ebook img

Habitat associations and seasonal activity of carabid beetles (Coleoptera: Carabidae) in Dongling Mountain, North China PDF

2006·0.16 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Habitat associations and seasonal activity of carabid beetles (Coleoptera: Carabidae) in Dongling Mountain, North China

©EntomologicaFennica.16June2006 Habitat associations and seasonal activity of carabid beetles (Coleoptera: Carabidae) in Dongling Mountain, North China Xiao-DongYu,Tian-HongLuo&Hong-ZhangZhou* Yu,X.-D.,Luo,T.-H.&Zhou,H.-Z.2006:Habitatassociationsandseasonalac- tivityofcarabidbeetles(Coleoptera:Carabidae)inDonglingMountain,North China.—Entomol.Fennica17:174–183. Habitatdistributionandseasonaloccurrenceofcarabidbeetlesweredetermined usingpitfalltrapsin1999and2000inthetemperateforestzoneoftheDongling Mountain,NorthChina.Eightsitesdifferinginvegetationandmoisturewerese- lectedsoastorepresentfourhabitattypes.Carabidassemblagesofthesixfor- estedhabitats(lowland,uplandandcoppice)weremoresimilartoeachotherthan tothetwoshrubassemblages.Lowlandforesthadthehighestspeciesrichness, andcoppiceforesthadthehighestdiversity(H’)andequitability(J).Ofthe41 speciescaught,the18mostabundantspeciesweredividedintofourdistribution types:habitatgeneralists,forestgeneralists,forestspecialists,andshrub(orcop- pice)specialists.MeancatchesofallbeetlesshowedclearpeaksfromMaytoAu- gust in nearly all habitats. The catches of the six most abundant species were moreorlesspositively correlatedduringthetwostudy years,suggestingtheir similarhabitatpreferences. X.-D.Yu,T.-H.Luo&H.-Z.Zhou*,InstituteofZoology,ChineseAcademyofSci- ences, Beijing 100080, P. R. China; *correspondent author’s e-mail: zhouhz @ioz.ac.cn X.-D.Yu&T.-H.Luo,GraduateSchool,ChineseAcademyofSciences,Beijing 100039,P.R.China Received8June2005,accepted22November2005 1.Introduction 1992,Niemelä&Halme1992).Previousstudies havesuggestedthatthedistributionsofcarabids Theheterogeneousdistributionofresourcesand are generally structured with respect to micro- abioticconditionsaffectthespatialandtemporal habitatpatcheswithinforestsandevenwithinthe occurrence of carabid beetles (Wiens 1976, movementrangeofindividualbeetles(Wallin& Niemelä & Halme 1992, Niemelä et al. 1992). Ekbom1988,Epstein&Kulman1990,Niemelä Associatedwithseveralscalesofenvironmental etal.1988,1992,Niemelä&Halme1992,Nie- heterogeneity, species responses may be deter- melä&Spence1994). minedbydifferentfactorsatthevariouslevelsof Thereexistmany quantitativestudiesonthe environmental heterogeneity (Addicott et al. distributionofcarabidbeetlesinvarioushabitats 1987).Carabidbeetlesshowanon-randomspa- inEuropeandNorthAmerica,andassociationsof tialdistributionbothwithinandbetweenhabitats particular species with broad habitat categories, (Lindroth1961–1969,Thiele1977,Wiens1989, such as “forests” or “fields”, have been estab- Epstein & Kulman 1990, Niemelä et al. 1988, lishedgenerallyforcarabidsinthecontextoftax- ENTOMOL.FENNICAVol.17 (cid:127) HabitatassociationsofcarabidsinChina 175 onomicandfaunisticwork(Lindroth1961–1969, precipitation amounts to 611.9 mm, 78% of the Thiele 1977, Esau & Peters 1975, Liebherr & annualrainfalloccurringbetweenJuneandAu- Marhar1979,Epstein&Kulman1990,Niemelä gust(Chen&Huang1997). &Halme1992,Niemeläetal.1992).However, Eight sites were sampled, each representing for Chinese carabid species quantitative studies vegetation types commonly found in the area. ofthewholeassemblagesarescarce,exceptfora FivesiteswerelocatedatBeijingForestryEco- few studies on the ecology of agricultural envi- system Research Station (BFERS, ca. 114 km ronments or taxonomy (Yu et al. 1980, Huang