Mon.Not.R.Astron.Soc.000,1–6(2015) Printed6March2015 (MNLATEXstylefilev2.2) Hadronic models of blazars require a change of the accretion paradigm Andrzej A. Zdziarski1 and Markus Bo¨ttcher2,3 5 1CentrumAstronomiczneim.M.Kopernika,Bartycka18,PL-00-716Warszawa,Poland 1 2CentreforSpaceResearch,North-WestUniversity,Potchefstroom2520,SouthAfrica 0 3AstrophysicalInstitute,DepartmentofPhysicsandAstronomy,OhioUniversity,Athens,OH45701,USA 2 r a Accepted2015March5.Received2015March3;inoriginalform2015January24 M 5 ABSTRACT Westudyhadronicmodelsofbroad-bandemissionofjetsinradio-loudactivegalacticnuclei, ] andtheirimplicationsfortheaccretioninthosesources.Weshowthatthemodelsthataccount E for broad-band spectra of blazars emitting in the GeV range in the sample of Bo¨ttcher et H al. have highly super-Eddington jet powers. Furthermore, the ratio of the jet power to the . radiativeluminosityoftheaccretiondiscis 3000onaverageandcanbeashighas 105. h ∼ ∼ p Wethenshowthatthemeasurementsoftheradiocoreshiftforthesampleimplylowmagnetic - fluxesthreadingtheblackhole,whichrulesouttheBlandford-Znajekmechanismtoproduce o powerfuljets. These results require that the accretion rate necessary to power the modelled r jets is extremelyhigh, and the averageradiativeaccretion efficiencyis 4 10 5. Thus, if t − s the hadronic model is correct, the currently prevailing picture of accre∼tion×in AGNs needs a tobesignificantlyrevised.Also,theobtainedaccretionmodecannotbedominantduringthe [ lifetimesof the sources, as the modelledveryhigh accretionrates wouldresult in too rapid 2 growthofthecentralsupermassiveblackholes.Finally,theextremejetpowersinthehadronic v modelareinconflictwiththeestimatesofthejetpowerbyothermethods. 4 2 Keywords: accelerationofparticles–galaxies:active–galaxies:jets–ISM:jetsandoutflows– 1 quasars:general–radiationmechanisms:non-thermal. 6 0 . 1 0 1 INTRODUCTION efficiently.Still,thosehadronsintheleptonicmodelsusuallydom- 5 inatethekineticluminosityofjets(e.g.,Ghisellinietal.2014). 1 : The most commonly considered models of broad-band emission Sikoraetal. (2009) and Sikora (2011) have shown that the v ofradio-loudjetsinAGNsutilizeemissionofrelativisticelectrons hadronicprocessesareveryinefficient.Thisimpliesthat,iftheto- i X andpositronsviasynchrotronandComptonprocesses.Theselep- taljetpowerisapproximatelylimitedbytheEddingtonluminosity, tonicmodelshavebeenhighlysuccessfulinreproducingthespec- thehadronicmodel canberuledout inmanycases. Ontheother r a traandtimevariabilityofblazarsandradiogalaxies,thoughthere hand, Bo¨ttcheretal.(2013)(hereafterB13) havesuccessfully ap- aresomephenomena,suchastheirextremelyshortvariabilitytime pliedhadronicmodelstoasampleofradio-loudAGNscircumvent- scales,insomecasesdowntoafewminutes(Aharonianetal.2007; ing this constraint by allowing the jet power to be highly super- Albertetal.2007),thatarenotreadilyexplainedbythem. Eddington.Herewediscussconsequencesofthissupposition. Thealternative,andquitepopular,modelisbasedonhadronic (or lepto-hadronic) processes (e.g.,Mannheim&Biermann1992; Mu¨cke&Protheroe2001;Aharonian2000).Itutilizesemissionof 2 ANALYSISOFTHESAMPLEOFB13 extremely relativistic ions, mainly due to proton-synchrotron and Westudyherethesampleof12blazarsofB13.Theirbroad-band photo-pionproductionprocesses,toexplainthehigh-energyemis- spectrawerefittedbythembyleptonicandhadronicmodels,and sionfromjet-dominatedAGNs.Thelatterprocessgivesrisetocas- weconsiderherethejetpowersobtainedbyB13forthelatter.B13 cadesofelectronsandpositrons,alsoemittingviathesynchrotron provide the redshifts, z, the apparent superluminal velocity, β , andComptonprocesses.Thepeakofthehigh-energyemissionof app andtheaccretionluminosity,L ,seeTable1.Sixofthoseobjects thebroadbandspectralenergydistributionofblazars,at 0.1–10 acc ∼ werealsopresentinthesampleofZamaninasabetal.