ebook img

Hadronic single inclusive kt distributions inside one jet beyond MLLA PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hadronic single inclusive kt distributions inside one jet beyond MLLA

Hadronic single inclusive k distributions inside one jet beyond MLLA ⊥ Franc¸ois Arleo∗,1 Redamy P´erez-Ramos,2 and Bruno Machet3 1CERN, PH department, TH division, CH-1211 Geneva 23 2Max-Planck-Institut fu¨r Physik, Werner-Heisenberg-Institut, F¨ohringer Ring 6, D-80805 Mu¨nchen 3 Laboratoire de Physique Th´eorique et Hautes E´nergies †, BP 126, 4 place Jussieu, F-75252 Paris Cedex 05 (Dated: December 3rd 2007) Thehadronick -spectruminsideonejetisdeterminedincludingcorrectionsofrelativemagnitude ⊥ (√αs)withrespecttotheModifiedLeadingLogarithmicApproximation(MLLA),atandbeyond O 8 the limiting spectrum (assuming an infrared cut-off Q0 =Λ and Q0 =Λ ). The agreement QCD 6 QCD 0 between our results and preliminary measurements by the CDF collaboration is impressive, much 0 better than at MLLA, pointing out very small overall non-perturbativecontributions. 2 PACSnumbers: 12.38.Cy,13.87.-a.,13.87.Fh n a J Jet production – a collimated bunch of hadrons – in where ΦB(z) denote the DGLAP [6] splitting functions, 7 A e+e−, e−p andhadroniccollisionsis anidealplayground αs =2π 4Ncβ0(ℓ+y+λ) is the one-loop coupling con- ] for parton evolution in perturbative QCD (pQCD). One stant of(cid:14)QCD [13] and h of the major successes of pQCD is the hump-backed p - shapeofinclusivespectra,predictedin[1]withinMLLA, ℓ=(1/x) , y =ln k⊥ Q0 , λ=ln Q0/ΛQCD , p and later discovered experimentally (see e.g. [2]). Refin- (cid:0) (cid:14) (cid:1) (cid:0) (cid:1) e ingthecomparisonofpQCDcalculationswithdatataken (Q0 being the collinear cut-off parameter), and where h at LEP, Tevatron and LHC will ultimately allow for a v2 [ chryupcoiathletseisst[o3f]thanedLofocralaPabrettotnerHuanddroenrstDaunadliintyg(oLfPcHoDlo)r QG ≡≡ QG((11))==xxDDGQhh((xx,,EEΘΘ00,,QQ00)),. neutralizationprocesses. InthisLetter,aclassofnext-to- 1 At small x z, the fragmentation functions behave as next-to-leading logarithmic (NMLLA) corrections to the 9 ≪ 3 single inclusive k -distribution of hadrons inside one jet 3 is determined. U⊥nlike other NMLLA corrections, these B(z) ρh ln z,lnzEΘ0 =ρh (lnz+ℓ,y), 7. terms better accountfor recoileffects andwereshownto ≈ B(cid:18) x Q0 (cid:19) B 0 drastically affect multiplicities and particle correlations ρh being a slowly varying function of two logarith- 7 injets[4]. WestartbywritingtheMLLAevolutionequa- B :0 tionsforthefragmentationfunctionDBh x z,zEΘ0,Q0 mbaicckvedar”iapblaletsealun([z1/].x)Inaonrddeyrtthoabtedtteesrcraicbceosutnhtefo“rhruemcopi-l v of a parton B (energy zE and transv(cid:0)ers(cid:14)e momentum(cid:1) effects, the strategy followed in this Letter is to perform Xi k⊥ = zEΘ0) into a gluon (identified as a hadron h with Taylor expansions (first advocatedfor in [7]) of the non- energy xE according to LPHD) inside a jet of energy r singular parts of the integrands in (1,2) in powersof lnz a E. As a consequence of angular ordering in parton cas- and ln(1 z), both consideredsmall with respect to ℓ in cading, partonic distributions inside a quark and gluon − the hard splitting region z 1 z = (1) jet, Q,G(z)=x