west of Beijing), at 800–1,600 m a.s.l. At that 1990,Huetal.1998).Studiesofassemblagesof area, oak forests (Quercus liaotungensis) repre- forest carabids are particularly rare, although sentthemostextensiveforesttype,anativeup- someexcellentstudiesonhabitatdistributionand landforestassociation.Insomelowlandandval- molecular evolution, using particular species or ley sites, walnut forests (Juglans mandshurica) groups ofcongeners, do exist (Kimet al. 2000, andmixedbroad-leavedforestsrepresentthetyp- Yuetal.2001,2002,2004,Suetal.2003,2004). icalnativeforests,thelatterbeingmostlydomi- Theexcessivelanduseduringrecentdecades nated by Acer mono, Betula dahurica, Juglans hasresultedinadrasticdecreaseinthetotalforest mandshurica, Fraxinus rhynchophylla, Populus cover and an increasingly skewed size distribu- davidiana, Quercus liaotungensis, Sorbus pau- tionofforestremnants.Thisfragmentationpro- huashanensis,Tiliamongolica,T.mandshurica, cessaccountsformuchofthelossofbiodiversity etc. In addition, in some areas where the native andratesofspeciesextinctionallovertheworld forestshavebeenlogged30–40yearsago,non- (Didhametal.1996).Thetemperateforestzone, native coniferous plantations of larch (Larix alargephytogeographicalzoneinChina,hashis- principis-rupprechtii) and pine (Pinus tabulae- torically been one of the most extensive forests formis)dominate.Atthetimeofthestudy,allof within China. However, at present that area is thefiveforestpatcheswithintheBFERSareahad heavilyimpactedbyhumans. aclosedcanopywithtreeheightof8–15m(upto Comparedwithstudiesdoneatthesamelati- 20 m). The three other sites were located at tudesworld-wide,NorthChinesestudiesonthe Liyuanling,ca.10kmSEfromBFERS,at800– assemblages of carabid beetles in the temperate 1,100ma.s.l.Here,muchofthenativevegetation deciduous broad-leaved forests are rare, and isoakforestthathasbeenclear-cutforfarmland someofthespeciesmayhavebecomeextinctbe- useatleast50–60yearsago.However,duringthe foretheriseofconcern.Thepurposeofthepres- 1990s, farming activities at the study area were entstudywastogainbasicecologicalknowledge aborted and the forest vegetation was restored; on factors affecting carabid beetle abundances. the former clear-cuts sprouted again and devel- We examined the spatial and temporal distribu- opedtooakcoppicestandsthatcanberegardedas tion of carabids in temperate forests of North youngforests(coppiceforests).Theuplandand China,anddescribedthespeciescompositionof valleyareasattheLiyuanlingarea,ontheother carabidassemblagesovermultiplehabitattypes. hand, are dominated by vitex shrubs (Vitex negundo var. heterophylla) and almond shrubs (Prunusarmenicavar.ansu).Allofthecoppice 2.Materialandmethods andshrubsitestostudyhadaclosedcanopy,with theaveragetreeheightbeing2–3m(upto5m). 2.1.Studysite Correspondingtovariationinvegetationand soilmoisture,eightplotswereestablishedinthe ThisstudywasconductedattheDonglingMoun- core of each of the eight sites representing four tain(40º00’N,115º26’E),whichisapartofthe habitat types: three upland forests (oak forest, Taihang Mountain Ranges near Beijing, North larch plantation and pine plantation), two low- China. Thestudy areaisassociatedwithmoun- land forests (walnut forest and mixed broad- tain brown soil and temperate monsoon climate leaved forest), one oak coppice forest, and two with average annual temperature being +4.8º C shrublands (dominated by vitex and almond (January –10.1º C, July +18.3º C). The annual shrubs).Eachofthestudiedforestsorshrublands 176 Yuetal. (cid:127) ENTOMOL.FENNICAVol.17 Soilmoisture dry dry-medium dry-medium dry-medium dry medium-wet wet wet ayers. Litter