SubmittedonSeptember3,2013totheNotreDameJournalofFormalLogic Volume??,Number??, 4 1 0 Guessing, Mind-changing, and the Second Ambiguous 2 Class n a J 9 Samuel Alexander ] O L Abstract Inhisdissertation, Wadge defined anotionof guessability on sub- . setsoftheBairespaceandgavetwocharacterizationsofguessablesets.Asetis h t guessableiffitisinthesecondambiguousclass(DDD 02),iffitiseventuallyannihi- a latedbyacertainremainder. Wesimplifythisremainderandgiveanewproof m ofthelatterequivalence. Wethenintroduceanotionofguessingwithanordinal [ limitonhowoftenonecanchangeone’smind. Weshowthatforeveryordinal a ,aguessablesetisannihilatedbya applicationsofthesimplifiedremainderif 1 andonlyifitisguessablewithfewerthana mindchanges. Weuseguessability v withfewerthana mindchangestogiveasemi-characterizationoftheHausdorff 4 9 difference hierarchy, and indicate how Wadge’s notion of guessability can be 8 generalized to higher-order guessability, providing characterizations of DDD 0a for 1 allsuccessorordinalsa >1. . 1 0 1 Introduction 4 1 Let NN be the set of sequences s:N→N and let N<N be the set ∪nNn of finite : sequences. Ifs∈N<N, wewillwrite[s] for{f ∈NN : f extendss}. We equipNN v with a second-countabletopologyby declaring[s] to be a basic openset whenever i X s∈N<N. r Throughoutthe paper, S will denote a subset of NN. We say that S∈DDD 0 if S is a 2 simultaneouslyacountableintersectionofopensetsandacountableunionofclosed setsintheabovetopology. Inclassicterminology,S∈DDD 02 justincase SisbothGd andFs . ThefollowingnotionwasdiscoveredbyWadge[9] (pp.141–142)andindepen- dentlybythisauthor[1]. 1 2010MathematicsSubjectClassification:Primary03E15 Keywords:guessability,differencehierarchy 1 2 S.Alexander Definition1.1 WesaySisguessableifthereisafunctionG:N<N→{0,1}such thatforevery f ∈NN, 1,if f ∈S, limG(f ↾n)=c (f)= n→¥ S (cid:26) 0,if f 6∈S. Ifso,wesayGguessesS,orthatGisanS-guesser. The intution behind the above notion is captured eloquently by Wadge (p. 142, notationchanged): Guessingsetsallowustoformanopinionastowhetheranelement f ofNN is inSorSc,givenonlyafiniteinitialsegment f ↾nof f. Game theoretically, one envisions an asymmetric game where II (the guesser) has perfectinformation,I(thesequencechooser)haszeroinformation,andII’swinning setconsistsofallsequences(a ,b ,a ,b ,...)suchthatb →1if(a ,a ,...)∈Sand 0 0 1 1 i 0 1 b →0otherwise. i Thefollowingresultwasprovedin[9](pp.144–145)byinfinitegame-theoretical methods. The present author found a second proof [1] using mathematical logical methods. Theorem1.2 (Wadge)SisguessableifandonlyifS∈DDD 0. 