Gyrogroup actions: 6 A generalization of group actions∗,† 1 0 2 Teerapong Suksumran‡ b e DepartmentofMathematics F NorthDakotaStateUniversity 4 Fargo, ND 58105,USA ] [email protected] R G . h t Abstract a m Thisarticleexploresthenovelnotionofgyrogroupactions,whichisanatural generalizationoftheusualnotionofgroupactions.Asafirststeptowardthestudy [ of gyrogroup actions from the algebraic viewpoint, we prove three well-known 2 theoremsingrouptheoryforgyrogroups:theorbit-stabilizertheorem,theorbitde- v compositiontheorem,andtheBurnsidelemma(ortheCauchy-Frobeniuslemma). 8 Wethenprovethatunder acertaincondition, agyrogroup Gactstransitivelyon 9 thesetG/H ofleftcosetsofasubgyrogroupH inGinanaturalway. Fromthis 4 we prove the structure theorem that every transitive action of a gyrogroup can 6 berealizedasagyrogroup actionbyleftgyroaddition. Wealsoexhibitconcrete 0 examplesofgyrogroupactionsfromtheMo¨biusandEinsteingyrogroups. . 1 0 Keywords. permutation representation, gyrogroup action, orbit-stabilizer theorem, 6 Burnsidelemma,gyrogroup,leftgyroaddition. 1 2010MSC.Primary20C99;Secondary05A05,05A18,20B30,20N05. : v i X 1 Introduction r a The methodof groupaction is consideredas an importantand a powerfultoolin mathematics. It is used to unravel many of mathematical structures. In fact, when onestructureactsonanotherstructure,abetterunderstandingisobtainedonboth.The Sylowtheorems,forinstance,resultfromtheactionofagrouponitselfbyconjugation. ∗ThisisthefinalversionofthemanuscriptappearedinJ.Algebra454(2016),70–91. Thepublished versionofthearticleisaccessibleviadoi:10.1016/j.jalgebra.2015.12.033. †PartofthisworkhasbeenpresentedattheJointMathematics Meetings (JMM2016), Seattle, WA, USA,January6–9,2016. ‡TheauthorwasfinanciallysupportedbyInstituteforPromotionofTeachingScienceandTechnology (IPST),Thailand,throughDevelopmentandPromotionofScienceandTechnologyTalentsProject(DPST). (cid:13)c 2016 Author. This manuscript version is made available under the CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/). T. Suksumran Gyrogroup actions 2 The algebraic structure of a finite group in turn is revealed by the use of the Sylow theorems.Further,manywide-applicationtheoremsingrouptheoryandcombinatorics suchastheorbit-stabilizertheorem,theclassequation,andtheBurnsidelemma(also called the Cauchy-Frobenius lemma) are byproducts of group actions. In addition, groupactionsareusedtoproveversionsoftheLagrangetheorem,theSylowtheorems, andtheHalltheoremsforBruckloopsin[2]. Therearesomeattemptstostudypermutationrepresentationsofquasigroupsand loops—algebraicstructuresthatareageneralizationofgroups. Forinstance,Jonathan Smithhasintensivelystudiedquasigroupandlooprepresentationsinaseriesofpapers [9–11]. Also, the study of sharply transitive sets in quasigroupactions can be found in[7]. Gyrogroupsare a suitable generalizationof groups, arising from the study of the parametrization of the Lorentz transformation group by Abraham Ungar [16]. The origin of a gyrogroupis described in [19] and references therein. Gyrogroupsshare remarkable analogies