(2014)(here- GeV,isthenduetotheseprocesses,mostlyprotonsynchrotron. after ZCST14), for which those authors provide estimates of the Westressthatthename’hadronic’refersonlytotheemission black-holemass, M,β ,and L basedonliterature.Thevalues app acc processes,andthe’leptonic’jetsinAGNmodelsalsocontainions, ofβ agreewellbetweenZCST14andB13,whilethevaluesof app thoughwithrelativelylowenergies,preventingthemfromradiating L agreetowithinafactor of 2,which isasatisfactory agree- acc ∼ c 2015RAS (cid:13) 2 A. A. Zdziarski& M. Bo¨ttcher 3.0 1.0 2.5 PL@(cid:144)DlgjE 112...050 @DΦlgBH 00..05 -0.5 0.5 a 0.0 -1.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 lg@Lacc(cid:144)LED lg@Lacc(cid:144)LED 5.0 Figure2.Thedimensionless magnetic fluxφBH asafunction oftheEd- 4.5 dingtonratio.ThedashedlineshowthegeometricaverageofφBH 1.9. 4.0 Themodelofefficientjetformationviablack-holespinenergyextr≃action LDacc 3.5 (Blandford&Znajek1977)predictφBH > 50(Tchekhovskoyetal.2011; P@(cid:144)gj 3.0 McKinneyetal.2012),whichismuchhig∼herthantheobtainedvalues. l 2.5 2.0 b equation of state can be described by an adiabatic index of 4/3), 1.5 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 seeTable1.Weneglectapossiblecontributionofcoldprotons,and lg@Lacc(cid:144)LED consideronlythoseinthepower-lawdistributionassumedtogive risetotheobserved spectrum, following thefitsofB13. Wethen Figure1.Theratioofthetotaljetpowerto(a)theEddingtonluminosity compareP tobothL (calculatedforanHfractionofX=0.7)and and(b)theaccretion luminosityasfunctions oftheEddingtonratio.The j E L inFig.1. Wefind P/L 85, P/L 2660, withthe dashedlinesshowthegeometricaverages. acc h j Ei ≃ h j acci ≃ standarddeviationscorresponding tofactorsof 10and 8.4,re- ≃ ≃ spectively.(Hereafterthesymbol . denotesageometricaverage, hi mentgiventhenecessaryapproximatecharacterofthoseestimates. i.e.,averageoflogarithms,andthegivenstandarddeviationcorre- However, theexception isW Comae, for which the L estimate spondstoamultiplicativefactor.)ExceptforWComaeandOJ287, acc usedbyB13is40timeshigherthanthatgiveninZCST14,which thedistributionof Pj/LE isrelativelyuniform.Asaconsequence, is the upper limit of Ghisellinietal. (2010), hereafter G10. B13 thereisananti-correlationbetweenPj/LaccandLacc/LE,butallthe usedtheestimateofXieetal.(2008),whoreferinturntotwoother obtainedvaluesarestillveryhigh,spanningPj/Lacc∼50–105.Fur- papers,whichdonotseemtogivethatinformation.Thus,weuse thermore,someofourvaluesofLaccareupperlimits,andthecor- herethevalueofG10.B13quoteanestimateof Lacc ofXieetal. respondingtruevaluesofPj/Lacccanbeevenhigher. (2008)forOJ287,whichis7timeshigherthantheupperlimitof In general, we can write Pj = ǫjM˙c2, where M˙ is G10;hereweusethelatter.Fortwoobjects(S50716+714and3C the accretion rate and ǫj < 1.5, the ratio of the jet 66A), B13giveno estimatesof L , andweusetheupper limits power to the available accreti∼on power, which we will call acc givenbyG10.Inthecaseof3C66A,thereisalsoanuncertainty here the jet formation efficiency. The approximate maxi- ofitsredshift,andB13usedanestimatedredshiftofz=0.3based mum corresponds (Tchekhovskoy,Narayan&McKinney 2011; onEBL-correctedSEDmodelling(Abdoetal.2011),whichisalso McKinney,Tchekhovskoy&Blandford 2012) to efficient extrac- marginallyconsistentwiththespectroscopicallydeterminedlower tionof theblack-hole spin energy (Blandford&Znajek1977),in limitontheredshiftbyFurnissetal.