ebook img

Hadron spectroscopy from strangeness to charm and beauty PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hadron spectroscopy from strangeness to charm and beauty

Nuclear Physics A NuclearPhysicsA00(2013)1–5 Hadron spectroscopy from strangeness to charm and beauty B.S.Zou 3 1)StateKeyLaboratoryofTheoreticalPhysics,InstituteofTheoreticalPhysics,ChineseAcademyofSciences,Beijing100190,China 1 2)InstituteofHighEnergyPhysicsandTheoreticalPhysicsCenterforScienceFacilities,ChineseAcademyofSciences,Beijing100049,China 0 2 n a J 7 Abstract ] Quarksofdifferentflavorshavedifferentmasses,whichwillcausebreakingofflavorsymmetriesofQCD.Flavorsymmetriesand h theirbreakinginhadronspectroscopyplayimportantroleforunderstandingtheinternalstructuresofhadrons.Hadronspectroscopy p withstrangenessrevealstheimportanceofunquenched quarkdynamics. Systematicstudyofhadronspectroscopy withstrange, - p charmandbeautyquarkswouldbeveryrevealingandessentialforunderstandingtheinternalstructureofhadronsanditsunderlying e quarkdynamics. h [ c 2012PublishedbyElsevierLtd. (cid:13) 1 Keywords: v 8 2 1. Hadronspectroscopywithstrangeness 1 1 Inclassicalconstituentquarkmodels,baryonsareascribedasthree-quark(qqq)statesandmesonsareascribedas . 1 quark-anti-quark(qq¯)states. Thispictureisverysuccessfulinexplainingpropertiesofthespatialgroundstatesofthe 0 flavorSU(3)vectormesonnonet,baryonoctetanddecuplet.ItspredictedΩ(sss)baryonwithmassaround1670MeV 3 wasdiscoveredbylaterexperiments. Howeverevenforthelowestspatialexcitedstates, thispicturefailedbadlyin 1 : bothmesonandbaryonsectors. v Inthemesonsector,thelowestspatialexcitedSU(3)nonetisthescalarnonetcomposedof f (500),κ(600 800), i 0 ∼ X a (980)and f (980). Intheclassicalconstituentquarkmodels,thesescalarsshouldbeqq¯ (L=1)stateswith f (500) 0 0 0 ar as(uu¯ +dd¯)/√2state, a00(980)as(uu¯ −dd¯)/√2stateand f0(980)asmainly ss¯state. Theninthispicture,itcannot explainwhythemassofa (980)isdegeneratewith f (980)insteadofcloseto f (500)asintheρ-ωcaseinthevector 0 0 0 nonet. This made R.J.Jaffe [1] proposingthese scalars are q2q¯2 states instead of qq¯ states. In the new picture, the f (500)isascribedas[ud][ud]state,a0(980)as([us][us] [ds][ds])/√2stateand f (980)as([us][us]+[ds][ds])/√2 0 0 − 0 state. Thisgivesanaturalexplanationofthedegeneracyofa (980)and f (980). Here[q q ]meansagooddiquark 0 0 1 2 withconfigurationofflavorrepresentation3¯, spin0andcolor3¯. Alternatively,thesescalarsarealsoproposedtobe meson-mesondynamicallygeneratedstates[2,3]. In the baryon sector, the similar thing seems also happening [4]. In the classical quark models, the excited baryonstatesaredescribedasexcitationofindividualconstituentquarks,similartothecasesforatomicandnuclear excitations. The lowest spatial excited baryon is expected to be a (uud) N state with one quark in orbital angular ∗ momentumL = 1 state, andspin-parity1/2 . However,experimentally,the lowestnegativeparity N resonanceis − ∗ foundtobe N (1535),whichisheavierthantwootherspatialexcitedbaryons: Λ (1405)and N (1440). Thisisthe ∗ ∗ ∗ long-standingmassreverseproblemforthelowestspatialexcitedbaryons. 