2 Wadgedefined(pp.113–114)thefollowingremainderoperation. Definition 1.3 For A,B⊆NN, define Rm0(A,B)=NN. For m >0 an ordinal, define Rmm (A,B)= Rmn (A,B)∩A∩Rmn (A,B)∩B . n\<m (cid:16) (cid:17) (Here•denotestopologicalclosure.)WriteRmm (S)forRmm (S,Sc). By countability considerations, there is some (in fact countable) ordinal m , de- pendingonS,such thatRmm (S)=Rmm ′(S)forall m ′ ≥m ; WadgewritesRmW (S) forRmm (S)forsucham . Hethenprovesthefollowingtheorem: Theorem1.4 (Wadge,attributedtoHausdorff)S∈DDD 02ifandonlyifRmW (S)=0/. InSection2, we introducea simplerremainder(S,a )7→Sa anduseitto givea newproofofTheorem1.4. InSection3,weintroducethenotionofSbeingguessablewhilechangingone’s mindfewerthana manytimes(a ∈Ord)andshowthatthisisequivalenttoSa =0/. InSection4, weshowthatfora >0,Sisguessablewhilechangingone’smind fewerthana +1manytimesifandonlyifatleastoneofSorSc isinthea thlevel ofthedifferencehierarchy. In Section 5, we generalize guessability, introducing the notion of m th-order guessability (1≤ m <w ). We show that S is m th-order guessable if and only if 1 S∈DDD 0m +1. 2 GuessableSetsandRemainders InthissectionwegiveanewproofofTheorem1.4. We finditeasiertoworkwith thefollowingremainder2whichiscloselyrelatedtotheremainderdefinedbyWadge. ForX ⊆N<N,wewillwrite[X]todenotethesetofinfinitesequencesallofwhose finiteinitialsegmentslieinX. GuessingandMind-changing 3 Definition2.1 LetS⊆NN. WedefineSa ⊆N<N (a ∈Ord)bytransfiniterecur- sionasfollows. We defineS0=N<N, andSl =∩b <l Sb foreverylimitordinall . Finally,foreveryordinalb ,wedefine Sb +1={x∈Sb : ∃x′,x′′∈[Sb ]suchthatx⊆x′,x⊆x′′,x′∈S,x′′6∈S}. Wewritea (S)fortheminimalordinala suchthatSa =Sa +1,andwewriteS¥ for Sa (S). ClearlySa ⊆Sb wheneverb <a . ThisremaindernotionisrelatedtoWadge’sas follows. Lemma2.2 Foreachordinala ,Rma (S)=[Sa ]. Proof Since Sa ⊆ Sb whenever b < a , for all a , we have Sa = ∩b <a Sb +1 (with the convention that ∩0/ = N<N). We will show by induction on a that Rma (S)=[Sa ]=[∩b <a Sb +1]. Suppose f ∈[∩b <a Sb +1]. Let b < a . Let U be an open set around f, we can assume U is basic open, so U =[f ], f a finite initial segment of f. Since 0 0 f ∈[∩b <a Sb +1], f0 ∈Sb +1. Thus there are x′,x′′ ∈ [Sb ] extending f0 (hence in U), x′ ∈S, x′′ 6∈S. In otherwords, x′ ∈[∩g<b Sg+1]∩S and x′′ ∈[∩g<b Sg+1]∩Sc. By induction, x′ ∈ Rmb (S)∩S and x′′ ∈ Rmb (S)∩Sc. By arbitrariness of U, f ∈Rmb (S)∩S∩Rmb (S)∩Sc. Byarbitrarinessofb , f ∈Rma (S). Thereverseinclusionissimilar. NotethatLemma2.2doesnotsaythatRma (S)=0/ ifandonlyif Sa =0/. Itis(at leastapriori)possiblethatSa 6=0/ while[Sa ]=0/. Lemma2.2doeshoweverimply that RmW (S)=0/ if and only if S¥ =0/, since it is easy to see that if [Sa ]=0/ then Sa +1=0/. ThusinordertoproveTheorem1.4itsufficestoshowthatSisguessable