ebook img

Guessing, Mind-changing, and the Second Ambiguous Class PDF

0.12 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Guessing, Mind-changing, and the Second Ambiguous Class

SubmittedonSeptember3,2013totheNotreDameJournalofFormalLogic Volume??,Number??, 4 1 0 Guessing, Mind-changing, and the Second Ambiguous 2 Class n a J 9 Samuel Alexander ] O L Abstract Inhisdissertation, Wadge defined anotionof guessability on sub- . setsoftheBairespaceandgavetwocharacterizationsofguessablesets.Asetis h t guessableiffitisinthesecondambiguousclass(DDD 02),iffitiseventuallyannihi- a latedbyacertainremainder. Wesimplifythisremainderandgiveanewproof m ofthelatterequivalence. Wethenintroduceanotionofguessingwithanordinal [ limitonhowoftenonecanchangeone’smind. Weshowthatforeveryordinal a ,aguessablesetisannihilatedbya applicationsofthesimplifiedremainderif 1 andonlyifitisguessablewithfewerthana mindchanges. Weuseguessability v withfewerthana mindchangestogiveasemi-characterizationoftheHausdorff 4 9 difference hierarchy, and indicate how Wadge’s notion of guessability can be 8 generalized to higher-order guessability, providing characterizations of DDD 0a for 1 allsuccessorordinalsa >1. . 1 0 1 Introduction 4 1 Let NN be the set of sequences s:N→N and let N<N be the set ∪nNn of finite : sequences. Ifs∈N<N, wewillwrite[s] for{f ∈NN : f extendss}. We equipNN v with a second-countabletopologyby declaring[s] to be a basic openset whenever i X s∈N<N. r Throughoutthe paper, S will denote a subset of NN. We say that S∈DDD 0 if S is a 2 simultaneouslyacountableintersectionofopensetsandacountableunionofclosed setsintheabovetopology. Inclassicterminology,S∈DDD 02 justincase SisbothGd andFs . ThefollowingnotionwasdiscoveredbyWadge[9] (pp.141–142)andindepen- dentlybythisauthor[1]. 1 2010MathematicsSubjectClassification:Primary03E15 Keywords:guessability,differencehierarchy 1 2 S.Alexander Definition1.1 WesaySisguessableifthereisafunctionG:N<N→{0,1}such thatforevery f ∈NN, 1,if f ∈S, limG(f ↾n)=c (f)= n→¥ S (cid:26) 0,if f 6∈S. Ifso,wesayGguessesS,orthatGisanS-guesser. The intution behind the above notion is captured eloquently by Wadge (p. 142, notationchanged): Guessingsetsallowustoformanopinionastowhetheranelement f ofNN is inSorSc,givenonlyafiniteinitialsegment f ↾nof f. Game theoretically, one envisions an asymmetric game where II (the guesser) has perfectinformation,I(thesequencechooser)haszeroinformation,andII’swinning setconsistsofallsequences(a ,b ,a ,b ,...)suchthatb →1if(a ,a ,...)∈Sand 0 0 1 1 i 0 1 b →0otherwise. i Thefollowingresultwasprovedin[9](pp.144–145)byinfinitegame-theoretical methods. The present author found a second proof [1] using mathematical logical methods. Theorem1.2 (Wadge)SisguessableifandonlyifS∈DDD 0. 