1 B.S.Zou/NuclearPhysicsA00(2013)1–5 2 In the simple 3q constituent quark models, it is also difficult to understand the strange decay properties of the N (1535),whichseemstocouplestronglytothefinalstateswithstrangeness.BesidesalargecouplingtoNη,alarge ∗ value of g is deduced [5, 6] by a simultaneousfit to BES data on J/ψ p¯pη, pK Λ¯ +c.c., and COSY N (1535)KΛ − ∗ → dataon pp pK+Λ. Thereisalsoevidenceforlargeg couplingfromγp pη reactionatCLAS[7]and N (1535)Nη ′ → ∗ ′ → pp ppη reaction[8],andlargeg couplingfromπ p nφ,pp ppφandpn dφreactions[9,10,11]. ′ N (1535)Nφ − → ∗ → → → The third difficulty is the strange decay pattern of another member of the 1/2 -nonet, Λ (1670), which has its − ∗ couplingtoΛηmuchlargerthanNK andΣπaccordingtoitsbranchingratioslistedinPDG[12]. Allthesedifficultiescanbeeasilyunderstoodbyconsideringlarge5-quarkcomponentsinthem[4,5,13,14].The N (1535)couldbe the lowest L = 1 orbitalexcited uud > state with a largeadmixtureof [ud][us]s¯ > pentaquark ∗ | | componenthaving[ud],[us]and s¯inthegroundstate. TheN (1440)couldbethelowestradialexcited uud >state ∗ withalargeadmixtureof [ud][ud]d¯>pentaquarkcomponenthavingtwo[ud]diquarksintherelativeP-w|ave.While | the lowest L = 1 orbitalexcited uud > state shouldhave a mass lower than the lowest radialexcited uud > state, the [ud][us]s¯ > pentaquark com|ponent has a higher mass than [ud][ud]d¯ > pentaquark component.| The lighter | | Λ (1405)1/2 isalso understandableinthispicture. Itsmain5-quarkconfigurationis [ud][qs]q¯ > whichislighter ∗ − | thanthecorresponding5-quarkconfiguration [ud][us]s¯>intheN (1535)1/2 . Thelargemixtureofthe [ud][us]s¯> ∗ − | | pentaquark component in the N (1535) naturally results in its large couplings to the Nη, Nη, Nφ and KΛ. The ∗ ′ main5-quarkconfigurationfortheΛ (1670)is [us][ds]s¯>whichmakesitheavierthanother1/2 statesandlarger ∗ − | couplingtoΛη. Besides the penta-quarkconfigurationswith the diquarkcorrelation, the penta-quarksystem may also be in the formofmeson-baryonstates. TheN (1535),Λ (1405)andsomeotherbaryonresonancesareproposedtobemeson- ∗ ∗ baryondynamicallygeneratedstates[3,15,16,17,18,19,20].However,achallengeforthismeson-baryondynamical pictureistoexplainthemassanddecaypatternoftheΛ (1670). ∗ Fromabovefactsanddiscussionforbothmesonandbaryonsectors,onecanseethatunlikeatomicandnuclear excitationswherethenumberofconstituentparticlesarefixed,thefavorablehadronicexcitationmechanismforthe lowestspatialexcitedstatesinlightquarksectorseemstobedraggingoutalightqq¯ pairfromgluonfieldratherthan