ebook img

Gyrogroup actions: A generalization of group actions PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gyrogroup actions: A generalization of group actions

Gyrogroup actions: 6 A generalization of group actions∗,† 1 0 2 Teerapong Suksumran‡ b e DepartmentofMathematics F NorthDakotaStateUniversity 4 Fargo, ND 58105,USA ] [email protected] R G . h t Abstract a m Thisarticleexploresthenovelnotionofgyrogroupactions,whichisanatural generalizationoftheusualnotionofgroupactions.Asafirststeptowardthestudy [ of gyrogroup actions from the algebraic viewpoint, we prove three well-known 2 theoremsingrouptheoryforgyrogroups:theorbit-stabilizertheorem,theorbitde- v compositiontheorem,andtheBurnsidelemma(ortheCauchy-Frobeniuslemma). 8 Wethenprovethatunder acertaincondition, agyrogroup Gactstransitivelyon 9 thesetG/H ofleftcosetsofasubgyrogroupH inGinanaturalway. Fromthis 4 we prove the structure theorem that every transitive action of a gyrogroup can 6 berealizedasagyrogroup actionbyleftgyroaddition. Wealsoexhibitconcrete 0 examplesofgyrogroupactionsfromtheMo¨biusandEinsteingyrogroups. . 1 0 Keywords. permutation representation, gyrogroup action, orbit-stabilizer theorem, 6 Burnsidelemma,gyrogroup,leftgyroaddition. 1 2010MSC.Primary20C99;Secondary05A05,05A18,20B30,20N05. : v i X 1 Introduction r a The methodof groupaction is consideredas an importantand a powerfultoolin mathematics. It is used to unravel many of mathematical structures. In fact, when onestructureactsonanotherstructure,abetterunderstandingisobtainedonboth.The Sylowtheorems,forinstance,resultfromtheactionofagrouponitselfbyconjugation. ∗ThisisthefinalversionofthemanuscriptappearedinJ.Algebra454(2016),70–91. Thepublished versionofthearticleisaccessibleviadoi:10.1016/j.jalgebra.2015.12.033. †PartofthisworkhasbeenpresentedattheJointMathematics Meetings (JMM2016), Seattle, WA, USA,January6–9,2016. ‡TheauthorwasfinanciallysupportedbyInstituteforPromotionofTeachingScienceandTechnology (IPST),Thailand,throughDevelopmentandPromotionofScienceandTechnologyTalentsProject(DPST). (cid:13)c 2016 Author. This manuscript version is made available under the CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/). T. Suksumran Gyrogroup actions 2 The algebraic structure of a finite group in turn is revealed by the use of the Sylow theorems.Further,manywide-applicationtheoremsingrouptheoryandcombinatorics suchastheorbit-stabilizertheorem,theclassequation,andtheBurnsidelemma(also called the Cauchy-Frobenius lemma) are byproducts of group actions. In addition, groupactionsareusedtoproveversionsoftheLagrangetheorem,theSylowtheorems, andtheHalltheoremsforBruckloopsin[2]. Therearesomeattemptstostudypermutationrepresentationsofquasigroupsand loops—algebraicstructuresthatareageneralizationofgroups. Forinstance,Jonathan Smithhasintensivelystudiedquasigroupandlooprepresentationsinaseriesofpapers [9–11]. Also, the study of sharply transitive sets in quasigroupactions can be found in[7]. Gyrogroupsare a suitable generalizationof groups, arising from the study of the parametrization of the Lorentz transformation