ifandonlyifS¥ =0/. The⇒directionrequiresnoadditionalmachinery. Proposition2.3 IfSisguessablethenS¥ =0/. Proof Let G : N<N → {0,1} be an S-guesser. Assume (for contradiction) S¥ 6= 0/ and let s 0 ∈ S¥ . We will build a sequence on whose initial segments G diverges, contrary to Definition 1.1. Inductively suppose we have finite se- quences s 0 ⊂6= ··· ⊂6= s k in S¥ such that ∀0 < i ≤ k, G(s i) ≡ i mod2. Since s k∈S¥ =Sa (S)=Sa (S)+1,thereares ′,s ′′∈[S¥ ],extendings k,withs ′∈S,s ′′6∈S. Chooses ∈{s ′,s ′′}withs ∈Siffkiseven.Thenlimn→¥ G(s ↾n)≡k+1mod2. Lets k+1⊂s properlyextends k suchthatG(s k+1)≡k+1mod2. Notes k+1∈S¥ sinces ∈[S¥ ]. By induction, there are s ⊂ s ⊂ ··· such that for i>0, G(s )≡imod2. 0 6= 1 6= i ThiscontradictsDefinition1.1sincelimn→¥ G((∪is i)↾n)oughttoconverge. The⇐directionrequiresalittlemachinery. Definition 2.4 If s ∈ N<N, s 6∈ S¥ , let b (s ) be the least ordinal such that s 6∈Sb (s ). Notethatwhenevers 6∈S¥ ,b (s )isasuccessorordinal. Lemma2.5 Supposes ⊆t are finitesequences. Ift ∈S¥ thens ∈S¥ . And if s 6∈S¥ ,thenb (t )≤b (s ). 4 S.Alexander Proof It is enough to show that ∀b ∈Ord, if t ∈Sb then s ∈Sb . This is by induction on b , the limit and zero cases being trivial. Assume b is successor. If t ∈Sb , this meanst ∈Sb −1 and there are t ′,t ′′ ∈[Sb −1] extendingt with t ′ ∈S, t ′′ 6∈S. Since t ′ and t ′′ extendt , and t extendss , t ′ and t ′′ extends ; and since s ∈Sb −1(byinduction),thisshowss ∈Sb . Lemma2.6 Suppose f :N→N, f 6∈[S¥ ]. Thereissomeisuchthatforall j≥i, f ↾ j6∈S¥ andb (f ↾ j)=b (f ↾i). Furthermore, f ∈[Sb (f↾i)−1]. Proof The first part follows from Lemma 2.5 and the well-foundedness of Ord. For the second part we must show f ↾k ∈Sb (f↾i)−1 for every k. If k ≤i, then f ↾k ∈Sb (f↾i)−1 by Lemma 2.5. If k ≥i, then b (f ↾k)= b (f ↾ i) and so f ↾k∈Sb (f↾i)−1sinceitisinSb (f↾k)−1bydefinitionofb . Definition 2.7 If S¥ = 0/ then we define GS : N<N → {0,1} as follows. Let s ∈N<N. Since S¥ =0/, s 6∈S¥ , so s ∈Sb (s )−1\Sb (s ). Since s 6∈Sb (s ), this meansforeverytwoextensionsx′,x′′ofs in[Sb (s )−1],eitherx′,x′′∈Sorx′,x′′∈Sc. Soeitherallextensionsofs in[Sb (s )−1]areinS,orallsuchextensionsareinSc. (i) If there are no extensions of s in [Sb (s )−1], and length(s ) > 0, then let G (s )=G (s −)wheres − isobtainedfroms byremovingthelastterm. S S (ii) Iftherearenoextensionsofs in[Sb (s )−1],andlength(s )=0,letGS(s )=0. (iii) If there are extensions of s in [Sb (s )−1] and they are all in S, define G (s )=1. S (iv) If there are extensions of s in [Sb (s )−1] and they are all in Sc, define G (s )=0. S Proposition2.8 IfS¥ =0/ thenGS guessesS. Proof Assume S¥ =0/. Let f ∈S. I will show GS(f ↾n)→1 as n→¥ . Since f 6∈[S¥ ],letibeasinLemma2.6. IclaimGS(f ↾ j)=1whenever j≥i. Fix j≥i. Wehaveb (f ↾ j)=b (f ↾i)bychoiceofi,and f ∈[Sb (f↾i)−1]=[Sb (f↾j)−1]. Since f ↾ jhasoneextension(namely f itself)inboth[Sb (f↾j)−1]andS,GS(f ↾ j)=1. Identicalreasoningshowsthatif f 6∈Sthenlimn→¥ GS(f ↾n)=0. Theorem2.9 S∈DDD 02 ifandonlyifS¥ =0/. Thatis,Theorem1.4istrue. Proof BycombiningPropositions2.3and2.8andTheorem1.2. 3 Guessingwithoutchangingone’sMindtoooften In this section our goal is to tease out additional information about DDD 0 from the 2 operationdefinedinDefinition2.1. Definition3.1 ForeachfunctionGwithdomainN<N,ifG(f ↾(n+1))6=G(f ↾n) (f ∈NN, n∈N), wesayGchangesitsmindon f ↾(n+1). Nowleta ∈Ord. We say S is guessable with <a mind changesif there is an S-guesser G along with a functionH:N<N→a suchthatthefollowinghold,where f ∈NNandn∈N. (i) H(f ↾(n+1))≤H(f ↾n). (ii) IfGchangesitsmindon f ↾(n+1),thenH(f ↾(n+1))<H(f ↾n). ThisnotionbearssomeresemblancetothenotionofasetZ⊆Nbeing f-c.e.in [4],org-c.a.in[7]. GuessingandMind-changing 5 Theorem3.2 Fora ∈Ord, Sisguessablewith<a mindchangesifandonlyif Sa =0/. Proof (⇒) Assume S is guessable with <a mind changes. Let G,H be as in Definition 3.1. We claimthatforallb ∈Ord,ifs ∈Sb thenH(s )≥b . Thiswillprove(⇒) becauseitimpliesthatifSa 6=0/ thenthereissomes withH(s )≥a ,absurdsince codomain(H)=a . Weattacktheclaimbyinductiononb . Thezeroandlimitcasesaretrivial. As- sumeb =g +1.Supposes ∈Sg+1.Therearex′,x′′∈[Sg]extendings ,x′∈S,x′′6∈S. Pickx∈{x′,x′′}sothatc (x)6=G(s )andpicks +∈N<Nwiths ⊆s +⊆xsuchthat S G(s +)=c S(x)(somesuchs + existssinceGguessesS). Sincex∈[Sg], s +∈Sg. Byinduction,H(s +)≥g . ThefactG(s +)6=G(s )impliesH(s +)<H(s ),forcing H(s )≥g +1. (⇐) Assume Sa =0/. For all s ∈N<N, define H(s )=b (s )−1 (by definition of b (s ), since Sa =0/, clearly H(s )∈a ). I claim GS,H witness that S is guessable with<a mindchanges. By Proposition 2.8, G guesses S. Let f ∈ NN, n ∈ N. By Lemma 2.5, S H(f ↾ (n+1)) ≤ H(f ↾ n). Now suppose G changes its mind on f ↾ (n+1), S we must show H(f ↾(n+1))<H(f ↾n). Assume, for sake of contradiction,that H(f ↾(n+1))=H(f ↾n). Assume G (f ↾n)=0, the other case is similar. By S definitionofGS, (∗)foreveryinfiniteextension f′ of f ↾n, if f′ ∈[Sb (f↾n)−1] then f′ ∈Sc. SinceG changesitsmindon f ↾(n+1), G (f ↾(n+1))=1. Thus(∗∗) S S for every infinite extension f′′ of f ↾(n+1), if f′′ ∈[Sb (f↾(n+1))−1] then f′′ ∈S. And f ↾(n+1)doesactuallyhavesomesuchinfiniteextension f′′,becauseifithad none,thatwouldmakeG (f ↾(n+1))=G (f ↾n)bycase1ofthedefinitionofG S S S (Definition2.7). Beinganextensionof f ↾(n+1), f′′ alsoextends f ↾n;andbythe assumptionthatH(f ↾(n+1))=H(f ↾n), f′′∈[Sb (f↾n)−1]. By(∗), f′′∈Sc,andby (∗∗), f′′∈S. Absurd. It is not hard to show S is a Boolean combination of open sets if and only if S is guessablewith<w mindchanges,soTheorem3.2andLemma2.2giveanewproof ofaspecialcaseofthemaintheorem(p.1348)of[3](seealso[2]). 