(2013).Sinceweusetheesti- which case the jet power may exceed M˙c2. However, attaining matesofthejetpowerfromB13,weadopttheirredshiftvalueand such a high jet formation efficiency requires the accretion flow rescaletheupperlimitofL ofG10,whousedz= 0.444,bythe to possess a strong poloidal magnetic field (Tchekhovskoyetal. acc ratioof D2, where D isthe luminosity distance. We assume the 2011; McKinneyetal. 2012), namely to form a magnetically ar- L L samecosmological parameters asB13, Ω = 0.7, Ω = 0.3 and rested disc(MAD, Narayan,Igumenshchev&Abramowicz 2003; Λ m H =70km/(s Mpc). see also Bisnovatyi-Kogan&Ruzmaikin 1976). The required en- 0 FortheobjectsnotinthesampleofZCST14,wefindmasses- ergy density corresponds then to the magnetic flux threading a timatesfromtheliterature,inparticularfromG10.Insomecases, rapidlyspinningblackholeofΦBH =φBH(M˙c)1/2rg,withφBH ≃50, thereisaconsiderableuncertainty.ForOJ287,weuse6.2 108M whichcorrespondstothemagneticfieldstrengthatthehorizonof fromWang,Luo&Ho(2004).However,ifthesystemis×indeed⊙a B2/8π ∼ 100m˙mpc2/(σTrg),where m˙ = M˙c2/LE,rg = GM/c2 is binary black-hole system, the massof the lessand more massive thegravitationalradius,mpistheprotonmass,andσTistheThom- component is estimated as 1.4 108M and 1.8 1010M , re- soncrosssection.Sincethemagneticfluxisconserved inthejet, spectively (Valtonen,Ciprini&×Lehto 20⊙12). Accre×tion wou⊙ld be itcanbemeasuredatlargescales,e.g.,throughtheradio-coreshift dominatedbythemoremassiveblackhole.Theadoptedvaluesof effect (Lobanov 1998; Hirotani 2005). Values of φBH ∼ 50 were L andMforallsourcesstudiedherearegiveninTable1. foundforalargesampleofblazarsandradiogalaxiesbyZCST14 acc B13givethejetpower1estimatedusingtheenergycontentand assuming M˙c2 = Lacc/ǫr fortheiradoptedaccretionradiativeeffi- fPor,oisnethjeeteonnthlya,lpsyeefltuhxeir(ee.qgu.,atLioenvsin(s3o–n5)2.0H06o)w,eavnedr,tthheecjeotupnotewrjeert, mcieondceylooffBǫr1=3,0w.4e.hHavoweetoveers,tgimivaetnetMh˙atinPsjte≫adLfraoccminththeejehtapdorowneirc, j should beincluded intheenergy budget. Thus,wemultiply their stronglydominatingtheenergybudget,i.e.,M˙c2 ≃Pj/ǫj≫Lacc/ǫr. valuesby8/3,assumingtheprotonsarerelativistic(andthustheir TocalculatethevaluesofφBHimpliedbythehadronicmodel, we use the radio core shift, ∆θ, measurements between 8 and 15 GHz for the sources in our sample from Pushkarevetal. (2012), 1 TheentryforLp (thepowerinprotons)ofOJ287inB13isatypo,it whichwegiveinTable1.WeapplyacorrectionofZdziarskietal. shouldbe0.083ratherthan8.3. (2015)tothepowerofthe(1+z)factorintheformulaforthemag- c 2015RAS,MNRAS000,1–6 (cid:13) Hadronicmodelsof blazars 3 Table1.Themainparametersofthesample.FSRQ-flatspectrumradioquasar,LBL,IBLandHBLrefertoblazarswhichsynchrotronspectrumhasthepeak atlow,intermediateandhighfrequencies,respectively;νandνFνgivetheestimatedpositionofthepeakoftheGeVspectrumapproximatedasapowerlaw, andPjisthetotaljet+counterjetpowerinthehadronicmodelofB13.SeeB13fortheremainingparametersofthesources. Object type z Lacc M Lacc/LE ∆θ ν νFν γmin γmax Pj ergs−1 M mas 1022Hz 10−10ergcm−2s−1 109 1048ergs−1 ⊙ 00223159++146248((A3CO)66A) LIBBLL 00.9.34 34..4800×11004434 44×110088 8.01.