2 Wadgedefined(pp.113–114)thefollowingremainderoperation. Definition 1.3 For A,B⊆NN, define Rm0(A,B)=NN. For m >0 an ordinal, define Rmm (A,B)= Rmn (A,B)∩A∩Rmn (A,B)∩B . n\<m (cid:16) (cid:17) (Here•denotestopologicalclosure.)WriteRmm (S)forRmm (S,Sc). By countability considerations, there is some (in fact countable) ordinal m , de- pendingonS,such thatRmm (S)=Rmm ′(S)forall m ′ ≥m ; WadgewritesRmW (S) forRmm (S)forsucham . Hethenprovesthefollowingtheorem: Theorem1.4 (Wadge,attributedtoHausdorff)S∈DDD 02ifandonlyifRmW (S)=0/. InSection2, we introducea simplerremainder(S,a )7→Sa anduseitto givea newproofofTheorem1.4. InSection3,weintroducethenotionofSbeingguessablewhilechangingone’s mindfewerthana manytimes(a ∈Ord)andshowthatthisisequivalenttoSa =0/. InSection4, weshowthatfora >0,Sisguessablewhilechangingone’smind fewerthana +1manytimesifandonlyifatleastoneofSorSc isinthea thlevel ofthedifferencehierarchy. In Section 5, we generalize guessability, introducing the notion of m th-order guessability (1≤ m <w ). We show that S is m th-order guessable if and only if 1 S∈DDD 0m +1. 2 GuessableSetsandRemainders InthissectionwegiveanewproofofTheorem1.4. We finditeasiertoworkwith thefollowingremainder2whichiscloselyrelatedtotheremainderdefinedbyWadge. ForX ⊆N<N,wewillwrite[X]todenotethesetofinfinitesequencesallofwhose finiteinitialsegmentslieinX. GuessingandMind-changing 3 Definition2.1 LetS⊆NN. WedefineSa ⊆N<N (a ∈Ord)bytransfiniterecur- sionasfollows. We defineS0=N<N, andSl =∩b <l Sb foreverylimitordinall . Finally,foreveryordinalb ,wedefine Sb +1={x∈Sb : ∃x′,x′′∈[Sb ]suchthatx⊆x′,x⊆x′′,x′∈S,x′′6∈S}. Wewritea (S)fortheminimalordinala suchthatSa =Sa +1,andwewriteS¥ for Sa (S). ClearlySa ⊆Sb wheneverb <a . ThisremaindernotionisrelatedtoWadge’sas follows. Lemma2.2 Foreachordinala ,Rma (S)=[Sa ]. Proof Since Sa ⊆ Sb whenever b < a , for all a , we have Sa = ∩b <a Sb +1 (with the convention that ∩0/ = N<N). We will show by induction on a that Rma (S)=[Sa ]=[∩b <a Sb +1]. Suppose f ∈[∩b <a Sb +1]. Let b < a . Let U be an open set around f, we can assume U is basic open, so U =[f ], f a finite initial segment of f. Since 0 0 f ∈[∩b <a Sb +1], f0 ∈Sb +1. Thus there are x′,x′′ ∈ [Sb ] extending f0 (hence in U), x′ ∈S, x′′ 6∈S. In otherwords, x′ ∈[∩g<b Sg+1]∩S and x′′ ∈[∩g<b Sg+1]∩Sc. By induction, x′ ∈ Rmb (S)∩S and x′′ ∈ Rmb (S)∩Sc. By arbitrariness of U, f ∈Rmb (S)∩S∩Rmb (S)∩Sc. Byarbitrarinessofb , f ∈Rma (S). Thereverseinclusionissimilar. NotethatLemma2.2doesnotsaythatRma (S)=0/ ifandonlyif Sa =0/. Itis(at leastapriori)possiblethatSa 6=0/ while[Sa ]=0/. Lemma2.2doeshoweverimply that RmW (S)=0/ if and only if S¥ =0/, since it is easy to see that if [Sa ]=0/ then Sa +1=0/. ThusinordertoproveTheorem1.4itsufficestoshowthatSisguessable ifandonlyifS¥ =0/. The⇒directionrequiresnoadditionalmachinery. Proposition2.3 IfSisguessablethenS¥ =0/. Proof Let G : N<N → {0,1} be an S-guesser. Assume (for contradiction) S¥ 6= 0/ and let s 0 ∈ S¥ . We will build a sequence on whose initial segments G diverges, contrary to Definition 1.1. Inductively suppose we have finite se- quences s 0 ⊂6= ··· ⊂6= s k in S¥ such that ∀0 < i ≤ k, G(s i) ≡ i mod2. Since s k∈S¥ =Sa (S)=Sa (S)+1,thereares ′,s ′′∈[S¥ ],extendings k,withs ′∈S,s ′′6∈S. Chooses ∈{s ′,s ′′}withs ∈Siffkiseven.Thenlimn→¥ G(s ↾n)≡k+1mod2. Lets k+1⊂s properlyextends k suchthatG(s k+1)≡k+1mod2. Notes k+1∈S¥ sinces ∈[S¥ ]. By induction, there are s ⊂ s ⊂ ··· such that for i>0, G(s )≡imod2. 