4 MindChangingandtheDifferenceHierarchy Werecallthefollowingdefinitionfrom[5](p.175,statedingreatergenerality—we specializeittotheBairespace). Inthisdefinition,SSS 0(NN)isthesetofopensubsets 1 ofNN,andtheparityofanordinalh istheequivalenceclassmodulo2ofn,where h =l +n,l alimitordinal(orl =0),n∈N. Definition 4.1 Let (Ah )h <q be an increasing sequence of subsets of NN with q ≥1. DefinethesetDq ((Ah )h <q )⊆NNby x∈Dq ((Ah )h <q ) ⇔ x∈ Ah & the least h <q with x∈Ah has parity h[<q oppositetothatofq . Let Dq (SSS 01)(NN)={Dq ((Ah )h <q ) : Ah ∈SSS 01(NN),h <q }. 6 S.Alexander ThishierarchyoffersaconstructivecharacterizationofDDD 0: itturnsoutthat 2 DDD 02=∪1≤q <w 1Dq (SSS 01)(NN) (seeTheorem22.27of[5],p.176,attributedtoHausdorffandKuratowski). Forbrevity,wewillwriteDa forDa (SSS 01)(NN). Theorem4.2 (Semi-characterizationofthedifferencehierarchy)Leta >0. The followingareequivalent. (i) Sisguessablewith<a +1mindchanges. (ii) S∈Da orSc∈Da . WewillproveTheorem4.2byasequenceofsmallerresults. Definition4.3 Fora ,b ∈Ord,writea ≡b toindicatethata andb havethesame parity(thatis,2|n−m,wherea =l +nandb =k +m,n,m∈N,l alimitordinal or0,k alimitordinalor0). Proposition4.4 Let a >0. If S∈Da , say S=Da ((Ah )h <a )(Ah ⊆NN open), thenSisguessablewith<a +1mindchanges. Proof Define G : N<N → {0,1} and H : N<N → a +1 as follows. Suppose s ∈N<N. Ifthereisnoh <a suchthat[s ]⊆Ah ,letG(s )=0andletH(s )=a . Ifthereisanh <a (wemaytakeh minimal)suchthat[s ]⊆Ah ,thenlet 0, ifh ≡a ; G(s )= H(s )=h . (cid:26) 1, ifh 6≡a , Let f :N→N. Claim1 limn→¥ G(f ↾n)=c S(f). If f 6∈∪h <a Ah , then f 6∈Da ((Ah )h <a )=S, and G(f ↾n) will always be 0, so limn→¥ G(f ↾n)=0=c S(f). Assume f ∈∪h <a Ah ,andleth <a beminimumsuch that f ∈Ah . SinceAh isopen,thereissomen0 solargethat∀n≥n0,[f ↾n]⊆Ah . Foralln≥n0,byminimalityofh ,[f ↾n]6⊆Ah ′ foranyh ′<h ,soG(f ↾n)=0if andonlyifh ≡a . Thefollowingareequivalent. f ∈Siff f ∈Da ((Ah )h <a ) iffh 6≡a iffG(f ↾n)6=0 iffG(f ↾n)=1. Thisshowslimn→¥ G(f ↾n)=c S(f). Claim2 ∀n∈N,H(f ↾(n+1))≤H(f ↾n). IfH(f ↾n)=a , thereis nothingtoprove. If H(f ↾n)<a , thenH(f ↾n)=h where h is minimal such that [f ↾n]⊆Ah . Since [f ↾(n+1)]⊆[f ↾n], we have [f ↾(n+1)]⊆Ah ,implyingH(f ↾(n+1))≤h . Claim3 ∀n∈N,ifG(f ↾(n+1))6=G(f ↾n),thenH(f ↾(n+1))<H(f ↾n). Assume (for sake of contradiction) H(f ↾ (n+1)) ≥ H(f ↾ n). By Claim 2, H(f ↾ (n+1)) = H(f ↾ n). By definition