×001507−4 00..007036 1300 17 11 14..23 32.72 0420-014(PKS) FSRQ 0.914 3.02×1046 2.5×7 108 0.97 0.256 5 1 103 0.43 1.4 0528+134(PKS) FSRQ 2.07 1.70×1047 1.07×109 1.07 0.150 5 2 1 1.1 117 0716+714(S5) LBL 0.31 1.80×1044 1 ×108 0.012 0.125 70 1 1 2.7 0.69 0851+202(OJ287) LBL 0.306 1.50×1044 6.2× 108 0.0016 0.051 5 0.5 1 1.0 0.23 1219+285(WComae) IBL 0.102 1.50×1043 5 ×108 2.0 10 4 0.047 80 0.5 1 1.9 0.059 1226-023(3C273) FSRQ 0.158 1.30×1047 6.5×9 109 0×.13− 0.017 2 10 103 0.43 67 1253-055(3C279) FSRQ 0.536 2.00×1045 8 ×108 0.017 0.051 10 1 103 0.63 9.3 1510-089(PKS) FSRQ 0.36 1.12×1046 1.5×8 108 0.48 0.151 8 5 103 1,1 6.7 2200+420(BLLac) LBL 0.069 1.51×1045 1.70×108 0.060 0.052 10 0.3 1 1.9 26 2251+058(3C454.3) FSRQ 0.859 7.24×1046 4.90×108 1.00 0.159 10 10 103 1.1 96 × × neticfieldstrengthat1pc,B ,andthenusetheformulaforthejet tribution,andassumethejetLorentzfactor,Γ,tobeone-halfofthe 1 magneticflux,Φ,ofequation(5)ofZCST14.FromΦ =Φ we Dopplerfactor,δ,whileΓ=δfortheinclinationanglei=1/Γ,as j j BH obtainφ ,whichweplotinFig.2forǫ = 1andthedimension- favouredonstatisticalgrounds.Thus,forcomparisonwiththere- BH j lessblack-holeangularmomentumof1.Wefind φ 1.9with sultshere,theirjetpowersneedtobemultipliedbyafactorof32/3. h BHi≃ thestandarddeviationofa(multiplicative)factorof 5.Thesere- Still,wedonotexcludethatasub-Eddingtonjetpowerscanbeob- ≃ sultcanbecomparedtoanotherformulaforΦ ofZdziarskietal. tainedforsomeobjects,asitis,e.g.,thecaseforWComaeinour j (2015),whichtakesintoaccounteffectsduetothesmalljetopening sample.Generally,duetothesubstantiallylowertotalluminosities anglesintheradio-emittingregion(andtheconsequent lowvalue andatleastequallylarge(ifnotlarger)black-holemassesofHBLs of the magnetization parameter), and due to transverse averaging comparedtolow-frequencypeakedblazars(especiallyFSRQs),it ofthemagneticfield.Thatformulayieldsvalueslowerbyapproxi- seems less problematic to produce hadronic model fits with sub- mately √2fromthoseabove.Thus,ourresultsappeartogiverobust EddingtonjetpowersforHBLs. approximateestimatesofthemagneticflux(undertheassumption of the hadronic jet model). Given this and that all objects in the samplehaveφ 50,wecanruleouttheefficientversionofthe BH ≪ 3 THEMINIMUMJETPOWERINTHE modelofBlandford&Znajek(1977)forthesample.(Wenotethat PROTON-SYNCHROTRONMODEL thismodelislikelytoworkforthestudiedsourcesiftheleptonic modelisadopted,asinZCST14.) Theaboveresultsareforthemodel fitsofB13which,duetothe Inotherjetformationmodels(e.g.,Blandford&Payne1982; largenumberofparameters,maygenerallynotbetheonlypossible Coughlin&Begelman 2014), the jet formation efficiency has to hadronicmodelrepresentationofthechosenSEDs.Wemaythere- be < 1, and it is usually ǫ 1. Thus, the accretion pro- fore ask whether another set of fits of the hadronic model could j ≪ cess is even more highly super-Eddington. For such accretion, have lower total power. We can answer this question by finding Coughlin&Begelman(2014)makearoughestimateof ǫ = 0.1, theminimumpossiblepowerforagivenprotonsynchrotronflux, j whichwealsoadopt.Then, M˙c2/L 103,i.e.,theaccretionis found todominate theoverall model spectra of theobjectsinthe h Ei ∼ indeedhighlysupercritical.Theradiativeefficiencyoftheaccretion