thin(<1cm)thin(ca.1–2cm) medium-thick(ca.5–8cm) medium(ca.3–5cm)medium(ca.3–5cm)medium-thick(ca.5–8cm) thick(ca.8–10cm)thick(ca.8–10cm) a,etc. ntforeststructurall Herbaceous sparse(ca.10%)sparse-moderate(ca.30%) moderate-dense(ca.50%) sparse-moderate(ca.15%)sparse-moderate(ca.10%)moderate(ca.40%) moderate-dense(ca.60%)dense(ca.80%) mongolicaT.mandshuric, e a columnsrefertodiffer Shrub moderatetodense(ca.60%)dense(ca.80%) dense(ca.90%) sparse(ca.20%)sparse(ca.20%)moderate(ca.40%) moderate-dense(ca.60%)moderate(ca.50%) SorbuspauhuashanensisTili, dLitter dense ngensis, baceousan Canopy – – – moderate-(ca.60%)dense(ca.70%)dense(ca.70%) moderate(ca.55%)moderate(ca.45%) dianaQ.liaotu, er avi H a) sd Table1.Characteristicsofeachplot(vegetationtype).Canopy,Shrub, Habitat/LocationSlope,elevationHabitatPlot ShrubsVitexVSuplandSE-facingslope,Vitexshrubs(negundoheterophyll15º,1,100mvar.PrunusASlowlandSW-facingslope,Almondshrubs(armeniacaansutoupland5º,1,070mvar.)Coppiceforest(youngforest)QuercusOClowlandNW-facingslope,Oakcoppices(liaotungensistoupland10º,1,050m)UplandforestsQuercusOFuplandSE-facingslope,Oakstand(liaotungensis25º,1,250m)PinusPPuplandSW-facingslope,Pineplantation(tabulaeformis20º,1,190m)LarixLPlowlandtoNW-facingslope,Larchplantation(principis-rupprechtiiupland20º,1,140m)LowlandforestsMFlowlandNE-facingslope,Mixedbroad-leaved2º,1,225mforest*JuglansWFlowlandSW-facingslope,Walnutforest(mandshurica5º,1,160m) AcermonoBetuladahuricaJ.mandshuricaFraxinusrhynchophyllaPopulu*Dominatedby,,,, ENTOMOL.FENNICAVol.17 (cid:127) HabitatassociationsofcarabidsinChina 177 wasover4ha,andthedistancebetweenadjacent richness(S)wasthenumberofspeciesforsam- siteswas1–2km.Thecharacteristicsofeachsite pleswithoneormoreindividuals(Pielou1975). areshowninTable1. After logarithmic transformation, Detrended CorrespondenceAnalysis(DCA)wasappliedto comparethecommunitystructureamongdiffer- 2.2.Sampling entsites(Pielou1984)usingthePASTpackage (Hammer et al. 2001). Associations between Carabidbeetleswerecapturedusingpitfalltraps. abundant species were analyzed with non-para- Althoughpitfalltrapsarebiasedtoactiveforms metric Spearman correlation (Sokal & Rohlf andarethereforenotadirectmeasureofabsolute 1981)usingSPSS(1997). populationdensity,thismethodisusefulinmoni- toring and assessing local population changes (Baars 1979, Spence & Niemelä 1994). Traps 3.Results wereplasticbeveragecups(400ml,depth9cm, mouthdiameter7.5cm)filledwithca.100mlof 3.1.Speciesrichnessanddiversity trappingfluid(vinegar:sugar:alcohol:water– 10ml:5g:5ml:20ml)(Yuetal.2004).Asmall Forty-onespeciesin14generaofcarabidswere hole (diameter ca. 0.2 cm) was drilled on each collected(Table2).Fourspecies,eachaccount- trapca.2.5cmbelowthemouthtoallowrainwa- ingfor>10%ofthetotalcatch,wereconsidered ter to flow out. Because of that, some small dominant:Carabusmanifestus,Carabuscrasse- carabids (such as Bembidion and Trechus) may culptus,PterostichusacutidensandPterostichus have been lost from the samples. The collected subovatus. These species altogether accounted specimens were preserved in 70% alcohol for for62%ofthetotalcatch.Twootherspecies,viz. identification. Pristosia sp.1 and Reflexiphodrus refleximargo, SamplingwasconductedfromApriltoOcto- accountedfor8%and7%oftotalspecimens,re- ber(coveringthegrowingseason)in1999.Pitfall spectively.Alltheotherspeciescollectedrepre- trapswereplacedontwotransectsthatwereran- sented<5%ofthetotalcatch. domly arranged within each plot; however, the Inbothyears,thelowlandforesthostedmore distancebetweenadjacenttransectswasatleast speciesthandidtheotherhabitattypes,whereas 100 m. Each transect had 55 traps placed 2 m the shrubland sites had