with groups. In fact, every group forms a gyrogroup under the same operation. Many of classical theorems in group theory continue to hold for gyrogroups, including the Lagrange theorem [13], the fundamentalisomorphism theorems[15],andtheCayleytheorem[15]. Further,harmonicanalysiscanbestudied in the framework of gyrogroups[4,5], using the gyroassociative law in place of the associativelaw. Inthisarticle,wecontinuetoprovesomewell-knowntheoremsingrouptheoryfor gyrogroups,includingtheorbit-stabilizertheorem,theBurnsidelemma,andtheorbit decomposition theorem. These theorems are proved by techniques similar to those used in group theory, where gyroautomorphisms play the fundamental role and the associativelawisreplacedbythegyroassociativelaw. Werecovertheclassicalresults if a gyrogroupis degeneratein the sense thatits gyroautomorphismsare the identity automorphism. It is worth pointingoutthatthe resultsinvolvinggyrogroupsmay be recastintheframeworkofleftBolloopswiththepropertythatleftinnermappingare automorphisms. The structure of the article is organized as follows. In Section 2, we review the basictheoryofgyrogroups.InSection3,westudygyrogroupactionsor,equivalently, permutationrepresentationsofagyrogroup.InSection4,weprovethatunderacertain condition, a gyrogroup G acts transitively on the coset space G/H of left cosets of a subgyrogroup H in G by left gyroaddition. This results in the fundamental iso- morphismtheoremforgyrogroupactions. InSection5,weexhibitconcreteexamples oftransitivegyrogroupactionsfromtheMo¨biusandEinsteingyrogroups. 2 Gyrogroups We summarizebasicpropertiesofgyrogroupsforreference. Muchofthissection canbefoundin[13,15,19]. Thereaderfamiliarwithgyrogrouptheorymayskipthis section. A pair (G,⊕) consisting of a nonempty set G and a binary operation ⊕ on G is called a groupoid. The group of automorphismsof a groupoid(G,⊕) is denoted by Aut(G,⊕). Ungar[19]formulatestheformaldefinitionofagyrogroupasfollows. T. Suksumran Gyrogroup actions 3 Definition2.1(Gyrogroups). Agroupoid(G,⊕)isagyrogroupifitsbinaryoperation satisfiesthefollowingaxioms. (G1) Thereisanelement0∈Gsuchthat0⊕a=aforalla∈G. (G2) Foreacha∈G,thereisanelementb∈Gsuchthatb⊕a=0. (G3) Foralla,b∈G,thereisanautomorphismgyr[a,b]∈Aut(G,⊕)suchthat a⊕(b⊕c)=(a⊕b)⊕gyr[a,b]c (leftgyroassociativelaw) forallc∈G. (G4) Foralla,b∈G,gyr[a⊕b,b]=gyr[a,b]. (leftloopproperty) We remarkthatthe axiomsinDefinition2.1implythe rightcounterparts. Inpar- ticular,anygyrogrouphasauniquetwo-sidedidentity0,andanelementaofthegyro- group has a unique two-sided inverse ⊖a. Let G be a gyrogroup. For a,b∈G, the mapgyr[a,b]iscalledthegyroautomorphismgeneratedbyaandb. ByTheorem2.10 of[19],thegyroautomorphismsarecompletelydeterminedbythegyratoridentity gyr[a,b]c=⊖(a⊕b)⊕(a⊕(b⊕c)) (1) foralla,b,c∈G. Notethateverygroupformsagyrogroupunderthesameoperation bydefiningthegyroautomorphismstobetheidentityautomorphism,buttheconverse isnotingeneraltrue. Fromthispointofview,gyrogroupssuitablygeneralizegroups. Recallthatthecoaddition,⊞,ofagyrogroupGisdefinedbytheequation a⊞b=a⊕gyr[a,⊖b]b (2) fora,b∈G. Seta⊟b=a⊞(⊖b)fora,b∈G. ByTheorem2.22of[19],thefollowing cancellationlawsholdingyrogroups. Theorem2.2([19]). LetGbeagyrogroup.Foralla,b,c∈G, (1) a⊕b=a⊕cimpliesb=c; (generalleftcancellationlaw) (2) ⊖a⊕(a⊕b)=b; (leftcancellationlaw) (3) (b⊖a)⊞a=b; (rightcancellationlawI) (4) (b⊟a)⊕a=b. (rightcancellationlawII) Subgyrogroups,gyrogrouphomomorphisms,andquotientgyrogroupsarestudied in[13,15]. AnattempttoproveagyrogroupversionoftheLagrangetheoremleadsto thenotionofL-subgyrogroups[15]. AsubgyrogroupH ofagyrogroupGiscalledan L-subgyrogroupifgyr[a,h](H)=H foralla∈Gandh∈H. L-subgyrogroupsbehave well in the sense that they partition G into left cosets of equal size. More precisely, if H isan L-subgyrogroupof G, then H anda⊕H :={a⊕h: h∈H} havethesame cardinalityandthecosetspaceG/H:={a⊕H: a∈G}formsadisjointpartitionofG. InthecasewhereGisafinitegyrogroup,weobtainthefamiliarindexformula |G|=[G: H]|H|. (3) T. Suksumran Gyrogroup actions 4 Here, [G: H] denotes the index of H in G, which is defined as the cardinality of the cosetspace G/H. We will see in Section4 thatcertain L-subgyrogroupsgive rise to gyrogroupactionsbyleftgyroaddition. Foranynon-L-subgyrogroupK ofagyrogroupG, itisnolongertruethattheleft cosetsofKpartitionG. Moreover,theindexformula|G|=[G: K]|K|isnotingeneral true. Nevertheless,theorderofanysubgyrogroupofafinitegyrogroupGdividesthe orderofG,see[13,Theorem5.7]. 3 Gyrogroup actions Throughouttheremainderofthearticle,X isa(finiteorinfinite)nonemptysetand Gisa(finiteorinfinite)gyrogroupunlessotherwisestated. 3.1 Definition Definition3.1(Gyrogroupactions). AmapfromG×X toX,written(a,x)7→a·x,is a(gyrogroup)actionofGonX ifthefollowingconditionshold: (1) 0·x=xforallx∈X,and (2) a·(b·x)=(a⊕b)·xforalla,b∈G,x∈X. Inthiscase,X issaidtobeaG-setandGissaidtoactonX. Note that if G is a gyrogroupwith trivial gyroautomorphisms,then the notion of gyrogroup actions specializes to the usual notion of group actions. In other words, gyrogroupactionsnaturallygeneralizegroupactions. We willpresentsomeconcrete examplesofgyrogroupsthatsatisfytheaxiomsofagyrogroupactioninSection5. LetSym(X)denotethegroupofpermutationsofX. Sinceeverygroupisagyro- groupunderthesameoperation,Sym(X),togetherwithfunctioncomposition◦,forms agyrogroupwithtrivialgyroautomorphisms.Thus,itmakessensetospeakofagyro- group homomorphismfrom G to Sym(X). Recall that a map j : G→Sym(X) is a gyrogrouphomomorphismif j (a⊕b)=j (a)◦j (b) (4) foralla,b∈G. ThefollowingtheoremassertsthatanygyrogroupactionofGonX inducesagyro- grouphomomorphismfromGtoSym(X). LetX beaG-set.Foreacha∈G,defines a by s (x)=a·x, x∈X. (5) a Definej˙ bytheequation j˙(a)=s , a∈G. (6) a T. Suksumran Gyrogroup actions 5 Theorem3.2. LetX beaG-set. (1) Foreacha∈G,s definedby(5)isapermutationofX. a (2) Themapj˙ definedby(6)isagyrogrouphomomorphismfromGtoSym(X). Its kerneliskerj˙ ={a∈G: a·x=x forallx∈X}. Proof. Thetheoremfollowsdirectlyfromtheaxiomsofagyrogroupaction. Notethat a∈kerj˙ ifandonlyifs =id ifandonlyifa·x=xforallx∈X. a X AccordingtoTheorem3.2, j˙ iscalledthegyrogrouphomomorphismaffordedby