0 6= 1 6= i ThiscontradictsDefinition1.1sincelimn→¥ G((∪is i)↾n)oughttoconverge. The⇐directionrequiresalittlemachinery. Definition 2.4 If s ∈ N<N, s 6∈ S¥ , let b (s ) be the least ordinal such that s 6∈Sb (s ). Notethatwhenevers 6∈S¥ ,b (s )isasuccessorordinal. Lemma2.5 Supposes ⊆t are finitesequences. Ift ∈S¥ thens ∈S¥ . And if s 6∈S¥ ,thenb (t )≤b (s ). 4 S.Alexander Proof It is enough to show that ∀b ∈Ord, if t ∈Sb then s ∈Sb . This is by induction on b , the limit and zero cases being trivial. Assume b is successor. If t ∈Sb , this meanst ∈Sb −1 and there are t ′,t ′′ ∈[Sb −1] extendingt with t ′ ∈S, t ′′ 6∈S. Since t ′ and t ′′ extendt , and t extendss , t ′ and t ′′ extends ; and since s ∈Sb −1(byinduction),thisshowss ∈Sb . Lemma2.6 Suppose f :N→N, f 6∈[S¥ ]. Thereissomeisuchthatforall j≥i, f ↾ j6∈S¥ andb (f ↾ j)=b (f ↾i). Furthermore, f ∈[Sb (f↾i)−1]. Proof The first part follows from Lemma 2.5 and the well-foundedness of Ord. For the second part we must show f ↾k ∈Sb (f↾i)−1 for every k. If k ≤i, then f ↾k ∈Sb (f↾i)−1 by Lemma 2.5. If k ≥i, then b (f ↾k)= b (f ↾ i) and so f ↾k∈Sb (f↾i)−1sinceitisinSb (f↾k)−1bydefinitionofb . Definition 2.7 If S¥ = 0/ then we define GS : N<N → {0,1} as follows. Let s ∈N<N. Since S¥ =0/, s 6∈S¥ , so s ∈Sb (s )−1\Sb (s ). Since s 6∈Sb (s ), this meansforeverytwoextensionsx′,x′′ofs in[Sb (s )−1],eitherx′,x′′∈Sorx′,x′′∈Sc. Soeitherallextensionsofs in[Sb (s )−1]areinS,orallsuchextensionsareinSc. (i) If there are no extensions of s in [Sb (s )−1], and length(s ) > 0, then let G (s )=G (s −)wheres − isobtainedfroms byremovingthelastterm. S S (ii) Iftherearenoextensionsofs in[Sb (s )−1],andlength(s )=0,letGS(s )=0. (iii) If there are extensions of s in [Sb (s )−1] and they are all in S, define G (s )=1. S (iv) If there are extensions of s in [Sb (s )−1] and they are all in Sc, define G (s )=0. S Proposition2.8 IfS¥ =0/ thenGS guessesS. Proof Assume S¥ =0/. Let f ∈S. I will show GS(f ↾n)→1 as n→¥ . Since f 6∈[S¥ ],letibeasinLemma2.6. IclaimGS(f ↾ j)=1whenever j≥i. Fix j≥i. Wehaveb (f ↾ j)=b (f ↾i)bychoiceofi,and f ∈[Sb (f↾i)−1]=[Sb (f↾j)−1]. Since f ↾ jhasoneextension(namely f itself)inboth[Sb (f↾j)−1]andS,GS(f ↾ j)=1. Identicalreasoningshowsthatif f 6∈Sthenlimn→¥ GS(f ↾n)=0. Theorem2.9 S∈DDD 02 ifandonlyifS¥ =0/. Thatis,Theorem1.4istrue. Proof BycombiningPropositions2.3and2.8andTheorem1.2. 