fewer species than the apart. The traps were serviced for every 3 days other habitat types. Moreover, diversity was each month. We continued sampling using the highest in the coppice forests and lowest in the samedesignin2000duringMay,JulyandSep- shrub sites. The catches varied species specifi- tember. cally among the studied habitat types and be- tween the two years. However, in terms of carabidspeciesabundances,thecatchesforboth 2.3.Dataanalysis yearsweremoreevenincoppiceforeststhanin theotherhabitattypes(Table3). Theactivitydensityofcarabidsindifferentplots (habitats)wasvisuallyexaminedusingtheaver- age number (standardized catches to 100 trap- 3.2.Carabidcommunitysimilaritiesamong days)ofbeetlescapturedperplot*trappingday. thestudiedhabitats Species diversity was calculated with Shan- non-Wienerinformationindex(Pielou1975): TheDCAindicatedstrongclusteringsofhabitat (cid:2)s typesoverthetwoyears(Fig.1).Basedontheoc- H'=– P lnP i i currenceandabundanceofcarabidassemblages, i(cid:1)1 twoshrubsiteshadsimilarcarabidassemblages where P is the proportion of the sample repre- i withineachyear;ontheotherhand,theothersix sented by ith species (i = 1–S). Equitability was (all forested) sites including five mature forests representedbyJ=H’/H (Pielou1975).Species max and 1 coppice forest formed another cluster of 178 Yuetal. (cid:127) ENTOMOL.FENNICAVol.17 Table2.Ecologicaldistributionof41speciesofcarabidbeetlescollectedinpitfalltraps,1999–2000.Thespecies areclassifiedintofourtypes. Species Shrubs Coppice Upland Lowland Total Per- forests forests cent VS AS OC PP OF LP WF MF (%) Habitatgeneralists Carabussmaragdinus 22 51 67 10 4 2 12 1 169 4.01 Carabusvladimirskyi 11 41 6 8 7 8 5 1 87 2.06 Pristosiasp.3 – 4 6 – 4 4 21 5 44 1.04 Forestgeneralists Carabusmanifestus 8 1 152 42 233 355 229 68 1088 25.79 Reflexiphodrusrefleximargo – – 27 44 39 122 31 20 283 6.71 Pterostichusacutidens – 1 75 – 81 147 5 190 499 11.83 Pterostichussubovatus – 1 52 1 106 257 8 50 475 11.26 Pristosiasp.1 1 13 66 4 42 134 13 56 329 7.80 Pterostichusfortipes 5 6 39 9 32 1 33 5 130 3.08 Carabusscultipennis – 4 36 5 29 8 25 – 107 2.54 Carabuscrasseculptus – – 4 76 68 226 105 90 569 13.49 Carabussui – – 9 25 39 7 6 5 91 2.16 Pristosiasp.2 – 1 1 1 11 – 22 26 62 1.47 Forestspecialists Carabuscanaliculatus – – – – 2 12 1 1 16 0.38 Pterostichusinterruptus – – – – – 18 – 3 21 0.50 Pterostichusadstrictus – – – – 5 – – 75 80 1.90 Shrubandcoppicespecialists Carabusgranulatus – 7 59 – – 1 7 – 74 1.75 Carabusbrandti 10 3 10 – – – – 1 24 0.57 Otherspecies Agonumnitidum – – – 2 – 1 – – 3 0.07 Amarasp.1 – 1 – 1 – 1 1 – 4 0.09 Amarasp.2 – 1 – – – – – 2 3 0.07 Asaphidionsp. – – – 1 – – – – 1 0.02 Badisterpictus – – – – – – – 1 1 0.02 Bembidionsp.2 – – – – – 2 – – 2 0.05 Carabushemmeli – – – – – 1 – – 1 0.02 Chlaeniusposticalis – 1 – – – – – – 1 0.02 Curtonotussp.1 – – – – – – – 1 1 0.02 Curtonotussp.2 – 1 – – – – – – 1 0.02 Curtonotussp.3 – – – – – 1 – – 1 0.02 Curtonotussp.4 – 1 – – – – – – 1 0.02 Cymindisdaimio 6 – – – – – – – 6 0.14 Harpalusbungii – 1 – 1 – – – – 2 0.05 Harpaluscoreanus – 2 – – – – – – 2 0.05 Harpaluscrates – 5 – – – – – – 5 0.12 Harpalusquadripunctatus – – 1 – – – 1 4 6 0.14 Harpalustinctulus – – – 2 – – – – 2 0.05 Harpalustschiliensis – 1 – – – – – – 1 0.02 Notiophilussp. – – – 7 5 3 3 – 18 0.43 Pristosiasp.4 – – – – – – – 1 1 0.02 Pterostichuslaticollis – – – – – – – 7 7 0.17 Pterostichusmicrocephalus – – 1 – – – – – 1 0.02 Moisture LOW HIGH ENTOMOL.FENNICAVol.17 (cid:127) HabitatassociationsofcarabidsinChina 179 Table3.Carabidspeciesrichness,diversityandequitabilityinthestudiedvegetationtypesandduringthetwo studyyears. Habitattype