sample,seefig.9ofB13.WeusethemethodofZdziarski(2014) discinthiscaseisverysmall, L /M˙c2 4 10 5. (hereafterZ14),whocalculatedtheminimumjetpowerforagiven h acc i≃ × − Afterthecalculationspresented inthispaper hadbeencom- electron synchrotron flux. Wecan adapt those calculations to the pleted, Cerrutietal. (2015) presented an analysis of 5 high- proton synchrotron case by replacing the electron mass, m , by e frequencypeakedBLLacobjects(HBLs),whoseγ-raypeakislo- m intherelevantformulaeofZ14(includingphysicalconstants). p catedaround 1TeVratherthanat 1GeVastypicalforLBLsand Equivalently,σ ,thecriticalmagneticfield,B ,thedimensionless ∼ ∼ T cr IBLsconsideredinB13andinthiswork.Cerrutietal.(2015)found photon energy in the jet frame, ǫ , and the jet-frame flux, L (in thatitispossibletofindhadronic-modelfitswithsub-Eddingtonjet thenotationofZ14)needtobemu′ltipliedby(m /m ) 2,(m /m′ǫ′ )2, p e − p e powersforthoseparticularobjects.Adetailedanalysisofthoseob- (m /m ) 1 andm /m ,respectively.Correspondingly,theconstant p e − p e jects is outside the scope of this Letter, but we briefly address a a ofequation(33)ofZ14needstobemultipliedby(m /m )3/2,and e p e fewissues.Cerrutietal.(2015)tookintoaccountsecondaryprod- thepowerinrelativisticparticles,P ,andintherestmass,P,need e i uctsofhadronicprocessesinmoredetailthanB13.However,they tobemultipliedby(m /m )5/2andm /m ,respectively.Themini- p e p e assumedsteadystateprimaryprotonandelectrondistributionsas mumtotaljetpowerandthecorrespondingmagneticfieldstrength fixed power laws and followed the evolution of particle spectra, ofequation(36) inZ14needtobemultipliedby(m /m )10/7 and p e usingtherespectivekineticequations,onlyforthesecondarypar- (m /m )5/7,respectively. p e ticles,whileB13usedtheelectronandprotonkineticequationsfor The method of Z14 assumes a local synchrotron spectrum allparticles,whichistheself-consistentapproach.Itisnotclearto which can be well represented by a power law in some range of ushowthismightaffectthejetpowers.Also,thejetpowersgiven frequencies, and it uses one monochromatic measurement of the inCerrutietal.(2015)areforonejetonly,neglectthepressurecon- flux.Here,weuseanestimateofthefluxaroundthemaximumof c 2015RAS,MNRAS000,1–6 (cid:13) 4 A. A. Zdziarski& M. Bo¨ttcher 4 ASTROPHYSICALIMPLICATIONS 0.0 PDB13 -0.2 Ionf BSe1c3tioexnce2e,dwtehefiorurnadditahtiavtethluemjeintopsoitwieesrsbyofvtehrey AlaGrgNe fsaacmtoprlse, P(cid:144)est -0.4 withP/L 50–105 and P/L 3000.Then,weshowedin @lg Sectionj 3atchca∼t thevalues ofhthjejaectcipo∼wer obtained byB13inthe -0.6 a hadronic model cannot be significantly reduced by changing the -0.8 fitparameters,astheyare,onaverage,withinafactorofafewof -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 lg@Lacc(cid:144)LED theminimumjetpowersestimatedusingtheobservedγ-rayspec- tra for the radiative mechanism dominant in this model, namely 0.0 proton synchrotron. These findings imply that the jet formation PDest -0.5 eisffiaclireenacdyygqrueiatetlyhiegxhce(esdees,the.agt.,foGuhnidseilnlinlieepttoanl.ic20m1o4d).elWs,ewhhaicvhe (cid:144)min -1.0 alsofoundthatthemostefficientjetformationmechanismknown, P @lg based on the Blandford-Znajek mechanism extracting black-hole -1.5 b spinwithamagneticallyarresteddisc(Tchekhovskoyetal.2011; -2.0 McKinneyetal.2012),isruledoutbythemagneticfieldsmeasured -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 atthepcdistancescale.Sincethejetpowerhastobethenderived lg@Lacc(cid:144)LED entirelyfromaccretion,theimpliedaccretionratesarehugeandthe Figure3.