of H this implies that ∀h < a , [f ↾(n+1)]⊆Ah ifandonlyif[f ↾n]⊆Ah . ThisimpliesG(f ↾(n+1))=G(f ↾n), contradiction. ByClaims1–3,GandHwitnessthatSisguessablewith<a +1mindchanges. GuessingandMind-changing 7 Corollary4.5 Leta >0. IfS∈Da orSc∈Da thenSisguessablewith<a +1 mindchanges. Proof IfS∈Da thisisimmediatebyProposition4.4. IfSc∈Da thenProposition 4.4saysSc isguessablewith<a +1mindchanges,andthisclearlyimpliesthatS istoo. Lemma4.6 SupposeSisguessablewith<a mindchanges.LetG:N<N→{0,1}, H :N<N→a be a pair offunctionswitnessing asmuch (Definition3.1). There is an H′ : N<N → a such that G,H′ also witness that S is guessable with < a mind changes, with H′(0/)=H(0/), and with the additionalproperty that for every f :N→Nandeveryn∈N, H(f ↾(n+1))≡H(f ↾n)ifandonlyifG(f ↾(n+1))=G(f ↾n). Proof DefineH′(s )byinductiononthelengthofs asfollows.LetH′(0/)=H(0/). If s 6= 0/, write s = s ⌢ n for some n ∈ N (⌢ denotes concatenation). If 0 G(s ) = G(s ), let H′(s ) = H′(s ). Otherwise, let H′(s ) be either H(s ) or 0 0 H(s )+1,whicheverhasparityoppositetoH′(s ). 0 By construction H′ has the desired parity properties. A simple inductive argu- mentshowsthat(∗)∀s ∈N<N,H(s )≤H′(s )<a . Iclaimthatforall f :N→N and n ∈ N, H′(f ↾ (n+1)) ≤ H′(f ↾ n), and if G(f ↾ (n+1)) 6= G(f ↾ n) then H′(f ↾(n+1))<H′(f ↾n). IfG(f ↾(n+1))=G(f ↾n),thenbydefinitionH′(f ↾(n+1))=H′(f ↾n)andthe claimistrivial.NowassumeG(f ↾(n+1))6=G(f↾n).IfH′(f ↾(n+1))=H(f↾(n+1)) thenH′(f ↾(n+1))<H(f ↾n)≤H′(f ↾n)andwearedone.Assume H′(f ↾(n+1))6=H(f ↾(n+1)), whichforcesthat(∗∗)H′(f ↾(n+1))=H(f ↾(n+1))+1. Toseethat H′(f ↾(n+1))<H′(f ↾n), assumenot(∗∗∗).ByDefinition3.1,H(f ↾(n+1))<H(f ↾n),so H(f ↾n)≥H(f ↾(n+1))+1 (Basicarithmetic) =H′(f ↾(n+1)) (By(∗∗)) ≥H′(f ↾n) (By(∗∗∗)) ≥H(f ↾n). (By(∗)) Equalityholdsthroughout,andH′(f ↾(n+1))=H′(f ↾n).Contradiction:wechose H′(f ↾(n+1))withparityoppositetoH′(f ↾n). Definition 4.7 For all G,H as in Definition 3.1, f ∈ NN, write G(f) for limn→¥ G(f ↾n) (so G(f) = c S(f)) and write H(f) for limn→¥ H(f ↾ n). Write G ≡ H to indicate that ∀f ∈ NN, G(f) ≡ H(f); write G 6≡ H to indicate that ∀f ∈NN,G(f)6≡H(f)(wepronounceG6≡H as“GisanticongruenttoH”). Lemma4.8 SupposeG:N<N→{0,1}andH:N<N→a witnessthatSisguess- ablewith<a mindchanges.ThereisanH′:N<N→a suchthatG,H′witnessthat Sisguessablewith<a mindchanges,andsuchthatthefollowinghold. IfG(0/)≡a thenH′6≡G. IfG(0/)6≡a thenH′≡G. 8 S.Alexander Proof Iclaimthatwithoutlossofgenerality,wemayassumethefollowing(∗): IfG(0/)≡a thenH(0/)6≡G(0/). IfG(0/)6≡a thenH(0/)≡G(0/). To seethis, supposenot: eitherG(0/)≡a andH(0/)≡G(0/), orelse G(0/)6≡a and H(0/)6≡G(0/).Ineithercase,H(0/)≡a .IfH(0/)≡a thenH(0/)+16=a ,andso,since