toexciteaconstituentquarktobeL=1state. Abreathingmodeofqqq qqqqq¯isproposed[21,22]forthelowest ↔ 1/2 baryonnonet.Eachbaryonisamixtureofthethree-quarkandfive-quarkcomponents. − Whilethenewpicturegivesaniceaccountofpropertiesofscalarmesonnonetandwell-establishedmembersof the lowest 1/2 baryonnonet, it is necessary to check its distinguishablepredictionsof other membersin the 1/2 − − baryonnonet. While the classicalquenchedquarkmodels[23] predictthe1/2 Σ andΞ to be around1650MeV − ∗ ∗ and1760MeV,respectively,theunquenchedquarkmodels[13,14,22]expectthemtobearound1400MeVand1550 MeV,respectively,andmeson-baryondynamicalmodels[24,25,26]predictthemtobearound1450MeVand1620 MeV,respectively. For Σ resonance with JP = 1−, the PDG [12] lists a two-star Σ(1620) resonance, which seems to support the 2 quenched quark models. However, only four references listed in PDG show weak evidence for its existence. In Ref. [27], the total cross sections for K p and K n are analyzed, which indicates some Σ resonance around 1600 − − MeVwithoutJPquantumnumber.Refs.[28,29]arebasedonmultichannelanalysisoftheKNreactions.Bothclaim evidenceforaΣ 1−resonancewithmassaround1620MeVbutgivecontradictedcouplingpropertiestoπΛandtoπΣ. 2 OtherlatermultichannelanalysesoftheKN reactionssupporttheexistenceofanΣ(1660)1+[12]. Ref.[30]analyzes 2 thereactionK−n→π−ΛandgivestwocomparablesolutionswithandwithoutΣ(1620)21−. On the other hand, there are also some supportsof the unquenched5-quarkmodelswith Σ∗(21−) of muchlower Σm(a1s3s8e5s.)3T+hpeeraek-a[n3a1l]y.sFisroomfoalndadnaatlaysoinsoKf−thpe→recΛenπt+LπE−PfiSnddasthaiodndeγnnΣ∗(12K−+)Σwit(h13m8a5s)s[3a2ro],utnhder1e3i8s0alMsoeaVpuonsdsiebriltihtye 2 → ∗− fortheexistenceofsuchlowmassΣ∗(21−)[33]. AnanalysisofCEBAFdataonγp → K+πΣalsosuggestsapossible Σ∗(21−)around1400MeV[34]. ToclarifythesituationforΣresonances,recently,acombinedfitforthenewCBdata[35]onK p π0Λtogether − → withtheolddata[30]onK n π Λfortheenergiesfrom1569to1676MeVwasperformed[36]. TheKN πΛ − − → → reactionis the best channelavailable forthe study of the Σ resonancesbecause the πΛ is a pure isospin 1 channel. The highprecisionCrystal Ball Λ polarizationdata [35] are crucialfordiscriminatingΣ(1620)1− from Σ(1635)1+. 2 2 Itshowsthat the Σ(1660)1+ is definitely needed,while Σ(1620)1− is notneededat all. AlthoughΣ(1380)1− is not 2 2 2 2 B.S.Zou/NuclearPhysicsA00(2013)1–5 3 demanded in this analysis, it cannot be excluded. Therefore, no evidence to support the classical quenched quark modelsatallfromthe1/2−baryons.AdditionalΣ(1542)23−,Σ(1840)23+ andΣ(1610)21+ mayexist. TheΣ(1542)3− isconsistentwith theresonancestructureΣ(1560)orΣ(1580)3− inPDG [12]andseemsa good 2 2 isospinpartnerofΛ(1520)3−.RecentlyaveryinterestingnarrowΛ(1670)3−withawidthabout1.5MeVwasclaimed 2 2 fromananalysisofK−p→ηΛdata[37]. TogetherwithN∗(1520)23−andeitherΞ(1620)orΞ(1690),theyfitinanice 