ebook img

Hacker, B.R., Andersen, T.B. Johnston, S., Kylander-Clark, A.R.C., Peterman, E. Walsh, E.O., and PDF

21 Pages·2009·2.93 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hacker, B.R., Andersen, T.B. Johnston, S., Kylander-Clark, A.R.C., Peterman, E. Walsh, E.O., and

ARTICLE IN PRESS TECTO-124697;NoofPages23 Tectonophysicsxxx(2009)xxx–xxx ContentslistsavailableatScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto High-temperature deformation during continental-margin subduction & exhumation: The ultrahigh-pressure Western Gneiss Region of Norway Bradley R. Hackera, Torgeir B. Andersenb, Scott Johnstona,1, Andrew R.C. Kylander-Clarka, Emily M. Petermana,2, Emily O. Walsha,3, David Younga,⁎,4 aDepartmentofEarthScience,UniversityofCalifornia,SantaBarbara,CA93106,USA bUniversitetetiOslo,DepartmentofGeosciences,P.O.Box1047Blindern,0316Oslo,Norway a r t i c l e i n f o a b s t r a c t Articlehistory: Anewdatasetforthehigh-pressuretoultrahigh-pressureWesternGneissRegionallowsthedefinitionof Received27January2009 distinctstructuralandpetrologicaldomains.MuchofthestudyareaisanE-dippinghomoclinewithE-plunging Receivedinrevisedform30July2009 lineationsthatexposesprogressivelydeeper,morestronglydeformed,moreeclogite-richstructurallevels Accepted10August2009 westward.AlthougheclogitescropoutacrosstheWGR,Scandiandeformationisweakandearlierstructures Availableonlinexxxx arewellpreservedinthesoutheasternhalfofthestudyarea.TheScandianreworkingincreaseswestward, culminatinginstrongScandianfabricswithonlyisolatedpocketsofolderstructures;thedominantScandian Keywords: Norway deformation was coaxial E–W stretching. The sinistrally sheared Møre–Trøndelag Fault Complex and Eclogite Nordfjord Mylonitic Shear Zone bound these rocks to the north and south. There was moderate top-E, Exhumation amphibolite-faciesdeformationassociatedwithtranslationoftheallochthonsoverthebasementalongits Ultrahigh-pressuremetamorphism eastern edge, and the Nordfjord–Sogn Detachment Zone underwent strong lower amphibolite-facies to Symplectite greenschist-faciestop-Wshearing.A northwestward increaseinexhumation-relatedmelting isindicated byleucosomeswithhornblende,plagioclase,andScandiansphene.Inthewestern2/3ofthestudy area, exhumation-related, amphibolite-facies symplectite formation in quartzofeldspathic gneiss postdated most Scandian deformation; further deformation was restricted to slip along biotite-rich foliation planes andminorlocalfolding.ThattheWesternGneissRegionquartzofeldspathicgneissexhibitsastronggradientin degreeofdeformation,impliesthatcontinentalcrustingeneralneednotundergopervasivedeformation duringsubduction. ©2009ElsevierB.V.Allrightsreserved. 1.Introduction Assessing the scale of (U)HP metamorphism assists in defining the tectonicsettinginwhich(U)HPtectonismoccursandthemagnitudeof Howcontinentalcrustisexhumedfromultrahigh-pressuredepths its impact on Earth evolution. ii) How was deformation partitioned remainsoneofthemostintriguingtectonicproblems.Anexcellentplace throughoutthe(U)HPterraneduringsubductionandexhumation—i.e., tostudyultrahigh-pressure(UHP)rocksandtheirexhumationisthe werethe(U)HProckssubductedandexhumedasacoherentandintact Western Gneiss Region (WGR) of Norway, where the ~5000 km2 sheet or did they disaggregate/delaminate during subduction and/ CaledonianUHPterraneissurroundedtothenorth,eastandsouthby or exhumation? iii) How did deformation vary temporally, from the associatedhigh-pressurerockscovering30,000km2(Fig.1).Thispaper