H(0/)<a ,H(0/)+1<a ,meaningwemayadd1toH(0/)toenforcetheassumption. Having assumed (∗), we may use Lemma 4.6 to construct H′ :N<N →a such thatG,H′witnessthatSisguessablewith<a mindchanges,H′(0/)=H(0/),andH′ changesparitypreciselywhenGchangesparity.Thelatterfacts,combinedwith(∗), provethelemma. Proposition4.9 SupposeG:N<N→{0,1}andH:N<N→a +1witnessthatS isguessablewith<a +1mindchanges.IfG(0/)=0thenS∈Da . Proof ByLemma4.8wemaysafelyassumethefollowing: IfG(0/)≡a +1thenH 6≡G. IfG(0/)6≡a +1thenH≡G. Inotherwords, (∗)IfG(0/)≡a thenH≡G. (∗∗)IfG(0/)6≡a thenH6≡G. Foreachh <a ,let Ah ={f ∈NN : H(f)≤h }. (H(f)asinDefinition4.7) IclaimS=Da ((Ah )h <a ),whichwillprovethepropositionsinceeachAh isclearly open. Suppose f ∈S,Iwillshow f ∈Da ((Ah )h <a ). Since f ∈S,H(f)6=a ,because if H(f) were =a , this would imply that G never changes its mind on f, forcing limn→¥ G(f ↾n)=limn→¥ G(0/)=0,contradictingthefactthatGguessesS. SinceH(f)6=a ,H(f)<a . Itfollowsthatforh =H(f)wehave f ∈Ah andh isminimalwiththisproperty. Case 1: G(0/) ≡ a . By (∗), H ≡ G. Since f ∈ S, limn→¥ G(f ↾ n) = 1, so h = limn→¥ H(f ↾ n) ≡ 1. Since a ≡ G(0/) = 0, this shows h 6≡ a , putting f ∈Da ((Ah )h <a ). Case 2: G(0/) 6≡ a . By (∗∗), H 6≡ G. Since f ∈ S, limn→¥ G(f ↾ n) = 1, so h = limn→¥ H(f ↾ n) ≡ 0. Since a 6≡ G(0/) = 0, this shows h 6≡ a , so f ∈Da ((Ah )h <a ). Conversely,suppose f ∈Da ((Ah )h <a ), Iwillshow f ∈S. Leth beminimalsuch that f ∈Ah (bydefinitionofAh ,h =H(f)). BydefinitionofDa ((Ah )h <a ),h 6≡a . Case1:G(0/)≡a .By(∗),H≡G.Sincelimn→¥ H(f ↾n)=H(f)=h 6≡a ≡G(0/)=0, weseelimn→¥ H(f ↾n)=1.SinceH≡G,limn→¥ G(f ↾n)=1,forcing f ∈Ssince GguessesS. Case2: G(0/)6≡a . By(∗∗),H6≡G. Since limH(f ↾n)=H(f)=h 6≡a 6≡G(0/)=0, n→¥ we see limn→¥ H(f ↾n)=0. Since H 6≡G, limn→¥ G(f ↾n)=1, again showing f ∈S. Corollary 4.10 If S is guessable with < a +1 mind changes, then S ∈Da or Sc∈Da . GuessingandMind-changing 9 Proof LetG,HwitnessthatSisguessablewith<a +1mindchanges.IfG(0/)=0 thenS∈Da byProposition4.9. Ifnot,then(1−G),H witnessthatSc isguessable with<a +1mindchanges,and(1−G)(0/)=0,soSc∈Da byProposition4.9. CombiningCorollaries4.5and4.10provesTheorem4.2. 5 Higher-orderGuessability Inthissectionweintroduceanotionthatgeneralizesguessabilitytoprovideachar- acterizationforDDD 0m +1 (1≤m <w 1). WewillshowthatS∈DDD 0m +1 ifandonlyifSis m th-orderguessable.Throughoutthissection,m denotesanordinalin[1,w ). 1 Definition 5.1 Let S = (S0,S1,...) be a countably infinite tuple of subsets S ⊆NN. i (i) Forevery f ∈NN,writeS(f)forthesequence(c (f),c (f),...)