3/2 baryonnonetwithlargepenta-quarkconfiguration,i.e.,N (1520)as [ud] uq q¯ >state,Λ(1520)as [ud] sq q¯ > − ∗ | { } | { } state,Λ(1670)as [ud] ss s¯>state,andΞ(16xx)as [ud] ss q¯ >state. Here q q meansadiquarkwithconfiguration 1 2 of flavor represen|tatio{n6}, spin 1 and color 3¯. The|Λ(1{670})as [ud] ss s¯ >{ stat}e givesa naturalexplanationfor its | { } dominantηΛdecaymodewithaverynarrowwidthduetoitsverysmallphasespacemeanwhileaD-wavedecay. The available informationon the hadronspectroscopy with strangeness strongly indicates that qqqqq¯ in S-state is more favorable than qqq state with L = 1 and q2q¯2 in S-state is more favorable than qq¯ state with L = 1. The multi-quarkcomponentsareverysubstantialandimportantforhadronicexcitedstates. Evenq6q¯ configurationmay playdominantroleforsomebaryonresonances[38,39]. Tofurtherestablishthemulti-quarkpictureforhadronicexcitedstates, itisveryimportanttocompletethelow- lyinghyperonspectrum,especiallythe1/2 and3/2 Σ ,Ξ andΩ . HeretheΩ spectrumhasauniqueadvantage − − ∗ ∗ ∗ ∗ thatthefavorableqq¯excitationsfromquarkseahavedifferentflavorfromthevalencestrangequarks[40].Kaonbeam experimentat JPARC and hyperonproductionfromcharmoniumdecaysatBESIII may playveryimportantrolein thisaspect. Itisalsoimportanttocheckthecaseswithsquarksreplacedbycorbquarks. 2. Fromstrangenesstocharmandbeauty Variouspicturesanddynamicsforthespectroscopywithstrangenesscanbeextendedtoandcheckedbyitscharm andbeautypartners.Forexample,if f (980)isaKK¯ moleculemainlyduetolightvectormesonexchangeforce[41], 0 thenwiththesamemechanismthereshouldalsoexistDK,BK¯,DD¯ andB¯Bmolecules[42,43].Thenewlyestablished D (2317)isregardedasa DK moleculeortetra-quarkstatebymanypeople[44]. The f (1420)wasproposedtobe ∗s0 1 aK K¯ molecule[45];nowthenewlyestablishedX(3872)isregardedasitsD D¯ partner[46,47]. TheΛ (2595)1/2 ∗ ∗ c − wasproposed[48]tobeDN moleculeasthecharmpartnerofΛ(1405). Although many hadron resonances were proposed to be hadron-hadrondynamically generated states or multi- quarkstates,mostofthemcannotbeclearlydistinguishedfromclassicalquarkmodelstatesduetotunableingredients andpossiblelargemixingof variousconfigurationsin these models. Evenin 2010,the PDG [49] still claimedthat “ThecleanΛ spectrumhasinfactbeentakentosettlethedecades-longdiscussionaboutthenatureoftheΛ(1405) c – true 3-quarkstate or mere K¯N threshold effect? – unambiguouslyin favor of the first interpretation.”A possible solution to this problem is to extend the penta-quark study to the hidden charm and hidden beauty sectors. If the N (1535)istheK¯Σquasi-boundstatewithhiddenstrangeness,thennaturallybyreplacing ss¯bycc¯ orbb¯ onewould ∗ expectsuper-heavyN stateswithhiddencharmandhiddenbeautyjustbelowD¯Σ andBΣ thresholds,respectively. ∗ c b FollowingtheValenciaapproachofRef.