ebook img

Hadamard Expansions and Hyperasymptotic Evaluation An Extension of the Method of Steepest Descents PDF

253 Pages·2011·3.593 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hadamard Expansions and Hyperasymptotic Evaluation An Extension of the Method of Steepest Descents

HADAMARD EXPANSIONS AND HYPERASYMPTOTIC EVALUATION AnExtensionoftheMethodofSteepestDescents TheauthordescribestherecentlydevelopedtheoryofHadamardexpansions appliedtothehigh-precision(hyperasymptotic)evaluationofLaplaceand Laplace-typeintegrals.Thisnewmethodbuildsonthewell-knownasymptotic methodofsteepestdescents,ofwhichtheopeningchaptergivesadetailedaccount illustratedbyaseriesofexamplesofincreasingcomplexity.Adiscussionof uniformityproblemsassociatedwithvariouscoalescencephenomena,theStokes phenomenonandhyperasymptoticsofLaplace-typeintegralsfollows.The remainingchaptersdealwiththeHadamardexpansionofLaplaceintegrals,with andwithoutsaddlepoints.Problemsofdifferenttypesofsaddlecoalescenceare alsodiscussed.Thetextisillustratedwithmanynumericalexamples,whichhelp thereadertounderstandthelevelofaccuracyachievable.Theauthoralsoconsiders applicationstosomeimportantspecialfunctions. Thisbookisidealforgraduatestudentsandresearchersworkinginasymptotics. R. B. PARIS isaReaderinMathematicsattheUniversityofAbertay,Dundee. EncyclopediaofMathematicsandItsApplications Thisseriesisdevotedtosignificanttopicsorthemesthathavewideapplicationin mathematicsormathematicalscienceandforwhichadetaileddevelopmentofthe abstracttheoryislessimportantthanathoroughandconcreteexplorationofthe implicationsandapplications. BooksintheEncyclopediaofMathematicsandItsApplicationscovertheir subjectscomprehensively.Lessimportantresultsmaybesummarizedasexercises attheendsofchapters.Fortechnicalities,readerscanbereferredtothe bibliography,whichisexpectedtobecomprehensive.Asaresult,volumesare encyclopedicreferencesormanageableguidestomajorsubjects. ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS All the titles listed below can be obtained from good booksellers or from Cambridge UniversityPress.Foracompleteserieslistingvisit http://www.cambridge.org/uk/series/sSeries.asp?code=EOM 85 R.B.ParisandD.KaminskiAsymptoticsandMellin–BarnesIntegrals 86 R.J.McElieceTheTheoryofInformationandCoding,2ndedn 87 B.A.MagurnAnAlgebraicIntroductiontoK-Theory 88 T.MoraSolvingPolynomialEquationSystemsI 89 K.BichtelerStochasticIntegrationwithJumps 90 M.LothaireAlgebraicCombinatoricsonWords 91 A.A.IvanovandS.V.ShpectorovGeometryofSporadicGroupsII 92 P.McMullenandE.SchulteAbstractRegularPolytopes 93 G.Gierzetal.ContinuousLatticesandDomains 94 S.R.FinchMathematicalConstants 95 Y.JabriTheMountainPassTheorem 96 G.GasperandM.RahmanBasicHypergeometricSeries,2ndedn 97 M.C.PedicchioandW.Tholen(eds.)CategoricalFoundations 98 M.E.H.IsmailClassicalandQuantumOrthogonalPolynomialsinOneVariable 99 T.MoraSolvingPolynomialEquationSystemsII 100 E.OlivieriandM.EuláliaVaresLargeDeviationsandMetastability 101 A.Kushner,V.LychaginandV.RubtsovContactGeometryandNonlinearDifferentialEquations 102 L.W.BeinekeandR.J.Wilson(eds.)withP.J.CameronTopicsinAlgebraicGraphTheory 103 O.J.StaffansWell-PosedLinearSystems 104 J.M.Lewis,S.LakshmivarahanandS.K.DhallDynamicDataAssimilation 105 M.LothaireAppliedCombinatoricsonWords 106 A.MarkoeAnalyticTomography 107 P.A.MartinMultipleScattering 108 R.A.BrualdiCombinatorialMatrixClasses 109 J.M.BorweinandJ.D.VanderwerffConvexFunctions 110 M.