Richness(S) Diversity(H') Equitability(J) 1999 2000 1999 2000 1999 2000 Shrubs 14 7 1.90 1.37 0.79 0.74 Coppiceforests 16 14 2.28 2.23 0.82 0.84 Uplandforests 16 13 1.94 1.94 0.71 0.75 Lowlandforests 18 15 1.94 1.96 0.67 0.74 sites, indicating rather similar carabid assem- 3.3.Carabiddistribution blages.However,theyoftenshowedremarkable variation in placing over the two-dimensional We regarded a species as being abundant if the DCAspacewithinthegroupofforestedsitesand catchwas>10individualsinatleastonehabitat betweenthetwoyears(Fig.1). typeoverthewholetrappingseason(onaverage Amongthesixmostabundantspecies,C.ma- morethanoneindividualpercollection)andifit nifestus, C. crasseculptus, P. subovatus and P. comprised>5%ofallthebeetlescaptured(modi- acutidensshowedsignificantabundancecorrela- fiedfromNiemeläetal.1992).Accordingtothis tionswitheachother.Morespecifically,P.subo- rule of thumb and based on their occurrence vatus was positively correlated with C. mani- amongthehabitats,wedividedthe18abundant festusoverthetwoyearsandandpositivelywith speciesintofourgroups(Table2). C.crasseculptusin2000.Reflexiphodrusreflexi- margo was positively correlated with the two above-listedCarabusspecies,andPristosiasp.1 3.4.Seasonalactivity was positively correlated with the two Ptero- stichusspeciesandCarabusmanifestusin2000 The mean catches (n / 100 traps * day) with (Table4). pooledcarabidsindicatedadistinctiveabundance peakinAugustinthevitexshrubsites(Fig.2a), relativelyevenabundancefromMaytoAugustin Fig.1.DetrendedCorrespondenceAnalysisforthecarabidsamples.Axes1and2respectivelyexplain37.4% and16.4%ofthetotalvariationin1999and38.1%and8.8%in2000.Shrubs=VS(vitexshrubs)andAS(al- mondshrubs);Coppice=OC(oakcoppice);Uplandforests=PP(pineplantation),OF(oakforest)andLP(larch plantation);Lowlandforests=WF(walnutforest)andMF(mixedbroad-leavedforest). 180 Yuetal. (cid:127) ENTOMOL.FENNICAVol.17 Table4.Spearmanrankcorrelationcoefficients(pvalue)fortheabundanceofthesixcarabidspeciesthatmade up>5%ofthetotalcatchin1999and2000. Species Year C.crasse- P.subovatus P.acutidens R.reflexi- Pristosiasp.1 culptus margo C.manifestus 1999 0.731(0.040) 0.711(0.048) 0.611(0.108) 0.611(0.108) 0.214(0.610) 2000 0.868(0.005) 0.898(0.002) 0.659(0.076) 0.802(0.017) 0.756(0.030) C.crasseculptus 1999 0.461(0.251) 0.657(0.077) 0.639(0.088) –0.024(0.955) 2000 0.800(0.017) 0.630(0.094) 0.861(0.006) 0.691(0.058) P.subovatus 1999 0.849(0.008) 0.545(0.162) 0.602(0.114) 2000 0.859(0.006) 0.614(0.105) 0.908(0.002) P.acutidens 1999 0.392(0.337) 0.587(0.126) 2000 0.319(0.441) 0.975(<0.001) R.refleximargo 1999 0.072(0.866) 2000 0.442(0.273) thealmondshrubsites(Fig.2b),andaJulypeak 4.Discussion inalloftheforestsites(Fig.2c–g)exceptinthe walnutforest,wherethemeancatchesremained 4.1.Speciesabundanceandcomposition highfromJunetoAugust(Fig.2h). Atthespecieslevel,Carabusmanifestushad Our results indicate that although carabid spe- two peaks: in the early season and middle-late cies-level responses to habitat type varied be- season(Fig.3a),whereasCarabuscrasseculptus, tweenthetwoyears,carabidassemblagesofthe P. acutidens, P. subovatus and Pristosia sp. 1. five mature forests and the coppice forest were showed a main peak in the middle season (Fig. moresimilartoeachotherthantothoseinthetwo 3b–e). Finally, Reflexiphodrus refleximargo shrublandsites(Fig.1).Thisresultwasconsistent showedasimilarabundancepatternasdidC.ma- withthemicroclimateandedaphiccharacteristics nifestus(Fig.3f). ofeachhabitat.AsindicatedinTable1,thetwo Fig.2.Seasonalactivity- densityofcarabidbee- tlesintheeighthabitat typesin1999.–a.Vitex shrubs.–b.Almond shrubs.–c.Oakcop- pice.