3 Guessingwithoutchangingone’sMindtoooften In this section our goal is to tease out additional information about DDD 0 from the 2 operationdefinedinDefinition2.1. Definition3.1 ForeachfunctionGwithdomainN<N,ifG(f ↾(n+1))6=G(f ↾n) (f ∈NN, n∈N), wesayGchangesitsmindon f ↾(n+1). Nowleta ∈Ord. We say S is guessable with <a mind changesif there is an S-guesser G along with a functionH:N<N→a suchthatthefollowinghold,where f ∈NNandn∈N. (i) H(f ↾(n+1))≤H(f ↾n). (ii) IfGchangesitsmindon f ↾(n+1),thenH(f ↾(n+1))<H(f ↾n). ThisnotionbearssomeresemblancetothenotionofasetZ⊆Nbeing f-c.e.in [4],org-c.a.in[7]. GuessingandMind-changing 5 Theorem3.2 Fora ∈Ord, Sisguessablewith<a mindchangesifandonlyif Sa =0/. Proof (⇒) Assume S is guessable with <a mind changes. Let G,H be as in Definition 3.1. We claimthatforallb ∈Ord,ifs ∈Sb thenH(s )≥b . Thiswillprove(⇒) becauseitimpliesthatifSa 6=0/ thenthereissomes withH(s )≥a ,absurdsince codomain(H)=a . Weattacktheclaimbyinductiononb . Thezeroandlimitcasesaretrivial. As- sumeb =g +1.Supposes ∈Sg+1.Therearex′,x′′∈[Sg]extendings ,x′∈S,x′′6∈S. Pickx∈{x′,x′′}sothatc (x)6=G(s )andpicks +∈N<Nwiths ⊆s +⊆xsuchthat S G(s +)=c S(x)(somesuchs + existssinceGguessesS). Sincex∈[Sg], s +∈Sg. Byinduction,H(s +)≥g . ThefactG(s +)6=G(s )impliesH(s +)<H(s ),forcing H(s )≥g +1. (⇐) Assume Sa =0/. For all s ∈N<N, define H(s )=b (s )−1 (by definition of b (s ), since Sa =0/, clearly H(s )∈a ). I claim GS,H witness that S is guessable with<a mindchanges. By Proposition 2.8, G guesses S. Let f ∈ NN, n ∈ N. By Lemma 2.5, S H(f ↾ (n+1)) ≤ H(f ↾ n). Now suppose G changes its mind on f ↾ (n+1), S we must show H(f ↾(n+1))<H(f ↾n). Assume, for sake of contradiction,that H(f ↾(n+1))=H(f ↾n). Assume G (f ↾n)=0, the other case is similar. By S definitionofGS, (∗)foreveryinfiniteextension f′ of f ↾n, if f′ ∈[Sb (f↾n)−1] then f′ ∈Sc. SinceG changesitsmindon f ↾(n+1), G (f ↾(n+1))=1. Thus(∗∗) S S for every infinite extension f′′ of f ↾(n+1), if f′′ ∈[Sb (f↾(n+1))−1] then f′′ ∈S. And f ↾(n+1)doesactuallyhavesomesuchinfiniteextension f′′,becauseifithad none,thatwouldmakeG (f ↾(n+1))=G (f ↾n)bycase1ofthedefinitionofG S S S (Definition2.7). Beinganextensionof f ↾(n+1), f′′ alsoextends f ↾n;andbythe assumptionthatH(f ↾(n+1))=H(f ↾n), f′′∈[Sb (f↾n)−1]. By(∗), f′′∈Sc,andby (∗∗), f′′∈S. Absurd. It is not hard to show S is a Boolean combination of open sets if and only if S is guessablewith<w mindchanges,soTheorem3.2andLemma2.2giveanewproof ofaspecialcaseofthemaintheorem(p.1348)of[3](seealso[2]). 4 MindChangingandtheDifferenceHierarchy Werecallthefollowingdefinitionfrom[5](p.175,statedingreatergenerality—we specializeittotheBairespace). Inthisdefinition,SSS 0(NN)isthesetofopensubsets 1 ofNN,andtheparityofanordinalh istheequivalenceclassmodulo2ofn,where h =l +n,l alimitordinal(orl =0),n∈N. Definition 4.1 Let (Ah )h <q be an increasing sequence of subsets of NN with q ≥1. DefinethesetDq ((Ah )h <q )⊆NNby x∈Dq ((Ah )h <q ) ⇔ x∈ Ah & the least h <q with x∈Ah has parity h[<q oppositetothatofq . Let Dq (SSS 01)(NN)={Dq ((Ah )h <q ) : Ah ∈SSS 01(NN),h <q }. 