-J.LaiandL.L.SchumakerSplineFunctionsonTriangulations 111 R.T.CurtisSymmetricGenerationofGroups 112 H.Salzmannetal.TheClassicalFields 113 S.PeszatandJ.ZabczykStochasticPartialDifferentialEquationswithLévyNoise 114 J.BeckCombinatorialGames 115 L.BarreiraandY.PesinNonuniformHyperbolicity 116 D.Z.ArovandH.DymJ-ContractiveMatrixValuedFunctionsandRelatedTopics 117 R.Glowinski,J.-L.LionsandJ.HeExactandApproximateControllabilityforDistributedParameterSystems 118 A.A.BorovkovandK.A.BorovkovAsymptoticAnalysisofRandomWalks 119 M.DezaandM.DutourSikiric´GeometryofChemicalGraphs 120 T.NishiuraAbsoluteMeasurableSpaces 121 M.PrestPurity,SpectraandLocalisation 122 S.KhrushchevOrthogonalPolynomialsandContinuedFractions 123 H.NagamochiandT.IbarakiAlgorithmicAspectsofGraphConnectivity 124 F.W.KingHilbertTransformsI 125 F.W.KingHilbertTransformsII 126 O.CalinandD.-C.ChangSub-RiemannianGeometry 127 M.Grabischetal.AggregationFunctions 128 L.W.BeinekeandR.J.Wilson(eds.)withJ.L.GrossandT.W.TuckerTopicsinTopologicalGraphTheory 129 J.Berstel,D.PerrinandC.ReutenauerCodesandAutomata 130 T.G.FaticoniModulesoverEndomorphismRings 131 H.MorimotoStochasticControlandMathematicalModeling 132 G.SchmidtRelationalMathematics 133 P.KornerupandD.W.MatulaFinitePrecisionNumberSystemsandArithmetic 134 Y. Crama and P. L. Hammer (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering 135 V.BerthéandM.Rigo(eds.)Combinatorics,AutomataandNumberTheory 136 A. Kristály, V. D. Ra˘dulescu and C. Varga Variational Principles in Mathematical Physics, Geometry, and Economics 137 J.BerstelandC.ReutenauerNoncommutativeRationalSerieswithApplications 138 B.CourcelleGraphStructureandMonadicSecond-OrderLogic 139 M.FiedlerMatricesandGraphsinGeometry 140 N.VakilRealAnalysisthroughModernInfinitesimals ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS Hadamard Expansions and Hyperasymptotic Evaluation An Extension of the Method of Steepest Descents R. B. PARIS UniversityofAbertay,Dundee CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107002586 (cid:2)c R.B.Paris2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2011 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthepublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Paris,R.B.(RichardBruce),1946– HadamardExpansionsandHyperasymptoticEvaluation:AnExtensionoftheMethod ofSteepestDescents/R.B.Paris. p. cm.–(EncyclopediaofMathematicsanditsApplications;141) Includesbibliographicalreferencesandindex. ISBN978-1-107-00258-6(hardback) 1. Integralequations–Asymptotictheory. 2. Asymptoticexpansions. I. Title. QA431.P287 2011 (cid:3) 515.45–dc22 2010051563 ISBN978-1-107-00258-6Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Preface pagevii 1 AsymptoticsofLaplace-typeintegrals 1 1.1 Historicalintroduction 1 1.2 Themethodofsteepestdescents 5 1.3 Examples 20 1.4 Furtherexamples 37 1.5 Uniformexpansions 56 1.6 Optimaltruncationandsuperasymptotics 73 1.7 TheStokesphenomenon 78 1.8 Hyperasymptotics 83 2 HadamardexpansionofLaplaceintegrals 100 2.1 Introduction 100 2.2 TheHadamardseriesfor Iν(x) 101 2.3 RapidlyconvergentHadamardseries 122 2.4 Hadamardseriesonaninfiniteinterval 126 2.5 Examples 134 2.6 BoundsonthetailsofHadamardseries 140 3 HadamardexpansionofLaplace-typeintegrals 144 3.1 Introduction 144 3.2 Expansionschemes 145 3.3 Examples 151 3.4 Coalescenceproblems 175 3.5 Examplesofcoalescence 178 4 Applications 197 4.1 Introduction 197 4.2 TheBesselfunction Jν(νz) 198 4.3 ThePearceyintegral 207 v vi Contents 4.4 Theparaboliccylinderfunction 216 4.5 Theexpansionforlog(cid:3)(z) 219 AppendixA: Propertiesof P(a,z) 224 AppendixB: ConvergenceofHadamardseries 230 AppendixC: Connectionwiththeexp-arcintegrals 232 References 235 