beginning of subduction to the end of exhumation—e.g., did intense integratesstructuralgeologyandstructuralpetrologyfromageologic deformation mark the entire subduction and exhumation cycle? iv) transectacrosstheWGRtoaddressfourlarge-scalequestions:i)What Whatwastherelationshipbetweendeformationandmetamorphism was the volume of rock that was exhumed from (U)HP conditions? duringsubduction and exhumation—e.g., did deformation and meta- morphismoccurinstagesorweretheycontinuousandcoevalduring exhumation? ⁎ Correspondingauthor. To addressthesequestions,this paperpresents outcropto thin- E-mailaddress:[email protected](B.R.Hacker). 1 NowattheDepartmentofPhysics,CaliforniaPolytechnicStateUniversity,SanLuis section observations of structures and metamorphic minerals. It Obispo,CA,93407,USA. begins with an overview of the study area; explains how various 2 NowattheDepartmentofEarthandPlanetarySciences,UniversityofCalifornia, deformation and metamorphic events can be distinguished; char- SantaCruz,CA95064,USA. acterizestheeclogite-,granulite-,andamphibolite-faciesstructures; 3 NowattheDepartmentofGeology,CornellCollege,MountVernon,IA,52314,USA. 4 NowattheDepartmentofGeology,UniversityofTexas,SanAntonio,TX,78249, describesvariousstructuraldomains;andendswithadiscussionof USA. theimplicationsforthequestionsposedabove. 0040-1951/$–seefrontmatter©2009ElsevierB.V.Allrightsreserved. doi:10.1016/j.tecto.2009.08.012 Please cite this article as: Hacker, B.R., et al., High-temperature deformation during continental-margin subduction & exhumation: The ultrahigh-pressureWesternGneissRegionofNorway,Tectonophysics(2009),doi:10.1016/j.tecto.2009.08.012 ARTICLE IN PRESS 2 B.R.Hackeretal./Tectonophysicsxxx(2009)xxx–xxx Fig.1.TheWesternGneissRegionconsistsofWesternGneisscomplexbasementoverlainbyallochthons(gray,afterLutroandTveten(1998)andTvetenetal.(1998)).Multiple featuresshowageneralnorthwestwardincrease:i)theintensityofScandiandeformation(greenshading)(notdeterminedintheallochthonseastoftheWesternGneissRegionor intheDevonianbasin);ii)eclogitepressures(locationsofisobarsarepoorlyconstrained);iii)peakmetamorphictemperatures(Kylander-Clarketal.,2008);iv)theabundanceof hornblende-bearingleucosomes;andv)thepresenceofsymplectite-bearinggneiss.SphenehaveScandianagesinthenorthwestandPrecambrianagesinthesoutheast(Tucker etal.,1990;Kylander-Clarketal.,2008).NEboundaryofNordøyaneUHPdomainafterVrijmoedetal.(2006).Allcontactsshownarefaults,excepttheNWedgeoftheDevonian basin.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.) 1.1.TheWesternGneissRegion locallyimbricatedwithCaledoniannappeunits—assuggestedbythe presence of a structurally lower gneiss–quartzite unit (Gee, 1980; The Western Gneiss Region (Fig. 1) is composed of Proterozoic Krill,1980)inthenortheasternpartofthestudyarea(Storlithrustof Fennoscandiangneisses(chieflyorthogneissesfromc.1650Maand Tucker et al., 2004) (Fig. 1)—but the main parts of the WGR is 950Ma)(cf.Austrheimetal.,2003;SkårandPedersen,2003),often autochthonous as shown by the continuous exposures below the referred to as the Western Gneiss Complex (WGC), overlain by nappesacrossfromtheforelandtothehinterlandregion. continentalandoceanicallochthons(seebelow).TheearlyPaleozoic ThemostcommonrocktypeoftheWGCinthestudyareaisbiotite± orogenyduringwhichtheseunitsweredeformed,metamorphosed, hornblende ± garnet tonalitic and granodioritic gneiss with 5–80% andjuxtaposedistheCaledonianOrogeny(Fig.2).Thefinalstageof (typically 20–40%) cm-scale granitic leucosomes (Gjelsvik, 1951; this orogeny–called the Scandian Orogeny–included the following: Bryhni, 1966; Dransfield, 1994). This tonalitic gneiss grades with i)closureoftheIapetusoceanandemplacementofallochthonsonto increasing K-feldspar abundance into biotite granitic gneiss that Balticafrom~430to410Ma(Tuckeretal.,2004;HackerandGans, underlies ~10% of the study area, and with increasing muscovite 2005); ii) Baltica–Laurentia collision and westward subduction of intoatwo-micatonaliticgneissthatcomprises~5%.Alltheserocktypes the Baltica basement and portions of the allochthons to ultrahigh- are cut by pegmatitic biotite-bearing granite dikes and all contain pressure depths from ~425 to 400 Ma (Andersen et al., 1991; meter-tomillimeter-scaleblocksandlayersofmaficrock:biotitegneiss, Andersen, 1998; Bingen et al., 2004; Root et al., 2004; Terry and amphiboliteand/oreclogite(Eskola,1921)(themineralogydependson Robinson, 2004; Root et al., 2005; Kylander-Clark et al., 2007; bulk composition, block/layer size, and degree of retrogression). Kylander-Clarketal.,2008);and iii)exhumation toshallowcrustal Subordinate rock types include quartzite, carbonate, anorthosite, levels from ~400 to ~385 Ma (Andersen, 1998; Terry et al., 2000a; gabbro, garnet–mica gneiss, and peridotite (Gjelsvik, 1951; Bryhni, Tucker et al., 2004; Hacker, 2007; Walsh et al., 2007). The WGC is 1966;Dransfield,1994;Robinson,1995). Fig.2.WesternGneissRegionexperiencedasequenceofgranulite-faciesPrecambrian,earlyCaledonianamphibolite-facies,ScandianUHP,andScandianamphibolite-facies metamorphic–deformationevents. Please cite this article as: Hacker, B.R., et al., High-temperature deformation during continental-margin subduction & exhumation: The ultrahigh-pressureWesternGneissRegionofNorway,Tectonophysics(2009),doi:10.1016/j.tecto.2009.08.012 ARTICLE IN PRESS B.R.Hackeretal./Tectonophysicsxxx(2009)xxx–xxx 3 TheWGCisstructurallyoverlainbydiscontinuousremnantsofthe Oneormoreepisodesofgreenschist-toamphibolite-faciesmeta- Caledonian allochthons thrust southeastward over the autochthon morphism,peakingat~725°Cand1.2GPa,occurredduringthepre- during the early part of the Scandian orogeny (Gee, 1975). These ScandianphasesoftheCaledonianOrogenybetween480and430Ma allochthonsarebestexposedeastoftheWGRandincludequartzites, in the allochthons east of the WGR (Gee, 1975; Hacker and Gans, muscovite-bearinggneisses,megacrysticaugengneisses,anorthositic– 2005);thiseventhasnotbeenrecognizedintheWGC.TheCaledonian gabbroicgneisses,garnetamphibolites,andgarnet–micaschists(Fig.1). UHP metamorphism (Smith, 1984) that makes the WGR such an TheseallochthonscanbetracedwestwardacrosstheWGRalongthe exciting scientific subject reached peak metamorphic conditions of northern part of Fig. 1 (Surnadalsøra to Løvsøya, Robinson, 1995); 800°Cand3.6GPa(LappinandSmith,1978;seesummaryinHacker, similarrockscropoutdiscontinuouslyacrosstheWGRfarthersouthin 2006) between 420 and 400 Ma (see summary in Kylander-Clark theareaofFig.1(WalshandHacker,2004;Rootetal.,2005;Johnston et al., 2007). Mafic bulk compositions suitable for forming eclogite etal.,2007b). make up ~2% of the WGR; northwest of the ‘eclogite-in’ isograd (Fig. 1), perhaps 70–90%(?) of such mafic rocks did transform to 1.1.1.MetamorphicoverviewoftheWesternGneissRegion eclogite,withtherestremainingunreacted(StraumeandAustrheim, TheWGRisapolymetamorphicterraneinwhichthesequenceof 