[50]andextendingittothehiddencharmsector,theinteractionbetween variouscharmedmesonsandcharmedbaryonswerestudiedwiththelocalhiddengaugeformalisminRefs.[51,52]. Several meson-baryondynamically generated narrow N and Λ resonances with hidden charm are predicted with ∗ ∗ massaround4.3GeVandwidthsmallerthan100MeV.TheS-waveΣ D¯ andΛ D¯ stateswithisospinI=1/2andspin c c S=1/2werealsoinvestigatedbyvariousotherapproaches[53,54,55]. TheyconfirmthattheinteractionbetweenΣ c andD¯ isattractiveandresultsinaΣ D¯ boundstatenotfarbelowthreshold.Thelow-lyingenergyspectraoffivequark c systemsuudcc¯(I=1/2,S=0)andudscc¯(I=0,S= 1)arealsoinvestigatedwiththreekindsofschematicinteractions: − thechromomagneticinteraction,theflavor-spindependentinteractionandtheinstanton-inducedinteraction[56]. In all the three models, the lowest five quark state (uudcc¯ or udscc¯) has an orbitalangular momentum L = 0 and the spin-parity JP = 1/2 ; the mass of the lowest udscc¯ state is heavier than the lowestuudcc¯ state, whichis different − fromthepredictionofmeson-baryondynamicalmodel[51,52]. Thepredictednewresonancesdefinitelycannotbe accommodatedbyquarkmodelswiththreeconstituentquarks.Becausethesepredictedstateshavemassesaboveη N c andη Λthresholds,theycanbelookedforattheforthcomingPANDA/FAIRandJLab12-GeVupgradeexperiments. c Thisisanadvantagefortheirexperimentalsearches,comparedwiththosebaryonswithhiddencharmsbelowtheη N c thresholdproposedbyotherearlierapproaches[57,58]. 3 B.S.Zou/NuclearPhysicsA00(2013)1–5 4 Thesamemeson-baryoncoupledchannelunitaryapproachwiththelocalhiddengaugeformalismwasextendedto thehiddenbeautysectorinRef.[59]. TwoN statesandfourΛ stateswerepredictedtobedynamicallygenerated. b∗b¯ ∗bb¯ Becauseofthehiddenbb¯ componentsinvolvedinthesestates,themassesofthesestatesareallabove11GeVwhile their widths are of only a few MeV, which should form part of the heaviest island for the quite stable N and Λ ∗ ∗ baryons. FortheValenciaapproach,thestaticlimitisassumedforthet-channelexchangeoflightvectormesonsby neglectingmomentumdependentterms. In orderto investigatethe possible influence of the momentumdependent terms, the conventional Schrodinger Equation approach was also used to study possible bound states for the BΣ b channel by keeping the momentum dependentterms in the t-channelmeson exchange potential. It was found that within the reasonable model parameter range the two approachesgive consistent predictions about possible bound states. ThisgivessomejustificationofthesimpleValenciaapproachalthoughtherecouldbeanuncertaintyof10-20 MeVforthebindingenergies. ProductioncrosssectionsofthepredictedN resonancesinppandepcollisionswereestimatedasaguideforthe b∗b¯ possibleexperimentalsearchatrelevantfacilitiesinthefuture. Forthe pp ppη reaction,thebestcenter-of-mass b → energyforobservingthepredictedN is13 25GeV,wheretheproductioncrosssectionisabout0.01nb. Forthe b∗b¯ ∼ e p e pΥreaction,whenthecenter-of-massenergyislargerthan14GeV,theproductioncrosssectionshouldbe − − → largerthan0.1nb. Nowadays,theluminosityforpporepcollisionscanreach1033cm 2s 1, thiswillproducemore − − than 1000eventsper day for the N production. It is expectedthat futurefacilities, such as proposedelectron-ion b∗b¯ collider(EIC),maydiscovertheseveryinterestingsuper-heavyN andΛ withhiddenbeauty. ∗ ∗ Very recently, the observationof the iso-vectormeson partnersof the predicted N , Z (10610)and Z (10650), b∗b¯ b b were reported by Belle Collaboration [60]. This gives us stronger confidence on the existence of the super-heavy islandfortheN andΛ resonances. b∗b¯ ∗bb¯ 3. Conclusions Available information on hadron spectroscopy with strangeness and charm reveals unquenched quark picture. Draggingoutaqq¯ fromgluonfieldisaveryimportantexcitationmechanismforhadrons. Tocorrectlydescribethe hadronspectrum,itisnecessarytogobeyondtheclassicalquenchedquarkmodelswhichassumingafixednumber ofconstituentquarks. Distinguishablepredictionforhyperonspectroscopyfromthenewpictureisyellingforexper- imentalconfirmation. KaonbeamexperimentsatJPARC andhyperonproductiondata fromcharmoniumdecaysat BESIIIcanplayveryimportantrolehere.Super-heavynarrowN andΛ resonancesarepredictedbyvariousmodels ∗ ∗ to exist around 4.3 GeV and 11 GeV for hidden charm and beauty, respectively. Their iso-vector meson partners Z (10610)andZ (10650)haverecentlybeenobserved. Experimentalconfirmationofthemwillunambiguouslyes- b b tablishmulti-quarkdynamics.TheycanbelookedforatCEBAF-12GeV-upgradeatJlabandPANDAatFAIR,maybe alsoatJPARC,super-B,RHIC,EIC. 4. Acknowledgments I thankC. S. An, P. Z. Gao, J. He, F. Huang, T. S. H. Lee, R. Molina, E. Oset, J. Shi, W. L. Wang, K. W. Wei, J.J.Wu,H.S.Xu,S.G.Yuan,L.Zhao,Z.Y.Zhangforcollaborationworksreviewedhere. Thisworkissupported bytheNationalNaturalScienceFoundationofChinaunderGrant11035006,11121092,11261130311(CRC110by DFGandNSFC),theChineseAcademyofSciencesunderProjectNo.KJCX2-EW-N01andtheMinistryofScience andTechnologyofChina(2009CB825200). References [1] R.J.Jaffe,Phys.Rev. D15(1977)267. [2] J.WeinsteinandN.Isgur,Phys.Rev.Lett.48(1982)659. [3] J.A.Oller,E.Oset,A.Ramos,Prog.Part.Nucl.Phys.45(2000)157,andreferencestherein. [4] B.S.Zou,Eur.Phys. J. A35(2008)325. [5] B.C.Liu,B.S.Zou,Phys.Rev.Lett.96(2006)042002. [6] L.S.Geng,E.Oset,B.S.Zou,M.Doring,Phys.Rev.C79(2009)025203. [7] M.Duggeretal.,Phys.Rev.Lett.96(2006)062001. [8] X.Cao,X.G.Lee,Phys.Rev.C78(2008)035207. 4 B.S.Zou/NuclearPhysicsA00(2013)1–5 5 [9] J.J.Xie,B.S.Zou,H.C.Chiang,Phys.Rev.C77(2008)015206. [10] M.Doring,E.Oset,B.S.Zou,Phys.Rev.C78(2008)025207. [11] X.Cao,J.J.Xie,B.S.Zou,H.S.Xu,Phys.Rev.C80(2009)025203. [12] J.Beringeretal.