∈{0,1}N. S0 S1 (ii) WesaythatSisguessablebasedonS ifthereisafunction G:{0,1}<N→{0,1} (calledanS-guesserbasedonS)suchthat∀f ∈NN, limG(S(f)↾n)=c (f). n→¥ S Gametheoretically,weenvisionagamewhereI (thesequencechooser)haszero informationandII (theguesser)haspossiblybetter-than-perfectinformation: II is allowedtoask (onceperturn)whetherI’ssequencelies invariousS. ForeachS, i i playerI’sact(byansweringthequestion)ofcommittingtoplayasequenceinS or i inScissimilartotheact(describedin[6],p.366)ofchoosingaI-imposedsubgame. i Example5.2 IfS enumeratesthesetsoftheform{f ∈NN : f(i)= j},i,j∈N thenitisnothardtoshowthatSisguessable(inthesenseofDefinition1.1)ifand onlyifSisguessablebasedonS. Definition5.3 WesaySism th-orderguessableifthereissomeS =(S0,S1,...) asinDefinition5.1suchthatthefollowinghold. (i) SisguessablebasedonS. (ii) ∀i,Si∈DDD 0mi+1 forsomem i<m . Theorem5.4 Sism th-orderguessableifandonlyifS∈DDD 0m +1. In order to prove Theorem 5.4 we will assume the following result, which is a specialization and rephrasing of Exercise 22.17 of [5] (pp. 172–173, attributed to Kuratowski). Lemma5.5 Thefollowingareequivalent. (i) S∈DDD 0m +1. (ii) Thereisasequence(Ai)i∈N,eachAi∈DDD 0mi+1 forsomem i<m ,suchthat S= A = A . m m [n m\≥n \n m[≥n ProofofTheorem5.4 10 S.Alexander (⇒) Let S = (S ,S ,...) and G witness that S is m th-order guessable (so each 0 1 Si∈DDD 0mi+1forsomem i<m ). Foralla∈{0,1}andX ⊆NN,define X, ifa=1; Xa=(cid:26) NN\X, ifa=0. For notational convenience, we will write “G(~a) = 1” as an abbreviation for “0 ≤ a ,...,a ≤ 1 and G(a ,...,a ) = 1,” provided m is clear from con- 0 m−1 0 m−1 text. Observethatforall f ∈NNandm∈N,G(S(f)↾m)=1ifandonlyif m−1 f ∈ Saj. j G([~a)=1 j\=0 Now,given f :N→N, f ∈S ifandonlyifG(S(f)↾n)→1, whichistrueifand onlyif∃n∀m≥n,G(S(f)↾m)=1. Thus f ∈Siff∃n∀m≥n,G(S(f)↾m)=1 m−1 iff∃n∀m≥n, f ∈ Saj j G([~a)=1 j\=0 m−1 iff f ∈ Saj. j [n m\≥nG([~a)=1 j\=0 So m−1 S= Saj. j [n m\≥nG([~a)=1 j\=0 Atthesametime,sinceG(S(f)↾m)→0whenever f 6∈S,wesee f ∈Sifandonly if∀n∃m≥nsuchthatG(S(f)↾m)=1. Thusbysimilarreasoningtotheabove, m−1 S= Saj. j \n m[≥nG([~a)=1 j\=0 Foreachm, m−1Saj isafiniteunionoffiniteintersectionsofsetsinDDD 0 G(~a)=1 j=0 j m ′+1 forvariousmS′<m ,thTus G(~a)=1 mj=−01Sajj itselfisinDDD 0mm+1forsomem m<m .Letting Am= G(~a)=1 mj=−01Sajj,SLemmaT5.5saysS∈DDD 0m +1. (m⇐<)AmSs,ssuumchetShTa∈tDDD 0m +1. ByLemma5.5,thereare(Ai)i∈N,eachAi∈DDD 0mi+1forsome i S= A = A . (∗) m m [n m\≥n \n m[≥n IclaimthatSisguessablebasedonS =(A ,A ,...). DefineG:{0,1}<N→{0,1} 0 1 byG(a ,...,a )=a ,IwillshowthatGisanS-guesserbasedonS. 0 m m Suppose f ∈S.By(∗),∃ns.t.∀m≥n, f ∈A andthusc (f)=1.Forallm≥n, m Am G(S(f)↾(m+1))=G(c (f),...,c (f)) A0 Am =c (f) Am =1, so limn→¥ G(S(f) ↾ n) = 1. A similar argument shows that if f 6∈ S then limn→¥ G(S(f)↾n)=0.