–d.Oakforest. –e.Pineplantation. –f.Larchplantation. –g.Mixedbroad-leaved forest.–h.Walnutfor- est. ENTOMOL.FENNICAVol.17 (cid:127) HabitatassociationsofcarabidsinChina 181 Fig.3.Meancatch (±S.E.)ofthesixmost abundantspeciesthatall comprised>5%oftheto- talcatchin1999. shrubland sites were both characterized by dry work (Lindroth 1961–1969, Thiele 1977), soil,thinleaf-litterlayer,andsparseherbs.Con- carabids were associated with broad habitat trarytothis,thesixforestedhabitatssharedvery types,suchasforestandhrubhabitats.However, differentcharacteristics:moistsoil,thickleaflit- most of 18 abundant species were common in ter,andmoderatetodenseshrublayer.Thus,the severalhabitats,andjustafewwererestrictedto differences between forests and shrub sites in eitherforestorshrubsites.Onthefinerscale,our terms of habitat characteristics might determine resultsalsoshowedthatforestsarepatchyenvi- thedistributionofcarabidsoverthewholestudy ronmentsforcarabids,asthereweresomespecies area. Our previous research on Carabus assem- restrictedtoonlyoneortwohabitattypesstudied. blages in thesamestudy areaalso supports this Niemeläetal.(1992)reportedthatcarabidspe- hypothesis(Yuetal.2002). ciesmayhaveabundancevariationamongdiffer- Ourresultsalsoindicatedthatthecoppicefor- enthabitattypesandthatmostofthespeciesare esthadhigherdiversityandequitabilitythanhad habitat specialists in this sense; they also sug- mature forests and shrub sites, and that the for- gestedthatsoilmoisturecanbeanimportantde- ested sites with closed canopy supported more terminant of carabid habitat associations. How- carabidspeciesandindividualsthandidthetwo ever, wefoundarathersimilarhabitatselection shrubsitesthatwererelativelyopen.Alsothisre- among carabid species, as most of the carabids sultcanbeexplainedbytheedaphiccharacteris- appearedtobeforestgeneralists.Thisdifference tics of different habitats. Except for the aspects maybeattributedtodifferencesinedaphicchar- similar to mature forests, the oak coppice stand acteristicsamonghabitats(Niemeläetal.1992). hadlowercanopycoverandhigherstructuralhet- Thereareonlyafewdetailedreportsoncarabid erogeneitythandidthematureforests;thehetero- fauna among different habitats of North China; geneitymightcontributetothehigherdiversityof therefore,wecouldnotdirectlycomparethede- carabidassemblagethere.Jenningsetal.(1986) tails of carabid distributions. Thus, further re- alsosuggestedthatcarabidscanbecommonlyas- searchoncarabidfaunainthisrespectareclearly sociatedwithclosedthanopenhabitats. needed. 4.2.Carabiddistributionandspatialscale 4.3.Temporaldistribution Carabids responded to habitat structural differ- In extra-tropical regions, the factors regulating ences in varying ways depending on the spatial the life cycles of carabid species may include scale in question. As was expected fromearlier temperatureandphotoperiodicism(Thiele1977, 182 Yuetal. (cid:127) ENTOMOL.FENNICAVol.17 alsothankDr.Ke-PingMa,Xian-MingGao,WeiWang, Qing-KangLiandMs.Wen-JieYan(InstituteofBotany), ourcolleaguesinResearchStationofInstituteofZoology, forfieldandtechnicalassistance,andprovidingmeteoro- logical data. We also acknowledge Dr. Scott L. Bearer (CenterforSystemsIntegrationandSustainability,Michi- gan State University) for linguistic comments on the manuscript,Dr.JariNiemeläandDr.TeijiSotaforkindly sendingreprints.Thisstudywassupportedpartlybythe StateKeyBasicResearchandDevelopmentPlanfromthe Chinese Ministry of Science and Technology (G2000046801),theNationalNaturalScienceFoundation Fig.4.Monthlymeantemperature(ºC)andrelative of China (30570215), a grant for the senior author (no. humidity(%)inthestudiedregionin1999.Meteoro- D/3684-1)oftheInternationalFoundationforSciences(I. logicaldatawerecollectedfromBeijingForestryEco- F.S.,Stockholm,Sweden)andtheNationalScienceFund systemResearchStation(40º00’N,115º26’E,1,200 for Fostering Talents in Basic Research (NSFC- ma.s.l.).Columns=temperature,curve=relativehu- J0030092). midity. Sota 1985, 1994, Lövei & Sunderand 1996), as References suggested by our finding on the distinctive sea- sonalactivitypeaksofcarabids.Incarabids,these Addicott,J.F.,Aho,J.M.,Antolin,M.F.,Padilla,D.K., peaks usually coincide with reproduction Richardson, J. S. & Soluk, D. A. 1987: Ecological (Niemeläetal.1989,1992).Mostspeciesinour neighborhoods: scaling environmental patterns. — Oikos49:340–346. studyshowedprominentabundancepeaksinthe Baars,M.A.1979:Catchesinpitfalltrapsinrelationto middle season; moreover, two abundant species meandensitiesofcarabidbeetles.—Oecologia41: showed two peaks during the growing season. 25–46. This result seems to contradict with the single- Chen,L.-Z.&Huang,J.-H.1997:Thestudyonstructure peakpattern(correspondingtospringorautumn) andfunctionofforestecosysteminwarmtemperate zone.—SciencePress,Beijing.295pp.[InChinese observedinNorthAmericaandEurope(Epstein withEnglishabstract.] &Kulman1990,Niemeläetal.1992).Niemeläet Didham,R.K.,Ghazoul,J.,Stork,N.E.&Davis,A.J. al. (1989) also reported a flexible seasonal 1996:Insectsinfragmentedforests:afunctionalap- rhythm for several dominant carabid species in proach.—TrendsinEcologyandEvolution11:255– the southern Finnish taiga. Perhaps the short 260. Epstein,M.E.&Kulman,H.M.1990:Habitatdistribution growingseasoninhighlatitudesforcescarabids and seasonal occurrence of carabid beetles in East- tobreedinearlysummertoensurethattheiroff- centralMinnesota. — American Midland Naturalist springhaveenoughtimetoreachtheadultstage 123:209–225. beforeover-wintering(Niemeläetal.1989,Sota Esau,K.L.&Peters,D.1975:Carabidaecollectedinpit- 1994).Themiddle-seasonactivitypeakinmore falltrapsinIowacornfields,fencerows,andprairies. —EnvironmentalEntomology4:509–513. southernlatitudes,reportedhere,maybeassoci- Hammer,Ø.,Harper,D.A.T.&Ryan,P.D.2001:PAST: atedwithoptimaltemperatureandsoilmoisture paleontologicalstatisticssoftwarepackageforeduca- ratherthanwiththelengthofthegrowingseason. tionanddataanalysis.—PalaeontologiaElectronica Therelativehumidity,associatedwithsoilmois- 4:9. ture,isalwaysrelativelyhighduringJulytoSep- Hu,D.-X.,Yu,Z.-R.,Han,C.-R.,He,J.-H.&Paoletti,M. tember(>80%),asisthemeantemperaturedur- G.1998:Communitystructureofcarabidsandspiders inagriculturallandscapeinQianJiang,HubeiProv- ing June to August (+16...+19 °C; see Fig. 4). ince.–ActaEntomologicaSinica(Suppl.)41:91–97. Thus,theoptimalconditionsforcarabidsmayoc- [InChinesewithEnglishabstract.] curbetweenJuly andAugust,andmoistureand Huang,T.-L.1990:CatalogusofCarabidae(Coleoptera) temperature might thus determine the seasonal from China (1933–1988). – Sichuan Science and dynamicsofcarabidsinourstudyregion. TechnologyPublishingHouse,Chengdu.119pp.[In ChinesewithEnglishabstract.] Jennings,D.T.,Houseweart,M.W.&Dunn,G.A.1986: Acknowledgements.WethankDr.Hong-BinLiang(Insti- Carabid beetles (Coleoptera: Carabidae) associated tuteofZoology)forassistanceinspeciesidentification.We with strip clear-cut and dense spruce-fir forest of ENTOMOL.FENNICAVol.17 (cid:127) HabitatassociationsofcarabidsinChina 183 Maine.—ColeopteristsBulletin40:251–263. evolutionunderadverseconditions.—In:Danks,H. Kim,C.G.,Zhou,H.-Z.,Imura,Y.,Tominaga,O.,Su,Z. V. (ed.), Insect life-cycle polymorphisms: 99–112. H.&Osawa,S.2000:Patternofmorphologicaldiver- Kluwer,Dordrecht.396pp. sificationintheLeptocarabusgroundbeetles(Cole- Spence,J.R.