCandLossofInversionSymmetry:Rashbaand DresselhausEffects 36 viii Contents 1.2.5 CollectiveVibrations,StochasticCationReorientations,andMolecular Dynamics 40 References 47 1.3 Excitonicsin2DPerovskites 55 WeeKiangChong,DavidGiovanni,andTze-Chien Sum 1.3.1 IntroductiontoTwo-dimensionalPerovskites 55 1.3.2 ExcitonicPropertiesandOpticalTransitionsin2D-OIHPs 56 1.3.3 WhiteLightEmission(WLE)from2D-OIHPs 57 1.3.3.1 EnergyTransferMechanism 59 1.3.3.2 BroadbandDefectEmission 60 1.3.3.3 Self-trappedExcitons 61 1.3.3.4 RoleofOrganicFrameworkinBroadband2D-OIHPEmitters 63 1.3.4 StrongExciton–PhotonCouplingin2D-OIHPs 64 1.3.4.1 Jaynes–CummingsModel 64 1.3.4.2 Exciton–PhotonCouplingin2DPerovskitesThinFilms:OpticalStark Effect 65 1.3.4.3 Exciton–PhotonCouplingin2DPerovskiteMicrocavities: Exciton–Polariton 66 1.3.5 ConcludingRemarks 73 References 74 PartII Organic–InorganicPerovskiteSolarCells 81 2.1 WorkingPrinciplesofPerovskiteSolarCells 83 PabloP.Boix,SoniaR.Raga,andNripanMathews 2.1.1 Introduction 83 2.1.2 ChargeGeneration 84 2.1.3 ChargeTransport 86 2.1.4 ChargeRecombination 89 2.1.5 ChargeExtraction/Injection:InterfacialEffects 93 2.1.6 IonicMechanisms 95 2.1.7 ConcludingRemarks 96 References 97 2.2 ThePhotophysicsofHalidePerovskiteSolarCells 101 MingjieLi,BoWu,andTze-ChienSum 2.2.1 IntroductiontoPhotophysicsStudiesofHalidePerovskites 101 2.2.2 OpticalPropertiesofCH NH PbI PolycrystallineThinFilms 102 3 3 3 2.2.2.1 ElectronicBandStructureandOpticalTransitions 102 2.2.2.2 ExcitonBindingEnergiesandPhotoexcitedSpecies:ExcitonsVersus FreeCarriers 103 2.2.2.3 CarrierDiffusionLengths,CarrierMobilities,andDefects 104 2.2.2.4 TransientSpectralFeaturesandChargeDynamics 107 2.2.2.5 PhotophysicalProcessesandTheirRecombinationConstants 108 Contents ix 2.2.2.6 HotCarriersinPerovskites 111 2.2.2.7 SummaryandOutlook 112 2.2.3 EnergeticsandChargeDynamicsatPerovskiteInterfaces 112 2.2.3.1 Introduction 112 2.2.3.2 EnergeticsatthePerovskite/ChargeTransportLayerInterfaces 112 2.2.3.3 Charge-TransferDynamicsatthePerovskite/Charge-TransportLayer Interface 115 2.2.3.4 SummaryandOutlook 117 2.2.4 TowardPerovskiteSingle-CrystalPhotovoltaics 117 2.2.4.1 AbsorptionandEmissionProperties 118 2.2.4.2 SurfaceVersusBulkOpticalProperties 120 2.2.4.3 CarrierLifetimes,DiffusionLengths,andDiffusionCoefficients 121 2.2.4.4 TransientSpectralFeaturesandExcitationDynamics 122 2.2.4.5 RecombinationConstantsintheSurfaceandBulkRegionsof PerovskiteSingleCrystals 126 2.2.5 ConcludingRemarks 127 References 128 2.3 Charge-SelectiveContactMaterialsforPerovskiteSolarCells (PSCs) 131 PengGaoandMohammadKhajaNazeeruddin 2.3.1 Hole-SelectiveElectron-BlockingMaterials(HTMs) 132 2.3.1.1 OrganicHTMs 132 2.3.1.1.1 MolecularHTMs 132 2.3.1.1.2 PolymericHTMs 135 2.3.1.1.3 OrganometallicComplexHTMs 136 2.3.1.2 InorganicHole-SelectiveElectron-BlockingMaterials 138 2.3.2 Electron-SelectiveHole-BlockingMaterials 139 2.3.2.1 InorganicElectron-SelectiveHole-BlockingMaterials 140 2.3.2.1.1 TiO 140 2 2.3.2.1.2 ZnO 144 2.3.2.1.3 SnO 144 2 2.3.2.2 OrganicElectron-SelectiveHole-BlockingMaterials 146 2.3.2.3 CompositeETMs 147 2.3.3 Conclusion 147 References 148 2.4 BeyondMethylammoniumLeadIodidePerovskite 155 TeckM.Koh,BiplabGhosh,PadinhareC.Harikesh,SubodhMhaisalkar,and NripanMathews 2.4.1 Introduction:BeyondCH NH PbI 155 3 3 3 2.4.1.1 MultidimensionalPerovskites 155 2.4.1.2 MultidimensionalPerovskitePhotovoltaics 157 2.4.2 TheoreticalCalculationsforPb-FreeHalidePerovskites 