(ParticleDataGroup),Phys.Rev.D86(2012)010001. [13] C.Helminen,D.O.Riska,Nucl.Phys.A699(2002)624. [14] A.Zhangetal.,HighEnergyPhys.Nucl.Phys.29(2005)250. [15] N.Kaiser,P.B.Siegel,W.Weise,Phys.Lett.B362(1995)23. [16] E.Oset,A.Ramos,Nucl.Phys.A635(1998)99. [17] J.A.Oller,U.G.Meissner,Phys.Lett.B500(2001)263. [18] T.Inoue,E.Oset,M.J.VicenteVacas,Phys.Rev.C65,035204(2002) [19] C.Garcia-Recio,M.F.M.Lutz,J.Nieves,Phys.Lett.B582(2004)49. [20] T.Hyodo,S.I.Nam,D.Jido,A.Hosaka,Phys.Rev.C68(2003)018201. [21] C.S.An,B.S.Zou,Eur.Phys.J.A39(2009)195. [22] B.S.Zou,Nucl.Phys.A835(2010)199. [23] S.Capstick,W.Roberts,Prog.Part.Nucl.Phys.45(2000)S241. [24] Y.Oh,Phys.Rev.D75(2007)074002. [25] K.P.Khemchandani,A.M.Torres,H.Kaneko,H.Nagahiro,A.Hosaka,Phys.Rev.D84(2011)094018. [26] A.Ramos,E.Oset,C.Bennhold,Phys.Rev.Lett.89(2002)252001. [27] A.S.Carrolletal.,Phys.Rev.Lett.37(1976)806. [28] J.K.Kim,Phys.Rev.Lett.27(1971)356. [29] W.Langbein,F.Wagner,Nucl.Phys.B47(1972)477. [30] W.A.Morrisetal.,Phys.Rev.D17(1978)55. [31] J.J.Wu,S.Dulat,B.S.Zou,Phys.Rev.D80(2009)017503;Phys.Rev.C81(2010)045210. [32] K.Hicksetal(LEPSCollaboration),Phys.Rev.Lett.102(2009)012501. [33] P.Gao,J.J.Wu,B.S.Zou,Phys.Rev.C81(2010)055203. [34] R.Schumacher,inthisproceedings. [35] S.Prakhovetal,Phys.Rev.C80(2009)025204. [36] P.Gao,J.Shi,B.S.Zou,Phys.Rev.C86(2012)025201. [37] B.C.Liu,J.J.Xie,Phys.Rev.C86(2012)055202;Phys.Rev.C85(2012)038201. [38] A.Gal,H.Garcilazo,Nucl.Phys.A864(2011)153. [39] A.M.Torres,K.P.Khemchandani,E.Oset,Phys.Rev.C77(2008)042203. [40] S.G.Yuan,C.S.An,K.W.Wei,B.S.Zou,H.S.Xu,arXiv:1208.1742[hep-ph]. [41] S.Krewald,R.H.LemmerandF.P.Sassen,Phys.Rev.D69(2004)016003. [42] Y.J.Zhang,H.C.Chiang,P.N.Shen,B.S.Zou,Phys.Rev.D74(2006)014013. [43] F.K.Guo,P.N.Shen,H.C.Chiang,R.G.PingandB.S.Zou,Phys.Lett.B641(2006)278. [44] E.KlemptandA.Zaitsev,Phys.Rept.454(2007)1,andreferencestherein. [45] N.A.Tornqvist,Phys.Rev.Lett.67(1991)556. [46] X.Liu,Z.G.Luo,Y.R.LiuandS.L.Zhu,Eur.Phys.J.C61(2009)411;Phys.Rev.D84(2011)054002. [47] T.Fernandez-Carames,A.ValcarceandJ.Vijande,Phys.Rev.Lett.103(2009)222001. [48] L.Tolosetal.,Chin.Phys.C33(2009)1323;J.Haidenbaueretal.,Eur.Phys.JA47(2011)18. [49] K.Nakamuraetal.(ParticleDataGroup),J.Phys.G37(2010)075021. [50] E.Oset,A.Ramos,Euro.Phys.J.A44(2010)445. [51] J.J.Wu,R.Molina,E.OsetandB.S.Zou,Phys.Rev.Lett.105(2010)232001. [52] J.J.Wu,R.Molina,E.OsetandB.S.Zou,Phys.Rev.C84(2011)015202. [53] W.L.Wang,F.Huang,Z.Y.Zhang,B.S.Zou,Phys.Rev.C84(2011)015203. [54] J.J.Wu,T.S.H.Lee,B.S.Zou,Phys.Rev.C85(2012)044002. [55] Z.C.Yang,Z.F.Sun,J.He,X.Liu,S.L.Zhu,Chin.Phys.C36(2012)6. [56] S.G.Yuan,K.W.Wei,J.He,H.S.Xu,B.S.Zou,Eur.Phys.J.A48(2012)61. [57] C.Gobbi,D.O.Riska,N.N.Scoccola,Phys.Lett.B296(1992)166. [58] J.Hofmann,M.F.M.Lutz,Nucl.Phys.A763(2005)90. [59] J.J.WuandB.S.Zou,Phys.Lett.B709(2012)70. [60] A.Bondaretal.[BelleCollaboration],Phys.Rev.Lett.108(2012)122001. 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.