&Niemelä,J.1994:Samplingcarabidas- optera: Carabidae) as deduced from mitochondrial semblages with pitfall traps: the madness and the ND5genesequences.—MolecularBiologyandEvo- method.—CanadianEntomologist126:881–894. lution17:137–145. SPSS1997:SPSSbase7.5forWindowsuser’sguide.— Liebherr,J.&Marhar,J.1979:Thecarabidfaunaoftheup- SPSSInc,Chicago.883pp. landoakforestinMichigan:surveyandanalysis.— Su,Z.H.,Imura,Y.,Zhou,H.-Z.,Okamoto,M.&Osawa, ColeopteristsBulletin33:183–197. S.2003:Modeofmorphologicaldifferentiationinthe Lindroth, C. H. 1961–1969: The ground beetles Latitarsi-ground beetles (Coleoptera, Carabidae) of (Carabidaeexcl.Cicindelidae)ofCanadaandAlaska. theworldinferredfromaphylogenetictreeofmito- —OpusculaEntomologicae(Suppl.)20:1–200;24: chondrialND5genesequences.—Genes&Genetic 201–408;29:409–648;33:649–944;34:945–1192. Systems78:53–70. Lövei,G.L.&Sunderland,K.D.1996:Ecologyandbe- Su,Z.H.,Imura,Y.,Okamoto,M.,Kim,C.G.,Zhou,H.- haviorofgroundbeetles(Coleoptera:Carabidae).— Z.,Paik,J.C.&Osawa,S.2004:Phylogenyandevo- AnnualReviewofEntomology41:231–256. lution of Digitulati ground beetles (Coleoptera, Niemelä, J. & Halme, E. 1992: Habitat associations of Carabidae)inferredfrommitochondrialND5genese- carabidbeetlesinfieldsandforestsonÅlandIslands, quences.—Molecular&PhylogeneticEvolution30: SWFinland.—Ecography15:3–11. 152–166. Niemelä,J.&Spence,J.R.1994:Distributionofforest Thiele,H.-U.1977:Carabidbeetlesintheirenvironments. dwellingcarabids(Coleoptera):spatialscaleandthe —Springer-Verlag,Berlin.369pp. conceptofcommunities.—Ecography17:166–175. Wallin,H.&Ekbom,B.S.1988:Movementsofcarabid Niemelä,J.,Spence,J.R.&Spence,D.H.1992:Habitat beetles (Coleoptera: Carabidae) inhabiting cereal associations and seasonal activity of ground-beetles fields:afieldtracingstudy.—Oecologia77:39–43. (Coleoptera:Carabidae)inCentralAlberta.—Cana- Wiens,J.A.1976:Populationresponsestopatchyenviron- dianEntomologist124:521–540. ments.—AnnualReviewofEcologyandSystematics Niemelä,J.,Haila,Y.,Halme,E.,Lahti,T.,Pajunen,T.& 7:81–120. Punttila,P.1988:Thedistributionofcarabidbeetlesin Wiens, J. A. 1989:Spatialscalinginecology. —Func- fragmentsofoldconiferoustaigaandadjacentman- tionalEcology3:385–397. agedforest.—AnnalesZoologiciFennici25:107– 119. Yu,P.-Y.1980:PreliminarystudyonChinesecarabidbee- Niemelä,J.,Haila,Y.,Halme,E.,Pajunen,T.&Punttila,P. tlesasgraincroppests.—Entomotaxonomia2:81– 1989:Theannualactivitycycleofcarabidbeetlesin 84.[InChinesewithEnglishabstract.] southernFinnishtaiga.—AnnalesZoologiciFennici Yu,X.-D.,Luo,T.-H.&Zhou,H.-Z.2004:Carabus(Cole- 26:35–41. optera:Carabidae)assemblagesofnativeforestsand Pielou,E.C.1975:Ecologicaldiversity.—Wiley,New non-nativeplantationinNorthernChina.—Entomo- York.165pp. logicaFennica15:129–137. Pielou,E.C.1984:Theinterpretationofecologicaldata. Yu,X.-D.,Zhou,H.-Z.&Luo,T.-H.2001:Habitatdistri- —Wiley,NewYork.263pp. butionandspeciesdiversityofCarabusandCychrus Sokal,R.R&Rohlf,F.J.1981:Biometry.—W.H.Free- inShennongjiaNatureReserve,HubeiProvince.— man,NewYork.859pp. Biodiversity Science 9: 214–221. [In Chinese with Sota,T.1985:LifehistorypatternsofCarabidbeetlesbe- Englishabstract.] longing to the subtribe Carabina (Coleoptera, Cara- Yu,X.-D.,Zhou,H.-Z.&Luo,T.-H.2002:Distribution bidae)intheKinkiDistrict,WesternJapan.—Kontyu patternsandtheirseasonalchangesofCarabusbeetles (Tokyo)53:370–378. inDonglingMountainRegionnearBeijing.—Acta Sota,T.1994:Variationofcarabidlifecyclesalongclima- Ecologica Sinica 22: 1724–1733. [In Chinese with ticgradients:anadaptiveperspectiveforlife-history Englishabstract.]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.