1999;Krabbendametal.,2000;WalshandHacker,2004).ABarrovian metamorphic events is relatively well understood (Bryhni and to Buchan amphibolite-facies overprint–with local partial melting– Andréasson, 1985) (Figs. 2 and 3) due to incomplete overprinting occurredat650–800°Cduringpost-UHPdecompressionfrom>1.5GPa reactions. An amphibolite- to granulite-facies metamorphism at to~0.5GPa,almostcompletelyobliteratingtherecordof(U)HPmeta- c. 950 Ma was associated with extensive plutonism and reached morphism(Krogh,1980;Chauvetetal.,1992;Dransfield,1994;Straume peakconditionsof~800–900°Cand1.0GPa(e.g.,Cohenetal.,1988; andAustrheim,1999;Hackeretal.,2003b;TerryandRobinson,2003; Tuckeretal.,1990;Krabbendametal.,2000;Kühnetal.,2000;Bingen Labrousseetal.,2004;WalshandHacker,2004;Rootetal.,2005;Engvik et al., 2001; Wain et al., 2001; Corfu and Andersen, 2002; Skår etal.,2007).Importantly,thismetamorphichistorydocumentsthatthe and Pedersen, 2003; Røhr et al., 2004; Root et al., 2005; Glodny UHProckswereexhumednearlyisothermallytodepthsof15–20km. et al., 2008). Decameter- to kilometer-scale relicts of this event U–Pbspheneagesshow thatmeltingassociatedwiththis metamor- (Krabbendam et al., 2000) comprise ~1% of the WGC, but are more phism occurred around 398 Ma in the center of the study area and commonincontinentalallochthonsthatwerethrustovertheBaltica around 389 Ma along the northwestern edge (Tucker et al., 2004; basementatanearlystageofthecollision(Jolivetetal.,2005).Thelocal Kylander-Clark et al., 2008). Muscovite 40Ar/39Ar ages show cooling survival of these granulite-facies assemblages through subsequent through~400°CalongtheeasternedgeoftheWGRat400Maandalong overprintingepisodesisattributedtolowHOactivity,coarsegrainsize, thenorthwesternedgeby385Ma;thecoresoftheUHPdomainshave 2 andlackofdeformation(Austrheim,1987;Krabbendametal.,2000). younger muscovite ages down to 375 Ma (see summary in Hacker, 2007).Notably,thedifferenceinspheneandmuscoviteagesis4–5Myr, implying300–400°Ccoolingatarateof>50°C/Myr. 1.1.2.StructuraloverviewoftheWGR The WGR has a complex deformation history to match the metamorphic record. The Precambrian (c. 950 Ma) amphibolite- to granulite-facies rocks and associated plutons vary from undeformed to strongly deformed (Austrheim and Griffin, 1985). In general, Precambrianfabricsarebestpreservedinthesoutheasternpartofthe study area (Fig. 1; see below), but there are enclaves of preserved Precambrian structures and igneous protoliths throughout the study area—even in the far west where Scandian deformation was most intense(Krabbendametal.,2000).Scandianeclogite-faciesstructures arepreservedinscatteredbodiesofeclogiteacrosstheWGRinthestudy areaandfarthersouth(Andersenetal.,1994;KrabbendamandWain, 1997;LundandAustrheim,2003;TerryandRobinson,2004;Foremanet al.,2005;Engviketal.,2007).Earlybrittleeclogite-faciesstructuressuch as eclogite-facies pseudotachylites are preserved locally (Lund andAustrheim,2003;Johnetal.,2009),buttheeclogitetectonitesare dominated by foliations, lineations and folds formed during ductile deformation. Scandian amphibolite-facies structures are, however, predominant throughout the WGR (Fig. 4). They consist mostly of gentlyplungingENE–WSWtoESE–WNWlineations,isoclinallineation- parallelfolds,andgenerallysymmetricalfabricsimplyingcoaxialstrain histories with a constrictional component (Andersen et al., 1994; Dransfield, 1994; Krabbendam and Wain, 1997; Krabbendam and