z DQh,G x z,zEΘ0,Q0 , obey the sys- ∼ − O temoftwocoupl(cid:14)edequati(cid:0)on(cid:14)s[5](thesub(cid:1)scripty denotes B(z)=B(1)+B (1)lnz+ ln2z ; z 1 z. (3) ℓ ∂/∂y) O ↔ − (cid:0) (cid:1) 1 α Each ℓ-derivative giving an extra √αs factor (see [5]), Qy =Z0 dz πs Φgq(z)(cid:20)(cid:16)Q(1−z)−Q(cid:17)+G(z)(cid:21), (1) tchoerretcetrimonssBtℓo(1t)hlenzsoaluntdioBnsℓ(o1f)l(n2()1. −Fzro)myie(l3d)NanMdLLthAe G = 1dz αs Φg(z)(1 z) G(z)+G(1 z) G expressions of the DGLAP splitting functions, one gets y Z0 π (cid:20) g − (cid:16) − − (cid:17) after some algebra (γ02 =2Ncαs/π) [8] +nf Φqg(z)(cid:16)2Q(z)−G(cid:17)(cid:21), (2) Q(ℓ,y) = δ(ℓ)+ CF ℓdℓ′ ydy′γ2(ℓ′+y′) (4) Nc Z0 Z0 0 1 a˜1δ(ℓ′ ℓ)+a˜2δ(ℓ′ ℓ)ψℓ(ℓ′,y′) G(ℓ′,y′), × h − − − i ∗On leave from Laboratoire d’Annecy-le-Vieux de Physique ℓ y Th´eorique (LAPTH), Universit´e de Savoie, CNRS, B.P. 110, F- G(ℓ,y) = δ(ℓ)+ dℓ′ dy′γ2(ℓ′+y′) (5) 0 74941Annecy-le-VieuxCedex,France Z0 Z0 †ML.PCTuHriEe,-PUaMriRs67e5t8a`9l’dUunivCeNrsRit´SeDa.sDsoidcie´ereota`-Pl’aUrinsiv7ersit´e P.et 1 a1δ(ℓ′ ℓ)+a2δ(ℓ′ ℓ)ψℓ(ℓ′,y′) G(ℓ′,y′). × h − − − i 2 with ψ (ℓ,y) = G (ℓ,y)/G(ℓ,y). The MLLA coefficients it into Eq. (9) leads to ℓ ℓ a˜1 =3/4 and a1 0.935 are computed in [5] while at ≈ NMLLA, we get [14]: xFAh0 ≈ Z duuDAA0(u,EΘ0,uEΘ)D˜Ah(ℓ,y) (11) XA a˜2 = 78 + CNFc (cid:18)58 − π62(cid:19)≈0.42, (6) +XA Z duulnuDAA0(u,EΘ0,uEΘ)dD˜Ahd(ℓℓ,y) 67 π2 13n T C a2 = 36 − 6 − 18 Nf cR NFc ≈0.06 . (7) +12 (cid:20)Z duuln2uDAA0(u,EΘ0,uEΘ)(cid:21)d2D˜dAhℓ(2ℓ,y). XA Computing the NMLLA partonic distributions inside a The firsttwo terms in Eq.(11)correspondto the MLLA quark and gluon jet, Q(z) and G(z), is the first step to distribution calculated in [9] when D˜h is evaluated at determinethedoubledifferentialspectrumd2N/dxdΘof A NLO and its derivative at LO. NMLLA correctionsarise a hadron produced with energy xE and at angle Θ with from their respective calculation at NNLO and NLO, respectto the jet axisidentifiedwiththe directionofthe and, mainly in practice, from the third line, which is energy flow (see [8]). As shown in [9], it is given by new. Indeed, since x/u is small, the inclusive spectrum D˜h(ℓ,y) is the solution of the next-to-MLLA evolution d2N d A dxdlnΘ = dlnΘFAh0(x,Θ,E,Θ0), (8) eoqfuthaetioconesffi(4c)ieanntda(25()s.eeH(o7w)e),veGr(,ℓb,eyc)asuhsoewosfnthoessigmnaifillcnaensst differencefromMLLAtoNMLLA.Asaconsequence,we where FAh0 is givenby the convolutionof two fragmenta- use the MLLA expression for G. It is determined here tion functions from a representation in terms of a single Mellin trans- formof confluenthypergeometricfunctions (see Eq.(24) FAh0 ≡XA Zx1duDAA0(u,EΘ0,uEΘ)DAh (cid:16)ux,uEΘ,Q0(cid:17), oLfL[A10q])u,awrkeldlissutritibedutfioornnQu(mℓ,eyr)iccaalnsttuhdeniesbe[1d5e]d.uTchede fNroMm- (9) G(ℓ,y) using (4) and (5), which yields u being the energy fraction of the intermediate parton C eAr.gyDuAAE0odffestchreibpeasrttohneAp0ro(bwahbiiclihtyintiotiaetmesitthAe jweti)t,htaenk-- Q(ℓ,y) = NFc hG(ℓ,y)+(cid:16)a1−a˜1(cid:17)Gℓ(ℓ,y) (12) ing into account the evolution of the jet between Θ0 + a1 a1 a˜1 +a˜2 a2 Gℓℓ(ℓ,y) + (γ02). and Θ. Dh describes the probability to produce the (cid:16) (cid:16) − (cid:17) − (cid:17) i O A hadron h off A with energy fraction x/u and