group by Abraham Ungar [16]. The origin of a gyrogroupis described in [19] and references therein. Gyrogroupsshare remarkable analogies with groups. In fact, every group forms a gyrogroup under the same operation. Many of classical theorems in group theory continue to hold for gyrogroups, including the Lagrange theorem [13], the fundamentalisomorphism theorems[15],andtheCayleytheorem[15]. Further,harmonicanalysiscanbestudied in the framework of gyrogroups[4,5], using the gyroassociative law in place of the associativelaw. Inthisarticle,wecontinuetoprovesomewell-knowntheoremsingrouptheoryfor gyrogroups,includingtheorbit-stabilizertheorem,theBurnsidelemma,andtheorbit decomposition theorem. These theorems are proved by techniques similar to those used in group theory, where gyroautomorphisms play the fundamental role and the associativelawisreplacedbythegyroassociativelaw. Werecovertheclassicalresults if a gyrogroupis degeneratein the sense thatits gyroautomorphismsare the identity automorphism. It is worth pointingoutthatthe resultsinvolvinggyrogroupsmay be recastintheframeworkofleftBolloopswiththepropertythatleftinnermappingare automorphisms. The structure of the article is organized as follows. In Section 2, we review the basictheoryofgyrogroups.InSection3,westudygyrogroupactionsor,equivalently, permutationrepresentationsofagyrogroup.InSection4,weprovethatunderacertain condition, a gyrogroup G acts transitively on the coset space G/H of left cosets of a subgyrogroup H in G by left gyroaddition. This results in the fundamental iso- morphismtheoremforgyrogroupactions. InSection5,weexhibitconcreteexamples oftransitivegyrogroupactionsfromtheMo¨biusandEinsteingyrogroups. 2 Gyrogroups We summarizebasicpropertiesofgyrogroupsforreference. Muchofthissection canbefoundin[13,15,19]. Thereaderfamiliarwithgyrogrouptheorymayskipthis section. A pair (G,⊕) consisting of a nonempty set G and a binary operation ⊕ on G is called a groupoid. The group of automorphismsof a groupoid(G,⊕) is denoted by Aut(G,⊕). Ungar[19]formulatestheformaldefinitionofagyrogroupasfollows. T. Suksumran Gyrogroup actions 3 Definition2.1(Gyrogroups). Agroupoid(G,⊕)isagyrogroupifitsbinaryoperation satisfiesthefollowingaxioms. (G1) Thereisanelement0∈Gsuchthat0⊕a=aforalla∈G. (G2) Foreacha∈G,thereisanelementb∈Gsuchthatb⊕a=0. (G3) Foralla,b∈G,thereisanautomorphismgyr[a,b]∈Aut(G,⊕)suchthat a⊕(b⊕c)=(a⊕b)⊕gyr[a,b]c (leftgyroassociativelaw) forallc∈G. (G4) Foralla,b∈G,gyr[a⊕b,b]=gyr[a,b]. (leftloopproperty) We remarkthatthe axiomsinDefinition2.1implythe rightcounterparts. Inpar- ticular,anygyrogrouphasauniquetwo-sidedidentity0,andanelementaofthegyro- group has a unique two-sided inverse ⊖a. Let G be a gyrogroup. For a,b∈G, the mapgyr[a,b]iscalledthegyroautomorphismgeneratedbyaandb. ByTheorem2.10 of[19],thegyroautomorphismsarecompletelydeterminedbythegyratoridentity gyr[a,b]c=⊖(a⊕b)⊕(a⊕(b⊕c)) (1) foralla,b,c∈G. Notethateverygroupformsagyrogroupunderthesameoperation bydefiningthegyroautomorphismstobetheidentityautomorphism,buttheconverse