161 2.4.2.1 ASnX Perovskites:3DPb-FreeStructures 161 3 2.4.2.2 A SnX Perovskites:Metal-DeficientStructures 165 2 6 2.4.2.3 Germanium-BasedPerovskites 166 x Contents 2.4.2.4 Bismuth/Antimony-BasedPerovskites 168 2.4.2.5 DoublePerovskites:HybridBinaryMetalStructures 170 2.4.3 ExperimentalEffortsinPb-FreePerovskitePhotovoltaics 170 2.4.3.1 Sn2+andGe2+asReplacementsforPb2+ 172 2.4.3.2 A SnX asaStableAlternativetoASnX 174 2 6 3 2.4.3.3 Cu2+:anAlternativeDivalentMetalCation 175 2.4.3.4 Bi3+andSb3+:TowardTrivalentMetalCations 175 2.4.4 ConcludingRemarksandOutlook 176 References 178 2.5 HalidePerovskiteTandemSolarCells 183 TeodorK.Todorov,OkiGunawan,andSupratikGuha 2.5.1 Introduction 183 2.5.2 TandemDeviceTypeandPerformanceLimitations 184 2.5.2.1 SingleTCE/Two-Terminal(2-T)MonolithicStack 184 2.5.2.2 Multi-TCE/Two-Terminal(2-T)MechanicalStack 185 2.5.2.3 Multi-TCE/Three-Terminal(3-T)MechanicalStack 185 2.5.2.4 Multi-TCE/Four-Terminal(4-T)MechanicalStack 186 2.5.2.5 Multi-TCE/Four-Terminal(4-T)SpectrumSplit 186 2.5.3 PerovskiteTandemPhotovoltaicDeviceResearch 188 2.5.4 ConclusionandOutlook 194 References 194 PartIII PerovskiteLightEmittingDevices 199 3.1 PerovskiteLight-EmittingDevices–Fundamentalsand WorkingPrinciples 201 MicheleSessolo,Maria-GraziaLa-Placa,LauraMartínez-Sarti,and HenkJ.Bolink 3.1.1 Excitons,FreeCarriers,andTrapStatesinHybridPerovskiteThin Films 202 3.1.2 HybridPerovskiteLight-EmittingDiodes 205 3.1.3 HybridPerovskiteNanostructuresandNanoparticles 209 3.1.3.1 InorganicCesiumLeadHalideQuantumDots 212 3.1.3.2 Quasi-2DHybridLeadHalidePerovskites 215 3.1.3.3 FinalConsiderations 218 References 218 3.2 TowardElectricallyDrivenPerovskiteLasers–Prospectsand Obstacles 223 SongtaoChenandArtoNurmikko 3.2.1 Introduction 223 3.2.2 ElectricalInjectioninPerovskite-BasedLight-EmittingDiodes (LEDs) 225 3.2.3 OpticalGaininThin-filmSolid-statePerovskites 228 3.2.4 IntegratingOpticalResonatorsandPerovskiteGainMedia 234 Contents xi 3.2.5 TheWayForwardTowardElectricalInjection 239 3.2.6 Summary 241 References 242 PartIV BeyondPerovskitePhotovoltaics 249 4.1 NovelSpinPhysicsinOrganic–InorganicPerovskites 251 ChuangZhang,DaliSun,andZeevV.Vardeny 4.1.1 Introduction 251 4.1.2 MagneticFieldEffect(MFE)onPhotocurrent(PC), Photoluminescence(PL),andElectroluminescence(EL) 252 4.1.2.1 ObservationofMFEintheCH NH PbI ClxFilmsandDevices 253 3 3 3−x 4.1.2.2 MFEinHybridPerovskites;MorphologyDependence 255 4.1.2.3 The“Universal”PlotandtheSpin-mixingProcessviaΔgofElectrons andHoles 258 4.1.3 HighMagneticFieldOpticalPhenomena 260 4.1.3.1 DirectMeasurementofΔgbyField-InducedCircularlyPolarized Emission 260 4.1.3.2 Magneto-absorptionSpectroscopyatUltrahighMagneticField 263 4.1.4 Spin-PolarizedCarrierDynamics 263 4.1.4.1 DirectMeasurementofSpin-pairLifetimebyPicosecond Pump–ProbeSpectroscopy 263 4.1.4.2 DeterminationofSpinRelaxationTimefromCircularPump–Probe Technique 265 4.1.5 ConclusionandOutlook 265 Acknowledgements 268 References 268 4.2 PerovskiteSolarCellsforPhotoelectrochemicalWaterSplitting andCO Reduction 273 2 Gurudayal,JoelAger,andNripanMathews 4.2.1 Introduction 273 4.2.1.1 PhotoelectrochemicalGenerationofH 275 2 4.2.1.2 PECElectrodeMaterials 276 4.2.2 TandemConfigurations 277 4.2.2.1 Photoanode–PhotocathodeStrategy 278 4.2.2.2 PEC-PVTandemSystem 282 4.2.2.3 Photovoltaic-Electrocatalyst(PV-EC)Structure 285 4.2.3 EC/PEC-PVApproachforCO Reduction 287 2 4.2.4 ConcludingRemarksandOutlook 288 References 290 Index 293