trans- The functions Fh andFh arerelatedto the gluondistri- g q verse momentum k⊥ ≈ uEΘ ≥ Q0 (see Fig. 1). As bution via the color currents hCig,q defined as: C xFh = h ig,q G(ℓ,y). (13) g,q N h c Θ0 xE C canbe seenas the averagecolorchargecarriedby A0 E DAA0 A uEΘ DAh (Jet Axis) thheigp,qartonAduetotheDGLAPevolutionfromA0 toA. Introducing the first and second logarithmic derivatives of D˜h, A 1 dD˜ (ℓ,y) FIG. 1: Inclusiveproduction of hadron h at angle Θ inside a ψ (ℓ,y) = A = (√α ), high energy jet of total opening angle Θ0 and energy E. A,ℓ D˜Ah(ℓ,y) dℓ O s 1 d2D˜ (ℓ,y) (ψ2 +ψ )(ℓ,y) = A = (α ), A,ℓ A,ℓℓ D˜h(ℓ,y) dℓ2 O s A discussed in [9], the convolution (9) is dominated by u ∼ 1 and therefore DAA0(u,EΘ0,uEΘ) is given by Eq. (11) can now be written as DGLAP evolution [6]. On the contrary, the distribution rD˜eAdhu≡cesuxDtoAhth(cid:0)eux,huuEmΘp,-bQa0c(cid:1)ke=dDp˜lAha(tℓea+ul,nu,y)atlowx≪u xFAh0 ≈ XA hhuiAA0 +hulnuiAA0ψA,ℓ(ℓ,y) 1 + uln2u A (ψ2 +ψ )(ℓ,y) D˜h, (14) D˜Ah(ℓ+lnu,y)x≪≈uρhA(ℓ+lnu,YΘ+lnu), (10) with the notati2ohn iA0 A,ℓ A,ℓℓ i A ewxipthanYsΘion=ofℓD˜+tyot=helsneEcoΘn/dQo0r.derPienrf(olrnmui)nagntdhpeluTgagyilnogr hulniuiAA0 ≡ Z01du (u lniu) DAA0(u,EΘ0,uEΘ) 3 2 0.6 LO Y = 6.4 1.8 MLLA 0.4 l = 2 NMLLA 1.6 MLLA〉C Q 0.2 〉CQ 1.4 MLLA〈 ⁄ 0 〈 1.2 NMLLA- Q -0.2 λ = 0.0 1 〉C λ = 0.2 Y = 6.4 δ〈 λ = 0.5 0.8 -0.4 λ = 1.0 l = 2 0.6 -0.6 0 1 2 3 4 0 1 2 3 4 y y FIG. 2: The color current of a quark jet with YΘ =6.4 as a FIG. 3: NMLLA corrections to the color current of a quark 0 function of y at fixed ℓ=2. jet with YΘ =6.4 and ℓ=2 for various values of λ. 0 1 ≈Z0 du (u lniu) DAA0(u,EΘ0,EΘ). (15) Othe(QM0L)L[1A0]r.esuTlhtearNeMdiLspLlAaye(dnoinrmFailgiz.e3df)orcodrirffeecrteinontsvatlo- ues λ = 0,0.5,1. It clearly indicates that the larger λ, ThescalingviolationoftheDGLAPfragmentationfunc- the smaller the NMLLA corrections. In particular, they tion neglected in the last approximation is a (α ) cor- O s can be as large as 30% at the limiting spectrum (λ=0) rection to u . It however never exceeds 5% [8] of the h i butnomorethan10%forλ=0.5. Thisisnotsurprising leading term and is thus neglected in the following. Us- since λ=0 (Q0 =Λ ) reduces the parton emission in ing (13), the MLLA and NMLLA contributions to the 6 6 QCD the infrared sector and, thus, higher-order corrections. leading color current of the parton A0 =g,q read The double differential spectrum d2N/dydℓ, Eq. (8), δ C MLLA−LO =N ulnu g ψ + C ulnu q ψ , can now be determined from the NMLLA color cur- h δiAC0 NMLLA−MLLcAh=NiAu0lng2,ℓu g (Fψ2h +ψiA0) q,ℓ rents (16) using the MLLA quark and gluon distribu- h iA0 + C ulnc2hu q (ψiA20 +ψg,ℓ ).g,ℓℓ (16) tions Integrating it over ℓ leads to the single inclusive F h iA0 q,ℓ q,ℓℓ y-distribution (or k -distribution) of hadrons inside a ⊥ quark or a gluon jet: The MLLA correction, √αs , was determined in [9] O and the NMLLA contribu(cid:0)tion,(cid:1)O(αs), to the average dN dN YΘ0−y d2N color current is new. The latter can be obtained from = k = dℓ . (cid:18) dy (cid:19) (cid:18) ⊥dk (cid:19) Z (cid:18)dℓdy(cid:19) the Mellin moments of the DGLAP fragmentation func- g,q ⊥ g,q ℓmin g,q (18) tions The MLLA framework does not specify down to which 1 A (j,ξ)= duuj−1DA (u,ξ), values of ℓ (up to which values