isnotingeneraltrue. Fromthispointofview,gyrogroupssuitablygeneralizegroups. Recallthatthecoaddition,⊞,ofagyrogroupGisdefinedbytheequation a⊞b=a⊕gyr[a,⊖b]b (2) fora,b∈G. Seta⊟b=a⊞(⊖b)fora,b∈G. ByTheorem2.22of[19],thefollowing cancellationlawsholdingyrogroups. Theorem2.2([19]). LetGbeagyrogroup.Foralla,b,c∈G, (1) a⊕b=a⊕cimpliesb=c; (generalleftcancellationlaw) (2) ⊖a⊕(a⊕b)=b; (leftcancellationlaw) (3) (b⊖a)⊞a=b; (rightcancellationlawI) (4) (b⊟a)⊕a=b. (rightcancellationlawII) Subgyrogroups,gyrogrouphomomorphisms,andquotientgyrogroupsarestudied in[13,15]. AnattempttoproveagyrogroupversionoftheLagrangetheoremleadsto thenotionofL-subgyrogroups[15]. AsubgyrogroupH ofagyrogroupGiscalledan L-subgyrogroupifgyr[a,h](H)=H foralla∈Gandh∈H. L-subgyrogroupsbehave well in the sense that they partition G into left cosets of equal size. More precisely, if H isan L-subgyrogroupof G, then H anda⊕H :={a⊕h: h∈H} havethesame cardinalityandthecosetspaceG/H:={a⊕H: a∈G}formsadisjointpartitionofG. InthecasewhereGisafinitegyrogroup,weobtainthefamiliarindexformula |G|=[G: H]|H|. (3) T. Suksumran Gyrogroup actions 4 Here, [G: H] denotes the index of H in G, which is defined as the cardinality of the cosetspace G/H. We will see in Section4 thatcertain L-subgyrogroupsgive rise to gyrogroupactionsbyleftgyroaddition. Foranynon-L-subgyrogroupK ofagyrogroupG, itisnolongertruethattheleft cosetsofKpartitionG. Moreover,theindexformula|G|=[G: K]|K|isnotingeneral true. Nevertheless,theorderofanysubgyrogroupofafinitegyrogroupGdividesthe orderofG,see[13,Theorem5.7]. 3 Gyrogroup actions Throughouttheremainderofthearticle,X isa(finiteorinfinite)nonemptysetand Gisa(finiteorinfinite)gyrogroupunlessotherwisestated. 3.1 Definition Definition3.1(Gyrogroupactions). AmapfromG×X toX,written(a,x)7→a·x,is a(gyrogroup)actionofGonX ifthefollowingconditionshold: (1) 0·x=xforallx∈X,and (2) a·(b·x)=(a⊕b)·xforalla,b∈G,x∈X. Inthiscase,X issaidtobeaG-setandGissaidtoactonX. Note that if G is a gyrogroupwith trivial gyroautomorphisms,then the notion of gyrogroup actions specializes to the usual notion of group actions. In other words, gyrogroupactionsnaturallygeneralizegroupactions. We willpresentsomeconcrete examplesofgyrogroupsthatsatisfytheaxiomsofagyrogroupactioninSection5. LetSym(X)denotethegroupofpermutationsofX. Sinceeverygroupisagyro- groupunderthesameoperation,Sym(X),togetherwithfunctioncomposition◦,forms agyrogroupwithtrivialgyroautomorphisms.Thus,itmakessensetospeakofagyro- group homomorphismfrom G to Sym(X). Recall that a map j : G→Sym(X) is a gyrogrouphomomorphismif j (a⊕b)=j (a)◦j (b) (4) foralla,b∈G. ThefollowingtheoremassertsthatanygyrogroupactionofGonX inducesagyro- grouphomomorphismfromGtoSym(X). LetX beaG-set.Foreacha∈G,defines a by s (x)=a·x, x∈X. (5) a Definej˙ bytheequation j˙(a)=s , a∈G. (6) a T. Suksumran Gyrogroup actions 5 Theorem3.2. LetX beaG-set. (1) Foreacha∈G,s definedby(5)isapermutationofX. a (2) Themapj˙ definedby(6)isagyrogrouphomomorphismfromGtoSym(X). Its kerneliskerj˙ ={a∈G: a·x=x forallx∈X}. Proof. Thetheoremfollowsdirectlyfromtheaxiomsofagyrogroupaction. Notethat a∈kerj˙ ifandonlyifs =id ifandonlyifa·x=xforallx∈X. a X AccordingtoTheorem3.2, j˙ iscalledthegyrogrouphomomorphismaffordedby agyrogroupactionofGonX ortheassociatedpermutationrepresentationofG. The processofturningagyrogroupactionintoapermutationrepresentationisreversiblein thesenseofthefollowingtheorem. Theorem3.3. Letj : G→Sym(X)beagyrogrouphomomorphism.Themap·defined bytheequation a·x=j (a)(x), a∈G,x∈X, (7) isagyrogroupactionofGonX. Furthermore,j˙ =j . Proof. Clearly, 0·x=j (0)(x)=id (x)=x for all x∈X. For all a, b∈G, x∈X, X we have a·(b·x)=(j (a)◦j (b))(x)=j (a⊕b)(x)=(a⊕b)·x. By construction, j˙(a)(x)=a·x=j (a)(x)forallx∈X,a∈G. Hence,j˙ =j . Theorems3.2and3.3togetherimplythatthestudyofgyrogroupactionsofGonX isequivalenttothestudyofgyrogrouphomomorphismsfromGtoSym(X). 3.2 Orbits andstabilizers Inthissection,weprovegyrogroupversionsofthreewell-knowntheoremsingroup theoryandcombinatorics: • theorbit-stabilizertheorem; • theorbitdecompositiontheorem; • theBurnsidelemma. WewillseeshortlythatstabilizersubgyrogroupsofGhaveniceproperties.Forin- stance,theyshareremarkablepropertieswithstabilizersubgroups;areL-subgyrogroups andhencepartitionGintoleftcosets;andareinvariantunderthegyroautomorphisms ofG. Amongotherthings,theyleadtotheorbit-stabilizertheoremforgyrogroups. LetX beaG-set. Definearelation∼onX bythecondition x∼y ⇔ y=a·xforsomea∈G. (8) Theorem3.4. Therelation∼definedby(8)isanequivalencerelationonX. T. Suksumran Gyrogroup actions 6 Proof. Letx,y,z∈X. Reflexive.Since0·x=x,wehavex∼x. Symmetric. Supposethatx∼y. Theny=a·xforsomea∈G. Since(⊖a)·y=x, wehavey∼x. Transitive. Suppose that x∼y and y∼z. Then y=a·x and z=b·y for some a,b∈G. Sincez=b·(a·x)=(b⊕a)·x,wehavex∼z. Let x∈X. The equivalenceclass of x determinedby the relation ∼ is called the orbitofxandisdenotedbyorbx,thatis,orbx={y∈X: y∼x}. Itisstraightforward tocheckthat orbx={a·x: a∈G} (9) forallx∈X. ThestabilizerofxinG,denotedbystabx,isdefinedas stabx={a∈G: a·x=x}. (10) Proposition3.5. LetX beaG-set. (1) Foreachx∈X,stabxisasubgyrogroupofG. (2) kerj˙ = stabx. x∈X \ Proof. Clearly, 0 ∈stabx. Let a, b ∈stabx. Since (a⊕b)·x = a·(b·x) =x, we have a⊕b∈stabx. Also, (⊖a)·x=(⊖a)·(a·x)=x. Hence, ⊖a∈stabx. By the subgyrogroupcriterion[15,Proposition14],stabx6G. Item(2)followsdirectlyfrom Theorem3.2(2). Proposition3.6. LetX beaG-set. Foralla,b∈G,x∈X, gyr[a,b](stabx)⊆stabx. Inparticular,ifc∈Gandc·x=x,then(gyr[a,b]c)·x=x. Proof. Letc∈stabx. Accordingtothegyratoridentity(1),wecompute (gyr[a,b]c)·x=[⊖(a⊕b)⊕(a⊕(b⊕c))]·x =⊖(a⊕b)·[a·(b·(c·x))] =⊖(a⊕b)·[a·(b·x)] =⊖(a⊕b)·[(a⊕b)·x] =x. Hence,gyr[a,b]c∈stabx,whichcompletestheproof. Corollary3.7. LetX beaG-set. Foralla,b∈G,x∈X, (1) gyr[a,b](stabx)=stabx,and (2) stabxisanL-subgyrogroupofG. T. Suksumran Gyrogroup actions 7 Proof. Item (1) follows directly from Proposition 6 of [15]. By item (1), stabx is invariantunderthegyroautomorphismsofG. Hence,stabx6 G. L Lemma3.8. LetX beaG-set. Foralla,b∈G,x∈X,thefollowingareequivalent: (1) a·x=b·x; (2) (⊖b⊕a)·x=x; (3) a⊕stabx=b⊕stabx. Proof. Theproofoftheequivalence(1)⇔(2)isstraightforward,usingtheaxiomsof agyrogroupaction.ByCorollary3.7,stabx6 G. Itfollowsthat L (⊖b⊕a)·x=x ⇔ ⊖b⊕a∈stabx ⇔ a⊕stabx=b⊕stabx. Thisprovestheequivalence(2)⇔(3). Wearenowinapositiontostateagyrogroupversionoftheorbit-stabilizertheorem. Theorem3.9(Theorbit-stabilizertheorem). LetGbeagyrogroupactingonasetX. Foreachx∈X,thereexistsabijectionfromtheorbitofxtothecosetspaceG/stabx. Inparticular,ifGisafinitegyrogroup,then |G|=|orbx||stabx|. (11) Proof. Letq bethemapdefinedonorbxby q (a·x)=a⊕stabx, a∈G. By Lemma 3.8, q is well defined and injective. That q is surjective is clear. Since stabxisanL-subgyrogroupofG,(3)implies|G|=[G: stabx]|stabx|. Because [G: stabx]=|G/stabx|=|orbx|, weobtain|G|=|orbx||stabx|. LetX beaG-set. ThesetoffixedpointsofX,denotedbyFix(X),isdefinedas Fix(X)={x∈X: a·x=xforalla∈G}. (12) From(9)onefindsthatx∈Fix(X)ifandonlyiforbx={x}. Thefollowingtheorem can be regarded as a generalization of the class equation familiar from finite group theory. Theorem3.10(Theorbitdecompositiontheorem). LetGbeagyrogroupactingon afinitesetX. Letx ,x ,...,x berepresentativesforthedistinctnonsingletonorbits 1 2 n inX. Then n (cid:229) |X|=|Fix(X)|+ [G: stabx]. (13) i i=1 T. Suksumran Gyrogroup actions 8 Proof. Since{orbx: x∈X}formsadisjointpartitionofX,itfollowsfromtheorbit- stabilizertheoremthat n |X|= orbx + orbx i (cid:12)x∈F[ix(X) (cid:12) (cid:12)i[=1 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:229) n(cid:12) (cid:12) (cid:12) =|Fix(X)|+ |orbx| i i=1 n (cid:229) =|Fix(X)|+ [G: stabx]. i i=1 IfGisafinitegyrogroupwithtrivialgyroautomorphisms,thatis,Gisafinitegroup, thenGactsonitselfbygroup-theoreticconjugation a·x=(a⊕x)⊖a foralla∈G,x∈G. Inthiscase,thesetoffixedpointsofGequalsZ(G), thegroup- theoretic center of G. Further, the stabilizer of x equals C (x), the group-theoretic G centralizer of x in G. From the orbit decomposition theorem, we recover the class equationinfinitegrouptheory, n (cid:229) |G|=|Z(G)|+ [G:C (x)], (14) G i i=1 wherex ,x ,...,x arerepresentativesforthedistinctconjugacyclassesofGnotcon- 1 2 n tainedinthecenterofG. As a consequence of the orbit-stabilizer theorem, we prove the Burnside lemma, alsoknownastheCauchy-Frobeniuslemma,forfinitegyrogroups. LetX beaG-set. Recallthatforx∈X,thestabilizerofxinGisthesubgyrogroup stabx={a∈G: a·x=x}. Dually,fora∈G,thesetofelementsofX fixedbyaisdefinedas fixa={x∈X: a·x=x}. (15) Theorem 3.11 (The Burnside lemma). Let G be a finite gyrogroup and let X be a finiteG-set. ThenumberofdistinctorbitsinX equals 1 (cid:229) |fixa|. |G| a∈G Proof. DefineY ={(a,x)∈G×X: a·x=x}. WecountthenumberofelementsofY intwoways. Notethatforeacha∈G, (a,x)∈Y ifandonlyifa·x=xifandonlyifx∈fixa. Hence,thereareexactly|fixa|pairsinY withfirstcoordinatea. Itfollowsthat (cid:229) |Y|= |fixa|. (16) a∈G T. Suksumran Gyrogroup actions 9 (cid:229) Dually, |Y|= |stabx|. Assume that X is partitionedinto n distinct orbits, namely x∈X orbx ,orbx ,...,orbx . Foreachx∈X,xbelongstoexactlyoneorbit,so 1 2 n n (cid:229) (cid:229) |Y|= |stabx| . (17) i=1 x∈orbxi ! Notethatxbelongstoorbx ifandonlyiforbx=orbx. By(11),|stabx|=|stabx|for i i i allx∈orbx. Hence, i (cid:229) (cid:229) |stabx|= |stabx|=|orbx||stabx|=|G|. i i i x∈orbxi x∈orbxi By(17), n (cid:229) |Y|= |G|=n|G|. (18) i=1 