(a)Theratioofthetotaljetpowerestimatedusingthemagnetic radiativeefficienciesoftheaccretiondiscmustbetiny. fieldstrengthsofB13andthemethodofZ14tothecorrespondingpower At the inferred accretion rates, M˙c2/L 103, accre- giveninB13,asafunctionoftheEddingtonratio.Thedashedlinecorre- h Ei ∼ tionissupercritical(rulingoutoptically-thinradiativelyinefficient spondstoequalpowers.(b)Theratiooftheminimumpowertothatcalcu- models, which can correspond only to M˙c2/L 1, see, e.g., latedusingthemethodofZ14withthemagneticfieldstrengthsofB13.The E ≪ Yuan&Narayan 2014). The angle-averaged accretion-disc lumi- dashedlinecorrespondstothegeometricaverage. nosity in this case is small, corresponding to L L and a ra- ∼ E diative efficiency is 10 3 (Sikora 1981; Sa¸dowskietal. 2014). − ∼ However, most of that luminosity emerges through axial funnels, wheretheobservedfluxissuper-Eddington,correspondingtoL ∼ 10L (Sikora1981;Sa¸dowskietal.2014).Oursampleconsistsof E blazars seen close to on-axis, on average at i 1/Γ, and the ∼ j accretion-disc-emission funnels have opening angles greater than theνF spectrum,usingspectralplotsinfig.9ofB13.Welistour ν that (Sa¸dowskietal. 2014). Thus, we would expect to see super- adoptedvaluesinTable1.Thisimpliesthattheparametere of max Eddington accretion-disc luminosities, while, in fact, they are all Z14is= 1.However,wemodifythemethodinordertotakeinto < L , with 8 out of 12 objects having L < 0.1L . Thus, the E acc E accountthatγminisspecifiedinthemodelofB13.Inthecaseofion h∼adronicemissionmodelforthejetsisincons∼istentwiththestan- acceleration,onewouldnaturallyexpectγ 1,unlikethecase min ∼ dardaccretiontheory. ofelectrons,whichcanbepreheatedto γ 1(withacceler- h mini ≫ The inferred extreme accretion rates present also a major ationonlyproceedingoutofthisdistribution).However,B13used γ = 103 forsomeobjects,seeTable1.Toaccount forthis,we problem in light of results of studies of supermassive-black-hole min definee =Bγ2 /(B m2ǫ )(cf.Z14).SinceBisitselfcalculated growth. The e-folding time by which the black-mass would in- min min cr p ′ creaseduetoaccretion, M/M˙,is 4 105 yrat M˙c2/L 103 bytheminimization,thisrequiresasimpleiterativecalculation. ≃ × h Ei ≃ foundinSection2.Thisisaveryshorttimecomparedtoestimated Wefirstcheckhowwelltheabovemethodreproducesthejet lifetimesofactivephasesofradiosources,e.g., 2 108yrforFR powersgiveninB13.Forthis,weusethevaluesofBgiveninB13 ≃ × IIs(Antognini,Bird&Martini 2012andreferences therein).Cor- instead of those corresponding to the minimum power. We show respondingly, the average radiative accretion efficiency we found theresultsinFig.3(a).Somedisagreementisexpectedgiventhat (undertheassumptionsofthehadronicmodel)of L /M˙c2 4 inthepresent estimatewetake intoaccount onlytheproton syn- h acc i≃ × 10 5is thantheaverageaccretionefficiencyof 0.1–0.3(Sołtan chrotronemissionandneglectcooling.Theadiabaticcoolingis,in − ≪ ∼ 1982; Marconietal. 2004; Silvermanetal. 2008; Schulzeetal. fact,dominantinAO0235+164andWComae,inwhichcasethe 2015). Thus, blazars radiating via the hadronic emission mecha- proton-synchrotron estimate gives values 200 and 50 times too ∼ nismhavetorepresentatmostasmallfractionofaccretingsuper- low, respectively. Apart from this, the overall agreement isgood, massiveblackholesand/or suchextremeaccretionepisodesmust withinafactorof2for7fortheremainingobjects,seeFig.3(a). be extremely short-lived, representing only a duty-cycle of order WethenapplytheminimizationmethodtothesampleofB13. 