of x) the double differen- DA0 Z0 A0 tialspectrumd2N/dydℓshouldbeintegratedover. Since d2N/dydℓ becomesnegative(non-physical)atsmallval- leading to ues of ℓ (see e.g. [9]), we chose the lower bound ℓmin so d2 as to guarantee the positiveness of d2N/dydℓ over the huln2uiAA0 = dj2DAA0(j,ξ(EΘ0)−ξ(EΘ))(cid:12)(cid:12)j=2. (17) ℓwqhole ℓ2m)i.n ≤ ℓ ≤ YΘ0 range (in practice, ℓgmin ∼ 1 and Plugging (17) into (16), the NMLLA color c(cid:12)(cid:12)urrents for mHina∼vingsuccessfullycomputedthesinglek -spectrain- ⊥ gluonandquarkjetsaredeterminedanalytically[8]. For cluding NMLLA corrections, we now compare the result illustrative purposes, the LO, MLLA, and NMLLA av- with existing data. The CDF collaboration at the Teva- erage color current of a quark jet with YΘ = 6.4 – cor- tronrecentlyreportedonpreliminarymeasurementsover 0 responding roughly to Tevatron energies – is plotted in a wide range of jet hardness, Q = EΘ0, in pp¯ colli- Fig. 2 as a function of y, at fixed ℓ = 2. As discussed sions at √s = 1.96 TeV [12]. CDF data, including sys- in [9], the MLLA correctionsto the LO colorcurrentare tematic errors, are plotted in Fig. 4 together with the found to be large and negative. As expected, the correc- MLLA predictions of [9] and the present NMLLA calcu- tion (α )fromMLLAtoNMLLAprovesmuchsmaller; lations,bothatthelimitingspectrum(λ=0)andtaking s O it is negative (positive) at small (large) y. Λ = 250 MeV; the experimental distributions suffer- QCD This calculation has also been extended beyond the ing from large normalization errors,data and theory are limitingspectrum,λ=0,totakeintoaccounthadroniza- normalized to the same bin, ln(k /1GeV) = 0.1. The 6 ⊥ − tioneffects inthe productionof“massive”hadrons,m= agreementbetweentheCDFresultsandtheNMLLAdis- 4 NMLLA MLLA normalized to bin: ln(k⊥)=-0.1 normalized to bin: ln(k⊥)=-0.1 (N’) CDF preliminary CDF preliminary Q=155 GeV Q=119 GeV 1 ⊥ Q=90 GeV Q=68 GeV n k d l10 -1 N / d d ln k⊥ Q=50 GeV Q=37 GeV 1/N’ 10 -2 NMLLA λ = 0 N / Q = 119 GeV λ = 0.5 d N’ Λ = 250 MeV λ = 1 1/ QCD Q=27 GeV Q=19 GeV 10 -3 0 1 2 3 ln (k / 1GeV) ⊥ FIG.5: CDFpreliminaryresults(Q=119GeV)forinclusive k distribution compared with NMLLA predictions beyond ⊥ thelimiting spectrum. 0 1 2 0 1 2 3 ln (k⊥ / 1GeV) ln (k⊥ / 1GeV) values of λ.0.5, which is not too surprising since these FIG. 4: CDF preliminary results for the inclusive k distri- inclusivemeasurementsmostlyinvolvepions. Identifying ⊥ bution at various hardness Q in comparison to MLLA and produced hadrons would offer the interesting possibility NMLLA predictions at the limiting spectrum; the boxes are tocheckadependenceoftheshapeofk -distributionson ⊥ the systematic errors (their lower limits at large k are cut ⊥ the hadron species, such as the one predicted in Fig. 5. for the sakeof clarity). To summarize, single inclusive k -spectra inside a jet ⊥ are determined including higher-order (α ) (i.e. NM- s O LLA)correctionsfromtheTaylorexpansionoftheMLLA tributions over the whole k -range is particularly good. evolution equations and beyond the limiting spectrum, ⊥ In contrast, the MLLA predictions prove reliable in a λ=0. The agreement between NMLLA predictions and 6 muchsmallerk interval. Atfixedjethardness(andthus CDF preliminary data in pp¯collisions at the Tevatron is ⊥ YΘ ),NMLLAcalculationsproveaccordinglytrustablein verygood,indicatingverysmalloverallnon-perturbative 0 a much larger x interval. corrections. TheMLLAevolutionequationsforinclusive enoughvariablesproveoncemore(seee.g.