Dewey,1998;Labrousseetal.,2002; Hackeretal.,2003a;Terry and Robinson, 2003; Engvik et al., 2007; Barth et al., 2010). Along the westernedgeoftheWGR,thesefabricsareoverprintedbyormergeinto the Nordfjord–Sogn Detachment Zone (NSDZ), an amphibolite- to Fig.3.Ultrahigh-pressuremetamorphismintheWesternGneissRegionwaslikely greenschist-facies,W-dipping,top-Wshearzonethatformedtoward precededbytheBarrovian~1GPametamorphismseenintheallochthons(Hackerand Gans,2005),andwasfollowedbyBarrovianmetamorphismbeginningat~1.2GPaand theendoftheScandianorogeny(Norton,1987;AndersenandJamtveit, then by Buchan metamorphism at ~0.5 GPa (ellipses show PT conditions for 1990;seesummaryinJohnstonetal.,2007a). metamorphismsummarizedinHacker,2007);the950Magranulite-faciesmetamor- phism is not shown. Breakdown of K-white mica + garnet + Na-plagioclase to 1.1.3.Decipheringthepolyphasehistory plagioclase+biotitesymplectitewaswidespreadinthewesternWGRduringthepost- These multiple metamorphic and deformational events make it UHP Barrovian metamorphism (Peterman et al., in press). The PT path shown is schematicandpertainsmostcloselytotheUHPdomains. difficulttoascertainthehistoryofanygivenkilometer-tomillimeter- Please cite this article as: Hacker, B.R., et al., High-temperature deformation during continental-margin subduction & exhumation: The ultrahigh-pressureWesternGneissRegionofNorway,Tectonophysics(2009),doi:10.1016/j.tecto.2009.08.012 4 uP ltrahlease igh-pcite reth ssis u ra er Wtic ele steas r: nH Ga nc eisker s, RB e.R gion.,et ofNal., A orwHig B.R R ay,Tectonoh-temperatu .Hackeretal./ TICL physics(2009),doi:10.1016/j.tectoredeformationduringcontinenta Tectonophysicsxxx(2009)xxxxxx– EINPRESS .20l-m 0a 9r .08gin .0s 1u 2b d u c tio n & e xh Fig.4.Theamphibolite-faciesstructuresoftheWesternGneissRegiondefinedistinctdomains.Equal-area,lowerhemispherestereonetsoffoliation(left),lineation,foldaxis,and‘tension’gash(right).Numberofdataofeachtypeindicatedby um “n=…,…,…,…”Best-fitlineation,“L=”,calculatedbyField2k(Mainprice,2005).Alldataarefromthisstudy. a tio n : T h e ARTICLE IN PRESS B.R.Hackeretal./Tectonophysicsxxx(2009)xxx–xxx 5 scalestructure,butsuchdeterminationsarenecessarytounravelthe partofthestudyarea(“UHPdomains”inFig.1).TheUHPeclogites questions posed in the introduction. There are numerous ways to recordpressuresof3.6–2.7GPa(LappinandSmith,1978);pressures assess the sequence of events and to place structures at individual generallydiminishsoutheastwardfromthesedomains(Fig.5),until, outcropsinaregionalcontext.1)Outcrop-scaleoverprintingrelation- atmetamorphicpressuresof~1.8–2.0GPa,theeclogitesgivewayto shipsarethemostdirectmeansofestablishingtherelativetimingof amphibolite-faciesparagenesesalongthedashedlineinFig.1(Krogh, events.ThemosttypicaloverprintingrelationshipintheWGRisthat 1977;WalshandHacker,2004;Youngetal.,2007).Themainrocks amphibolite-faciesstructures–suchasboudinnecks,strainshadows, in the WGR are quartzofeldspathic gneisses that in general do not recrystallized tails, and hydrated, deformed zones–fringe eclogite contain eclogite-facies minerals. Such rocks are not expected to blocks (Terry and Robinson, 2003; Engvik et al., 2007). Also well preserveeclogite-facies minerals(Heinrich,1982), but whetherthe knownareeclogite-faciesoverprintsongranulite-faciesassemblages bulk of the WGR transformed to eclogite-facies minerals (and then (Austrheim,1987;Jolivetetal.,2005).2)Geochronologycanprovide backreacted to low-pressure phases) or not has been difficult to absolute ages. Some eclogite-facies minerals have been dated as assess.High-pressuremineralsinWGRquartzofeldspathicrocksare Scandian (Kylander-Clark et al., 2007; Kylander-Clark et al., 2009), rareandtypicallyconfinedtothemarginsofeclogiteblocks(Engvik and structures in a rock cut by undeformed in situ melt with, for andAndersen,2000;Wainetal.,2000). example, 395 Ma igneous sphene, must be older than 395 Ma Byfarthemostcommonmetamorphicfaciesinthestudyareais (Kylander-Clark et al., 2008). 