10 4 (whichisinconflict withthefact that thestudied objects We have found the minimum powers are on average lower by a ∼ − havequiteaverageproperties). factoroffewcomparedtothecorrespondingestimatesabove,with thegeometricaveragebeing 0.23,seeFig.3(b).Thisreduction Finally, the obtained extreme powers are in conflict ≃ isduetotheminimumcorresponding toanequipartitionbetween with studies of the jet power based on radio lobes and thepowerintherelativisticions,P,andinthemagneticfield,P , X-ray cavities (Merloni&Heinz 2007; Cavagnoloetal. 2010; i B whichmaynotbeabletoproduceafittotheentireSED.Indeed, Nemmenetal.2012;Russelletal.2013;Godfrey&Shabala2013; B13 found P P in most of their fits. This departure from Shabala&Godfrey 2013). Those studies indicate jet powers at i ≫ B equipartition naturally resultsinhigher total jet powers. Still,the mostmoderatelyexceedingtheEddingtonluminosity,andevenin overallpossiblereductionofthejetpowerduetochangingthefit themostluminoussourcestheyexceedtheaccretion-discluminos- parametersisbyatmostafactorofafew. ityonlybyafactorof<10.Ontheotherhand,thosepowersarein ∼ c 2015RAS,MNRAS000,1–6 (cid:13) Hadronicmodelsof blazars 5 anoverallagreementwiththepowersestimatedinleptonicmodels, REFERENCES see,e.g.,Ghisellinietal.(2014). AbdoA.A.,etal.,2011,ApJ,726,43 Summarizing,wehavefoundmajordifficultiesinreconciling AharonianF.A.,2000,NewA,5,377 thejetpowerrequirementsofhadronicblazarmodelswith(a)ob- AharonianF.A.,etal.,2007,ApJL664,L71 servedaccretion-discluminosities,(b)accretionratesinferredfrom AlbertJ.,etal.,2007,ApJ,669,862 supermassive-black-hole growth,and(c)jetpowersinferredfrom AntogniniJ.,BirdJ.,MartiniP.,2012,ApJ,756,116 radiolobesandX-raycavities.Whiletheproblems(b)and(c)can Bisnovatyi-KoganG.S.,RuzmaikinA.A.,1976,Ap&SS,42,401 be,inprinciple,circumvented,ifweapplythehadronicmodeltoa BlandfordR.D.,PayneD.G.,1982,MNRAS,199,883 smallnumberofsourcesandassumingashortdutycycle,theprob- BlandfordR.D.,ZnajekR.L.,1977,MNRAS,179,433 lem (a) requires a change of the accretion paradigm for the very Bo¨ttcherM.,ReimerA.,SweeneyK.,PrakashA.,2013,ApJ,768, sourcesfittedbythehadronicmodel.Weconcludethatourresults 54(B13) represent a strong argument against the applicability of hadronic CavagnoloK.W.,McNamaraB.R.,NulsenP.E.J.,CarilliC.L., modelstoblazars. JonesC.,BˆırzanL.,2010,ApJ,720,1066 CerrutiM.,ZechA.,BoissonC.,InoueS.,2015, MNRAS,448, 910 5 SUMMARY CoughlinE.R.,BegelmanM.C.,2014,ApJ,781,82 FurnisA.,FumagalliM.,DanforthC.,WilliamsD.A.,Prochaska We have presented an analysis of the jet powers required by J.X.,2013,ApJ,766,35 hadronicmodelfitstotheSEDsofblazars,basedbothondetailed GhiselliniG.,TavecchioF.,FoschiniL.,GhirlandaG.,Maraschi numerical modelling by B13, and on minimal jet power require- L.,CelottiA.,2010,MNRAS,402,497(G10) mentsinaproton-synchrotroninterpretationoftheγ-rayemission, GhiselliniG.,TavecchioF.,MaraschiL.,CelottiA.,SbarratoT., adoptingthemethodologyofZ14.Ourmainresultsareasfollows. 