[6])toinclude Despite this encouraging agreement with data, the reliableinformationatahigherprecisionthantheoneat present calculation still suffers from various theoretical which they have been deduced. uncertainties,discussedindetailin[8]. Amongthem,the Acknowledgments: We gratefully acknowledgeenlight- variationofΛ –givingNMLLAcorrections–fromthe QCD ening discussions with Yu.L. Dokshitzer, I.M. Dremin, defaultvalueΛ =250MeVto150MeVand400MeV S. Jindariani (CDF), W. Ochs and M. Rubin. QCD affects the normalized k -distributions by roughly 20% ⊥ in the largest ln(k /1 GeV) = 3 GeV-bin at Q = 100 ⊥ GeV. Also, cutting the integral (18) at small values of ℓ is somewhatarbitrary. However,we checkedthat chang- ing ℓg from 1 to 1.5 modifies the NMLLA spectra at [1] Yu.L. Dokshitzer, V.S. Fadin, V.A. Khoze, Phys. Lett. min B 115(1982)242;Ya.I.Azimov,Yu.L.Dokshitzer,V.A. largek by 20%only[16]. Finally,thek -distribution ⊥ ∼ ⊥ Khoze,S.I.Troian,Z.Phys.C 31(1986)213;C.P.Fong, is determined with respect to the jet energy flow from B.R. Webber, Phys.Lett. B 229 (1989) 289. 2-particlecorrelations(which includes a summationover [2] V.A. Khoze, W. Ochs, Int. J. Mod. Phys. A 12 (1997) secondary hadrons), while experimentally the jet axis is 2949, and references therein. determined exclusively from all particles inside the jet. [3] Ya.I.Azimov,Yu.L.Dokshitzer,V.A.Khoze,S.I.Troian, The question of the matching of these two definitions at Z. PhysC 27 (1985) 65; Yu.L. Dokshitzer, V.A. Khoze, (α ) accuracy goes beyond the scope of this Letter. S.I. Troian, J. Phys. G 17 (1991) 1585. s O [4] F. Cuypers and K. Tesima, Z. Phys. C 54 (1992) 87; The NMLLA k -spectrum has also been calculated ⊥ Yu.L.Dokshitzer, Phys. Lett. B 305 (1993) 295. beyond the limiting spectrum, as illustrated in Fig. 5. [5] R. P´erez-Ramos, JHEP 06 (2006) 019. However, the best description of CDF preliminary data [6] see for example: Yu.L. Dokshitzer, V.A. Khoze, A.H. is reached at the limiting spectrum, or at least for small Mueller,S.I.Troyan,“BasicsofPerturbativeQCD”,Ed. 5 Fronti`eres, Gif-sur-Yvette,1991, and references therein. would not fit into the present logic of a systematic ex- [7] I.M. Dremin, Phys.Lett. B 313 (1993) 209. pansion in powers of √αs (see [8]). [8] F.Arleo, R.P´erez-Ramos, B. Machet, to appear. [14] AssumingQ/G=CF/Nc.Wecheckedthat (√αs)and [9] R.P´erez-Ramos, B. Machet, JHEP 04 (2006) 043. (αs) corrections affect marginally these coOefficients. O [10] Yu.L. Dokshitzer, V.A. Khoze, S.I. Troian, Int. J. Mod. [15] It was also given in [5] a compact Mellin representa- Phys.A 7 (1992) 1875. tionfromwhichananalyticapproximatedexpressionwas [11] R.P´erez-Ramos, JHEP 09 (2006) 014. found using thesteepest descent method [11]. [12] S. Jindariani, A. Korytov, A. Pronko, CDF report [16] The effect of varyingℓmin is more dramatic at MLLA. CDF/ANAL/JET/PUBLIC/8406 (March 2007). [13] A 2-loop evaluation of the splitting functions and αs

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.