Equating(16)and(18)completestheproof. Thefollowingresultsleadtoadeepunderstandingoftransitivegyrogroupactions, whichwillbestudiedindetailinSections3.4and4. Theorem3.12. LetX beaG-set. Foralla∈G,x∈X, stab(a·x)={(a⊕c)⊟a: c∈stabx}. Proof. For a, b∈G, x∈X, directcomputationshowsthatb∈stab(a·x)if andonly if⊖a⊕(b⊕a)∈stabx. ThetheoremisanapplicationoftherightcancellationlawsI andII. Because oftheabsenceofassociativityin gyrogroups,the expressiona⊕b⊖ais ambiguous.Hence,theconjugateofbbyacannotbedefinedasa⊕b⊖a,asingroup theory. We formulate an appropriate notion of conjugate elements in a gyrogroup, whichismotivatedbyTheorem3.12. Definition3.13(Conjugates). Theelement(a⊕b)⊟aiscalledtheconjugateofbby a. ForagivensubsetBofG,theconjugateofBbya,denotedbyconj (B),isdefined a by conj (B)={(a⊕b)⊟a: b∈B}. (19) a Anelementaisconjugatetoanelementbifaistheconjugateofbbysomeelement ofG. AsubsetAisconjugatetoasubsetBifAistheconjugateofBbysomeelement ofG. If G is a gyrogroup with trivial gyroautomorphisms, then a⊞b= a⊕b for all a, b∈G and the gyrogroup operation ⊕ is associative. In this case, the notion of conjugationinDefinition3.13reducestothatofgroup-theoreticconjugation. Theorem3.14. LetX beaG-set. Forallx,y∈X,ifx∼y,thenstabxandstabyare conjugatetoeachother. T. Suksumran Gyrogroup actions 10 Proof. Supposethatx∼y. Theny=a·xforsomea∈G. ByTheorem3.12, staby=stab(a·x)=conj (stabx). a Similarly,x=(⊖a)·yimpliesstabx=conj (staby). ⊖a 3.3 Invariantsubsets LetGbeagyrogroupactingonX. ForagivensubsetY ofX,define GY ={a·y: a∈G,y∈Y}. (20) WesaythatY isaninvariantsubsetofX ifGY ⊆Y. Clearly,Y isaninvariantsubsetof X ifandonlyifGY =Y. Foreachx∈X,orbxisindeedaninvariantsubsetofX.More generally,ifY isanonemptysubsetofX,thenGY isaninvariantsubsetofX. Invariant subsetsplaytheroleofsubstructuresofaG-set,asthefollowingpropositionindicates. Proposition3.15. LetX beaG-set. IfY isaninvariantsubsetofX,thenGactsonY bytherestrictionoftheactionofGtoY. Proof. BecauseGY =Y,a·ybelongstoY foralla∈Gandy∈Y. Thattheaxiomsof agyrogroupactionaresatisfiedisimmediate. 3.4 Types ofactions Followingterminologyinthetheoryofgroupactions,wepresentseveraltypesof gyrogroup actions. If G is a gyrogroup with gyroautomorphisms being the identity automorphism,theterminologycorrespondstoitsgroupcounterpart. Definition 3.16 (Faithful actions). A gyrogroup action of G on X is faithful if the gyrogrouphomomorphismaffordedbytheactionisinjective. Theorem3.17. LetX beaG-setandletp : G→Sym(X)betheassociatedpermuta- tionrepresentation.ThequotientgyrogroupG/kerp actsfaithfullyonX by (a⊕kerp )·x=a·x (21) foralla∈G,x∈X. Proof. Set K =kerp . By Lemma 3.8, (21) is well defined. Since G/K admits the quotientgyrogroupstructure,wehave (a⊕K)·((b⊕K)·x)=((a⊕K)⊕(b⊕K))·x foralla,b∈G,x∈X. Thisprovesthat(21)definesanactionofG/KonX. Letj˙ bethegyrogrouphomomorphismaffordedbytheaction(21). Supposethat a⊕K∈G/K is such that j˙(a⊕K)=id . Hence, (a⊕K)·x=x for all x∈X. By X (21),a·x=xforallx∈X. Hence,a∈K andsoa⊕K=0⊕K. Thisprovesthatj˙ is injectiveandhencetheaction(21)isfaithful.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.