3) Structures in igneous bodies with amphibolite-facies (Bryhni, 1966;Mysen and Heier, 1971; Labrousse Scandian crystallization ages are clearly Scandian or younger (e.g., etal.,2002;TerryandRobinson,2003;Tuckeretal.,2004;Walshand Hackeretal.,2003a;LundmarkandCorfu,2008). Hacker,2004;Rootetal.,2005).Themainquartzofeldspathicgneissesin thestudyareacontainquartz+plagioclase+biotite±hornblende± 2.Metamorphismofthestudyarea garnet ± K-feldspar. Pelites, whichcomprisea minor fraction of the WGR,havequartz+plagioclase+muscovite+biotite+garnet± AlloftheWGRhasundergoneregionalmetamorphism,however, kyanite and/or sillimanite; mafic rocks contain plagioclase + horn- relictigneousandmetamorphicmineralshavebeenpreservedover blende±garnet±sphene.Thesemineralassemblagesformedchiefly largeareasbecauseofcoarsegrainsize,lackoffluids,and/orlackof attemperaturesof600–800°Candpressuresof1.5–0.5GPa—conditions deformation(Gjelsvik,1951;Mørk,1985;Krabbendametal.,2000). characteristic of Barrovian and then Buchan metamorphism (Fig. 3). Granulite-faciesrocksarefoundthroughoutthestudyareabut,except A general northwestward increase in metamorphic temperature is intheNordfjordarea(Bryhni,1966;Krabbendametal.,2000;Wain indicatedbycalculatedtemperatures,U–Pbspheneages,thedistribu- et al., 2001), are too few to warrant discussion in this paper. The tionofsillimanite,andtexturalevidenceofinsitupartialmelting(Fig.1) eclogite-faciesmetamorphism(Krogh,1977;LappinandSmith,1978) (Labrousseetal.,2002;TerryandRobinson,2003;Tuckeretal.,2004; (Fig.3)ismosteasilyrecognizedinthesmallfractionofmaficrocks WalshandHacker,2004;Rootetal.,2005). scatteredthroughouttheWGR,butisalsolocallypreservedinmore- Much of the quartzofeldspathic gneiss in the western half of the felsiclithologies(EngvikandAndersen,2000;Wainetal.,2000).The study area (‘symplectite in’ line in Fig. 1) contains fine-grained domainsoftheWGRthatcontainUHPeclogitesarein thewestern amphibolite-facies symplectite of biotite + plagioclase (Fig. 6a) Fig.5.Three-dimensionalrenderingofeclogitepressures.BasedondataofMedaris(1984),Wain(1997),Cuthbertetal.(2000),Terryetal.(2000b),CarswellandCuthbert(2003), Hackeretal.(2003a),Labrousseetal.(2004),andRavnaandTerry(2004). Please cite this article as: Hacker, B.R., et al., High-temperature deformation during continental-margin subduction & exhumation: The ultrahigh-pressureWesternGneissRegionofNorway,Tectonophysics(2009),doi:10.1016/j.tecto.2009.08.012 ARTICLE IN PRESS 6 B.R.Hackeretal./Tectonophysicsxxx(2009)xxx–xxx Fig.6.Outcrop-scalestructures;locationgiveninupperleftandmarkedinFig.8.a)Earlydeformationfabricpseudomorphedbysymplectite;nosubsequentdeformation.b)Garnet andplagioclasestableduringearlyamphibolite-faciesdeformation.c)Minorfoldswithaxialplanarbiotitecleavage.d)Amphibolite-faciesshearbands(lookingtoward184°). e)Biotite+chloritestableshearbands(lookingtoward003°).f)Amphibolite-faciesasymmetricboudin(lookingtoward050°).g)DeltaclastwithinmegacrysticK-feldsparaugen