agyrogroupactionofGonX ortheassociatedpermutationrepresentationofG. The processofturningagyrogroupactionintoapermutationrepresentationisreversiblein thesenseofthefollowingtheorem. Theorem3.3. Letj : G→Sym(X)beagyrogrouphomomorphism.Themap·defined bytheequation a·x=j (a)(x), a∈G,x∈X, (7) isagyrogroupactionofGonX. Furthermore,j˙ =j . Proof. Clearly, 0·x=j (0)(x)=id (x)=x for all x∈X. For all a, b∈G, x∈X, X we have a·(b·x)=(j (a)◦j (b))(x)=j (a⊕b)(x)=(a⊕b)·x. By construction, j˙(a)(x)=a·x=j (a)(x)forallx∈X,a∈G. Hence,j˙ =j . Theorems3.2and3.3togetherimplythatthestudyofgyrogroupactionsofGonX isequivalenttothestudyofgyrogrouphomomorphismsfromGtoSym(X). 3.2 Orbits andstabilizers Inthissection,weprovegyrogroupversionsofthreewell-knowntheoremsingroup theoryandcombinatorics: • theorbit-stabilizertheorem; • theorbitdecompositiontheorem; • theBurnsidelemma. WewillseeshortlythatstabilizersubgyrogroupsofGhaveniceproperties.Forin- stance,theyshareremarkablepropertieswithstabilizersubgroups;areL-subgyrogroups andhencepartitionGintoleftcosets;andareinvariantunderthegyroautomorphisms ofG. Amongotherthings,theyleadtotheorbit-stabilizertheoremforgyrogroups. LetX beaG-set. Definearelation∼onX bythecondition x∼y ⇔ y=a·xforsomea∈G. (8) Theorem3.4. Therelation∼definedby(8)isanequivalencerelationonX. T. Suksumran Gyrogroup actions 6 Proof. Letx,y,z∈X. Reflexive.Since0·x=x,wehavex∼x. Symmetric. Supposethatx∼y. Theny=a·xforsomea∈G. Since(⊖a)·y=x, wehavey∼x. Transitive. Suppose that x∼y and y∼z. Then y=a·x and z=b·y for some a,b∈G. Sincez=b·(a·x)=(b⊕a)·x,wehavex∼z. Let x∈X. The equivalenceclass of x determinedby the relation ∼ is called the orbitofxandisdenotedbyorbx,thatis,orbx={y∈X: y∼x}. Itisstraightforward tocheckthat orbx={a·x: a∈G} (9) forallx∈X. ThestabilizerofxinG,denotedbystabx,isdefinedas stabx={a∈G: a·x=x}. (10) Proposition3.5. LetX beaG-set. (1) Foreachx∈X,stabxisasubgyrogroupofG. (2) kerj˙ = stabx. x∈X \ Proof. Clearly, 0 ∈stabx. Let a, b ∈stabx. Since (a⊕b)·x = a·(b·x) =x, we have a⊕b∈stabx. Also, (⊖a)·x=(⊖a)·(a·x)=x. Hence, ⊖a∈stabx. By the subgyrogroupcriterion[15,Proposition14],stabx6G. Item(2)followsdirectlyfrom Theorem3.2(2). Proposition3.6. LetX beaG-set. Foralla,b∈G,x∈X, gyr[a,b](stabx)⊆stabx. Inparticular,ifc∈Gandc·x=x,then(gyr[a,b]c)·x=x. Proof. Letc∈stabx. Accordingtothegyratoridentity(1),wecompute (gyr[a,b]c)·x=[⊖(a⊕b)⊕(a⊕(b⊕c))]·x =⊖(a⊕b)·[a·(b·(c·x))] =⊖(a⊕b)·[a·(b·x)] =⊖(a⊕b)·[(a⊕b)·x] =x. Hence,gyr[a,b]c∈stabx,whichcompletestheproof. Corollary3.7. LetX beaG-set. Foralla,b∈G,x∈X, (1) gyr[a,b](stabx)=stabx,and (2) stabxisanL-subgyrogroupofG. T. Suksumran Gyrogroup actions 7 Proof. Item (1) follows directly from Proposition 6 of [15]. By item (1), stabx is invariantunderthegyroautomorphismsofG. Hence,stabx6 G. L Lemma3.8. LetX beaG-set. Foralla,b∈G,x∈X,thefollowingareequivalent: (1) a·x=b·x; (2) (⊖b⊕a)·x=x; (3) a⊕stabx=b⊕stabx. Proof. Theproofoftheequivalence(1)⇔(2)isstraightforward,usingtheaxiomsof agyrogroupaction.ByCorollary3.7,stabx6 G. Itfollowsthat L (⊖b⊕a)·x=x ⇔ ⊖b⊕a∈stabx ⇔ a⊕stabx=b⊕stabx. Thisprovestheequivalence(2)⇔(3). Wearenowinapositiontostateagyrogroupversionoftheorbit-stabilizertheorem. Theorem3.9(Theorbit-stabilizertheorem). LetGbeagyrogroupactingonasetX. Foreachx∈X,thereexistsabijectionfromtheorbitofxtothecosetspaceG/stabx. Inparticular,ifGisafinitegyrogroup,then |G|=|orbx||stabx|. (11) Proof. Letq bethemapdefinedonorbxby q (a·x)=a⊕stabx, a∈G. By Lemma 3.8, q is well defined and injective. That q is surjective is clear. Since stabxisanL-subgyrogroupofG,(3)implies|G|=[G: stabx]|stabx|. Because [G: stabx]=|G/stabx|=|orbx|, weobtain|G|=|orbx||stabx|. LetX beaG-set. ThesetoffixedpointsofX,denotedbyFix(X),isdefinedas Fix(X)={x∈X: a·x=xforalla∈G}. (12) From(9)onefindsthatx∈Fix(X)ifandonlyiforbx={x}. Thefollowingtheorem can be regarded as a generalization of the class equation familiar from finite group theory. Theorem3.10(Theorbitdecompositiontheorem). LetGbeagyrogroupactingon afinitesetX. Letx ,x ,...,x berepresentativesforthedistinctnonsingletonorbits 1 2 n inX. Then n (cid:229) |X|=|Fix(X)|+ [G: stabx]. (13) i i=1 T. Suksumran Gyrogroup actions 8 Proof. Since{orbx: x∈X}formsadisjointpartitionofX,itfollowsfromtheorbit- stabilizertheoremthat n |X|= orbx + orbx i (cid:12)x∈F[ix(X) (cid:12) (cid:12)i[=1 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:229) n(cid:12) (cid:12) (cid:12) =|Fix(X)|+ |orbx| i i=1 n (cid:229) =|Fix(X)|+ [G: stabx]. i i=1 IfGisafinitegyrogroupwithtrivialgyroautomorphisms,thatis,Gisafinitegroup, thenGactsonitselfbygroup-theoreticconjugation a·x=(a⊕x)⊖a foralla∈G,x∈G. Inthiscase,thesetoffixedpointsofGequalsZ(G), thegroup- theoretic center of G. Further, the stabilizer of x equals C (x), the group-theoretic G centralizer of x in G. From the orbit decomposition theorem, we recover the class equationinfinitegrouptheory, n (cid:229) |G|=|Z(G)|+ [G:C (x)], (14) G i i=1 wherex ,x ,...,x arerepresentativesforthedistinctconjugacyclassesofGnotcon- 1 2 n tainedinthecenterofG. As a consequence of the orbit-stabilizer theorem, we prove the Burnside lemma, alsoknownastheCauchy-Frobeniuslemma,forfinitegyrogroups. LetX beaG-set. Recallthatforx∈X,thestabilizerofxinGisthesubgyrogroup stabx={a∈G: a·x=x}. Dually,fora∈G,thesetofelementsofX fixedbyaisdefinedas fixa={x∈X: a·x=x}. (15) Theorem 3.11 (The Burnside lemma). Let G be a finite gyrogroup and let X be a finiteG-set. ThenumberofdistinctorbitsinX equals 1 (cid:229) |fixa|. |G| a∈G Proof. DefineY ={(a,x)∈G×X: a·x=x}. WecountthenumberofelementsofY intwoways. Notethatforeacha∈G, (a,x)∈Y ifandonlyifa·x=xifandonlyifx∈fixa. Hence,thereareexactly|fixa|pairsinY withfirstcoordinatea. Itfollowsthat (cid:229) |Y|= |fixa|. (16) a∈G T. Suksumran Gyrogroup actions 9 (cid:229) Dually, |Y|= |stabx|. Assume that X is partitionedinto n distinct orbits, namely x∈X orbx ,orbx ,...,orbx . Foreachx∈X,xbelongstoexactlyoneorbit,so 1 2 n n (cid:229) (cid:229) |Y|= |stabx| . (17) i=1 x∈orbxi ! Notethatxbelongstoorbx ifandonlyiforbx=orbx. By(11),|stabx|=|stabx|for i i i allx∈orbx. Hence, i (cid:229) (cid:229) |stabx|= |stabx|=|orbx||stabx|=|G|. i i i x∈orbxi x∈orbxi By(17), n (cid:229) |Y|= |G|=n|G|. (18) i=1 Equating(16)and(18)completestheproof. Thefollowingresultsleadtoadeepunderstandingoftransitivegyrogroupactions, whichwillbestudiedindetailinSections3.4and4. Theorem3.12. LetX beaG-set. Foralla∈G,x∈X, stab(a·x)={(a⊕c)⊟a: c∈stabx}. Proof. For a, b∈G, x∈X, directcomputationshowsthatb∈stab(a·x)if andonly if⊖a⊕(b⊕a)∈stabx. ThetheoremisanapplicationoftherightcancellationlawsI andII. Because oftheabsenceofassociativityin gyrogroups,the expressiona⊕b⊖ais ambiguous.Hence,theconjugateofbbyacannotbedefinedasa⊕b⊖a,asingroup theory. We formulate an appropriate notion of conjugate elements in a gyrogroup, whichismotivatedbyTheorem3.12. Definition3.13(Conjugates). Theelement(a⊕b)⊟aiscalledtheconjugateofbby a. ForagivensubsetBofG,theconjugateofBbya,denotedbyconj (B),isdefined a by conj (B)={(a⊕b)⊟a: b∈B}. (19) a Anelementaisconjugatetoanelementbifaistheconjugateofbbysomeelement ofG. AsubsetAisconjugatetoasubsetBifAistheconjugateofBbysomeelement ofG. If G is a gyrogroup with trivial gyroautomorphisms, then a⊞b= a⊕b for all a, b∈G and the gyrogroup operation ⊕ is associative. In this case, the notion of conjugationinDefinition3.13reducestothatofgroup-theoreticconjugation. Theorem3.14. LetX beaG-set. Forallx,y∈X,ifx∼y,thenstabxandstabyare conjugatetoeachother. T. Suksumran Gyrogroup actions 10 Proof. Supposethatx∼y. Theny=a·xforsomea∈G. ByTheorem3.12, staby=stab(a·x)=conj (stabx). a Similarly,x=(⊖a)·yimpliesstabx=conj (staby). ⊖a 3.3 Invariantsubsets LetGbeagyrogroupactingonX. ForagivensubsetY ofX,define GY ={a·y: a∈G,y∈Y}. (20) WesaythatY isaninvariantsubsetofX ifGY ⊆Y. Clearly,Y isaninvariantsubsetof X ifandonlyifGY =Y. Foreachx∈X,orbxisindeedaninvariantsubsetofX.More generally,ifY isanonemptysubsetofX,thenGY isaninvariantsubsetofX. Invariant subsetsplaytheroleofsubstructuresofaG-set,asthefollowingpropositionindicates. Proposition3.15. LetX beaG-set. IfY isaninvariantsubsetofX,thenGactsonY bytherestrictionoftheactionofGtoY. Proof. BecauseGY =Y,a·ybelongstoY foralla∈Gandy∈Y. Thattheaxiomsof agyrogroupactionaresatisfiedisimmediate. 3.4 Types ofactions Followingterminologyinthetheoryofgroupactions,wepresentseveraltypesof gyrogroup actions. If G is a gyrogroup with gyroautomorphisms being the identity automorphism,theterminologycorrespondstoitsgroupcounterpart. Definition 3.16 (Faithful actions). A gyrogroup action of G on X is faithful if the gyrogrouphomomorphismaffordedbytheactionisinjective. Theorem3.17. LetX beaG-setandletp : G→Sym(X)betheassociatedpermuta- tionrepresentation.ThequotientgyrogroupG/kerp actsfaithfullyonX by (a⊕kerp )·x=a·x (21) foralla∈G,x∈X. Proof. Set K =kerp . By Lemma 3.8, (21) is well defined. Since G/K admits the quotientgyrogroupstructure,wehave (a⊕K)·((b⊕K)·x)=((a⊕K)⊕(b⊕K))·x foralla,b∈G,x∈X. Thisprovesthat(21)definesanactionofG/KonX. Letj˙ bethegyrogrouphomomorphismaffordedbytheaction(21). Supposethat a⊕K∈G/K is such that j˙(a⊕K)=id . Hence, (a⊕K)·x=x for all x∈X. By X (21),a·x=xforallx∈X. Hence,a∈K andsoa⊕K=0⊕K. Thisprovesthatj˙ is injectiveandhencetheaction(21)isfaithful.