2014,Nature,515,376 We show that hadronic models of B13 that can account for GodfreyL.E.H.,ShabalaS.S.,2013,ApJ,767,12 broad-bandspectraofblazarsemittingintheGeVrange,havejet powersof P 102L ,approximatelyindependent oftheiraccre- HirotaniK.,2005,ApJ,619,73 tionEddingtojn∼ratio,wEhichspansL /L 10 3–1forthestudied LevinsonA.,2006,Int.J.Mod.Phys.,21,6015 acc E≃ − LobanovA.P.,1998,A&A,330,79 sources.Theratioofthejetpowertotheradiativeluminosityofthe accretiondisccanbeashighas 105 forthestudiedsample,and MannheimK.,BiermannP.L.,1992,A&A,253,L21 P/L 3000. ∼ MarconiA.,RisalitiG.,GilliR.,HuntL.K.,MaiolinoR.,Salvati h j Fauccrith∼ermore,weshowthattheavailablemeasurementsofthe M.,2004,MNRAS,351,169 radiocoreshiftforthesampleimplylowmagneticfluxesthreading McKinneyJ.C.,TchekhovskoyA.,BlandfordR.D.,2012,MN- theblack hole, which rulesout the Blandford-Znajek mechanism RAS,423,3083 withefficientproductionofjetsforhadronicblazarmodels. MerloniA.,HeinzS.,2007,MNRAS,381,589 Theseresultsrequirethattheaccretionratenecessarytopower Mu¨ckeA.,ProtheroeR.J.,2001,APh,15,121 themodelledjetsisveryhigh,comparedtotheaccretionradiative NarayanR.,IgumenshchevI.V.,AbramowiczM.A.,2003,PASJ, output.Theaverageradiativeaccretionefficiencyis L /M˙c2 55,L69 4 10 5forthestudiedsample. h acc i ≃ Nemmen R. S., Georganopoulos M., Guiriec S., Meyer E. T., − × Amajorproblemforthethehadronicmodelispresentedby GehrelsN.,SambrunaR.M.,2012,Science,338,1445 theirrequiredhighlysuper-Eddingtonjetpowers.This,inturnre- PushkarevA.B.,HovattaT.,KovalevY.Y.,ListerM.L.,Lobanov quires highly super-Eddington accretion rates, at which the ob- A.P.,SavolainenT.,ZensusJ.A.,2012,A&A,545,A113 servedluminositieswouldbemuchhigherthanthoseactuallyseen. RussellH.R.,McNamaraB.R.,EdgeA.C.,HoganM.T.,Main Ifthemodeliscorrect,thecurrentlyprevailingpictureofaccretion R.A.,VantyghemA.N.,2013,MNRAS,432,530 inAGNsneedstoberevised. Sa¸dowski A., Narayan R., McKinney J. C., Tchekhovskoy A., TheextremejetpowersobtainedbyB13areinconflictwith 2014,MNRAS,439,503 the estimates of the jet power by other methods. The obtained SchulzeA.,etal.,2015,MNRAS,447,2085 accretion mode cannot be dominant during the lifetimes of the ShabalaS.S.,GodfreyL.E.H.,2013,ApJ,769,129 sources,asthemodelledveryhighaccretionrateswouldresultin SikoraM.,1981,MNRAS,196,257 much too rapid growth of the central supermassive black holes. SikoraM.,2011,IAUS,275,59 Thus, if applicable, thisaccretion mode can onlybe present with Sikora M., Stawarz Ł., Moderski R., Nalewajko K., Madejski averysmallduty-cycleintheblack-holeevolution,andthuscanbe G.M.,2009,ApJ,704,38 appliedonlytoaverysmallfractionoftheradioloudsources. SilvermanJ.D.,etal.,2008,ApJ,679,118 SołtanA.,1982,MNRAS,200,115 Tchekhovskoy A.,NarayanR.,McKinneyJ.C.,2011,MNRAS, 418,L79 ACKNOWLEDGEMENTS ValtonenM.J.,CipriniS.,LehtoH.J.,2012,MNRAS,427,77 WethankMarekSikoraforvaluablediscussions,andPatrykPjanka WangJ.-M.,LuoB.,HoL.C.,2004,ApJ,615,L9 for help withthe dataanalysis. Thisresearch has been supported XieZ.H.,HaoJ.M.,DuL.M.,ZhangX.,JiaZ.L.,2008,PASP, in part by the Polish NCN grants 2012/04/M/ST9/00780 and 120,477 2013/10/M/ST9/00729. MBacknowledgessupportbytheDepart- YuanF.,NarayanR.,2014,ARA&A,52,529 mentofScienceandTechnologyandtheNationalResearchFoun- Zamaninasab M., Clausen-Brown E., Savolainen T., dationoftheRepublicofSouthAfricathroughtheSouthAfrican TchekhovskoyA.,2014,Nature,510,126(ZCST14) ResearchChairInitiative(SARChI). ZdziarskiA.A.,2014,MNRAS,445,1321(Z14) c 2015RAS,MNRAS000,1–6 (cid:13) 6 A. A. Zdziarski& M. Bo¨ttcher Zdziarski A.A.,SikoraM.,Pjanka, P.,Tchekhovskoy A.,2015, MNRAS,submitted,arXiv:1410.7310 c 2015RAS,MNRAS000,1–6 (cid:13)