Index 241 Preface The aims of this book are twofold. The first is to present a detailed account of the classical method of steepest descents applied to the asymptotic evaluation of Laplace-type integrals containing a large parameter, and the second is to give a coherent account of the theory of Hadamard expansions. This latter topic, which hasbeendevelopedduringthepastdecade,extendsthemethodofsteepestdescents and effectively ‘exactifies’ the procedure since, in theory, the Hadamard expansion ofaLaplaceorLaplace-typeintegralcanproduceunlimitedaccuracy. Many texts deal with the method of steepest descents, some in more detail than others. The well-known books by Copson Asymptotic Expansions (1965), Olver Asymptotics and Special Functions (1997), Bleistein and Handelsman Asymptotic Expansion of Integrals (1975), Wong Asymptotic Approximations of Integrals (1989)andBenderandOrszagAdvancedMathematicalMethodsforScientistsand Engineers (1978) are all good examples. It is our aim in the first chapter to give a comprehensive account of the method of steepest descents accompanied by a set of illustrative examples of increasing complexity. We also consider the common causes of non-uniformity in the asymptotic expansions of Laplace-type integrals and conclude the first chapter with a discussion of the Stokes phenomenon and hyperasymptotics. The next two chapters present the Hadamard expansion theory of Laplace and of Laplace-type integrals possessing saddle points. A study of these chapters makes it apparent how this theory builds upon and extends the method of steepest descents. Considerable emphasis is devoted to explaining the problems associated withcoalescencephenomena,suchasasaddlepointcoalescingeitherwithanother saddle point or with an endpoint of the integration interval. Methods for dealing withthesedifficultiesintheHadamardexpansionprocedurearecarefullydescribed. Themonographcloseswithsophisticatedapplicationsoftheideasdevelopedinthe earlier chapters to four particular special functions: the Bessel function Jν(νx) of largeorderandargument,thePearceyintegral(atwo-variablegeneralisationofthe classical Airy function), the parabolic cylinder function U(a,z) of large order and argument,andthelogarithmofthegammafunction. vii viii Preface Inkeepingwiththelast-mentionedtextabove,manyoftheexamplesinthelater chapters are illustrated with numerical studies to better display the calibre of the asymptoticapproximationsobtained,astrategythatgivesthenon-expertpractitioner a good sense of the method being showcased. This book should be accessible to anyone with a solid undergraduate background in functions of a single complex variable. Theauthoracknowledgesthesupportofhisinstitution,theUniversityofAbertay, Dundee,whichfacilitatedthewritingofthisbook.Aconsiderabledebtofgratitudeis owedtoseveralcolleagueswhogenerouslyundertookacarefulinspectionofvarious sectionsandfortheircriticalcommentsthathavehelpedtoimprovethepresentation of this text. The whole of Chapter 1 was read by N. M. Temme, with the first half of this chapter and Chapter 2 being read by T. M. Dunster; Chapters 2 and 3 were readbyD.Kaminski,andC.J.Howlsinspectedthesectiononhyperasymptoticsof Laplace-typeintegralsinChapter1.Finally,thenon-specialistcommentsonthefirst part of Chapter 1 by J. S. Dagpunar were helpful. It is almost inevitable, however, thatinspiteofthiscarefulexaminationsomeerrorsormisprintswillhaveremained undetected,andtheauthorrequeststhereader’sforebearanceforthosethatproveto bevexatious.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.