gneiss(lookingtoward245°).h)WeaklydeformedPrecambrianmetamorphicfabricscutbyPrecambrianintrusions.i)Undeformedgraniticsegregationsformedfrominsitu meltingspatiallyassociatedwithstatichornblendegrowth.j)Stronglydeformedgraniticsegregations.k)MyloniticrocksinStadlandetUHPdomain.l)High-strainfoldsinSørøyane UHPdomain.m)myloniticrocksinSørøyaneUHPdomain.n)AsymmetricboudinsandmyloniticgneissinNordfjord–SognDetachmentZone(lookingtoward005°).o)Mylonitic K-feldsparaugengneissinVågsøydomain.p)MyloniticfoliationinÅmotsdalendomain. Please cite this article as: Hacker, B.R., et al., High-temperature deformation during continental-margin subduction & exhumation: The ultrahigh-pressureWesternGneissRegionofNorway,Tectonophysics(2009),doi:10.1016/j.tecto.2009.08.012 ARTICLE IN PRESS B.R.Hackeretal./Tectonophysicsxxx(2009)xxx–xxx 7 Fig.6(continued). (Dransfield,1994),whereasthegneisssoutheastofthe‘symplectitein’ nowherecontainsymplectite.Texturesinafewoutcropsandinmany lineinFig.1hascoarsegranoblastictexturesandnosymplectite(Fig.1). thin sections reveal that the symplectite minerals formed from the Rocks such as quartzite, biotite schist, and K-feldspar augen gneiss decomposition of high-pressure amphibolite-facies K-white mica + Please cite this article as: Hacker, B.R., et al., High-temperature deformation during continental-margin subduction & exhumation: The ultrahigh-pressureWesternGneissRegionofNorway,Tectonophysics(2009),doi:10.1016/j.tecto.2009.08.012 8 uP ltrahlease igh-pcite reth ssis u ra er Wtic ele steas r: nH Ga nc eisker s, RB e.R gion.,et ofNal., A orwHig B.R R ay,Tectonoh-temperatu .Hackeretal./ TICL physics(2009),doi:10.1016/j.tectoredeformationduringcontinenta Tectonophysicsxxx(2009)xxxxxx– EINPRESS .20l-m 0a 9r .08gin .0s 1u 2b d u c tio n & e x h Fig.7.Eclogite-faciesstructuresarerelativelysteepwithinNordøyaneandNordfjord,butmoregentlyinclinedelsewhere.BoxesshowtheNordfjordandNordøyaneareasstudiedbyDransfield(1994),KrabbendamandWain(1997)andTerry u m andRobinson(2004).(Onlyeclogitestructuresareshown,noteclogite-faciescountryrockstructures.) a tio n : T h e ARTICLE IN PRESS B.R.Hackeretal./Tectonophysicsxxx(2009)xxx–xxx pp.9-10 Fig.8.Amphibolite-faciesfoliationsinthestudyareaarefoldedaboutlineation-parallelE–Wfolds.SomedatafromDransfield(1994),KrabbendamandWain(1997),LutroandTveten(1998),Tvetenetal.(1998),andTerryandRobinson(2003).FilledcirclescorrespondtolocationsinFig.8. Please cite this article as: Hacker, B.R., et al., High-temperature deformation during continental-margin subduction & exhumation: The ultrahigh-pressureWesternGneissRegionofNorway,Tectonophysics(2009),doi:10.1016/j.tecto.2009.08.012 ARTICLE IN PRESS pp.11-12 B.R.Hackeretal./Tectonophysicsxxx(2009)xxx–xxx Fig.9.Amphibolite-faciesfoldaxesparallelthedominantamphibolite-faciesE–Wstretchinglineation.SomedatafromRobinson(1995),KrabbendamandWain(1997)andTerryandRobinson(2003).Stereonetsshowfoliations(left)andlineations,foldaxesandpolesto‘tension’gashes(right).Numberofdataofeachtypeindicatedby“n=”. Please cite this article as: Hacker, B.R., et al., High-temperature deformation during continental-margin subduction & exhumation: The ultrahigh-pressureWesternGneissRegionofNorway,Tectonophysics(2009),doi:10.1016/j.tecto.2009.08.012

Description:
That the Western Gneiss Region quartzofeldspathic gneiss exhibits a strong Baltica from ~430 to 410 Ma (Tucker et al., 2004; Hacker and Gans,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.