6 S.Alexander ThishierarchyoffersaconstructivecharacterizationofDDD 0: itturnsoutthat 2 DDD 02=∪1≤q <w 1Dq (SSS 01)(NN) (seeTheorem22.27of[5],p.176,attributedtoHausdorffandKuratowski). Forbrevity,wewillwriteDa forDa (SSS 01)(NN). Theorem4.2 (Semi-characterizationofthedifferencehierarchy)Leta >0. The followingareequivalent. (i) Sisguessablewith<a +1mindchanges. (ii) S∈Da orSc∈Da . WewillproveTheorem4.2byasequenceofsmallerresults. Definition4.3 Fora ,b ∈Ord,writea ≡b toindicatethata andb havethesame parity(thatis,2|n−m,wherea =l +nandb =k +m,n,m∈N,l alimitordinal or0,k alimitordinalor0). Proposition4.4 Let a >0. If S∈Da , say S=Da ((Ah )h <a )(Ah ⊆NN open), thenSisguessablewith<a +1mindchanges. Proof Define G : N<N → {0,1} and H : N<N → a +1 as follows. Suppose s ∈N<N. Ifthereisnoh <a suchthat[s ]⊆Ah ,letG(s )=0andletH(s )=a . Ifthereisanh <a (wemaytakeh minimal)suchthat[s ]⊆Ah ,thenlet 0, ifh ≡a ; G(s )= H(s )=h . (cid:26) 1, ifh 6≡a , Let f :N→N. Claim1 limn→¥ G(f ↾n)=c S(f). If f 6∈∪h <a Ah , then f 6∈Da ((Ah )h <a )=S, and G(f ↾n) will always be 0, so limn→¥ G(f ↾n)=0=c S(f). Assume f ∈∪h <a Ah ,andleth <a beminimumsuch that f ∈Ah . SinceAh isopen,thereissomen0 solargethat∀n≥n0,[f ↾n]⊆Ah . Foralln≥n0,byminimalityofh ,[f ↾n]6⊆Ah ′ foranyh ′<h ,soG(f ↾n)=0if andonlyifh ≡a . Thefollowingareequivalent. f ∈Siff f ∈Da ((Ah )h <a ) iffh 6≡a iffG(f ↾n)6=0 iffG(f ↾n)=1. Thisshowslimn→¥ G(f ↾n)=c S(f). Claim2 ∀n∈N,H(f ↾(n+1))≤H(f ↾n). IfH(f ↾n)=a , thereis nothingtoprove. If H(f ↾n)<a , thenH(f ↾n)=h where h is minimal such that [f ↾n]⊆Ah . Since [f ↾(n+1)]⊆[f ↾n], we have [f ↾(n+1)]⊆Ah ,implyingH(f ↾(n+1))≤h . Claim3 ∀n∈N,ifG(f ↾(n+1))6=G(f ↾n),thenH(f ↾(n+1))<H(f ↾n). Assume (for sake of contradiction) H(f ↾ (n+1)) ≥ H(f ↾ n). By Claim 2, H(f ↾ (n+1)) = H(f ↾ n). By definition of H this implies that ∀h < a , [f ↾(n+1)]⊆Ah ifandonlyif[f ↾n]⊆Ah . ThisimpliesG(f ↾(n+1))=G(f ↾n), contradiction. ByClaims1–3,GandHwitnessthatSisguessablewith<a +1mindchanges. GuessingandMind-changing 7 Corollary4.5 Leta >0. IfS∈Da orSc∈Da thenSisguessablewith<a +1 mindchanges. Proof IfS∈Da thisisimmediatebyProposition4.4. IfSc∈Da thenProposition 4.4saysSc isguessablewith<a +1mindchanges,andthisclearlyimpliesthatS istoo. Lemma4.6 SupposeSisguessablewith<a mindchanges.LetG:N<N→{0,1}, H :N<N→a be a pair offunctionswitnessing asmuch (Definition3.1). There is an H′ : N<N → a such that G,H′ also witness that S is guessable with < a mind changes, with H′(0/)=H(0/), and with the additionalproperty that for every f :N→Nandeveryn∈N, H(f ↾(n+1))≡H(f ↾n)ifandonlyifG(f ↾(n+1))=G(f ↾n). Proof DefineH′(s )byinductiononthelengthofs asfollows.LetH′(0/)=H(0/). If s 6= 0/, write s = s ⌢ n for some n ∈ N (⌢ denotes concatenation). If 0 G(s ) = G(s ), let H′(s ) = H′(s ). Otherwise, let H′(s ) be either H(s ) or 0 0 H(s )+1,whicheverhasparityoppositetoH′(s ). 0 By construction H′ has the desired parity properties. A simple inductive argu- mentshowsthat(∗)∀s ∈N<N,H(s )≤H′(s )<a . Iclaimthatforall f :N→N and n ∈ N, H′(f ↾ (n+1)) ≤ H′(f ↾ n), and if G(f ↾ (n+1)) 6= G(f ↾ n) then H′(f ↾(n+1))<H′(f ↾n). IfG(f ↾(n+1))=G(f ↾n),thenbydefinitionH′(f ↾(n+1))=H′(f ↾n)andthe claimistrivial.NowassumeG(f ↾(n+1))6=G(f↾n).IfH′(f ↾(n+1))=H(f↾(n+1)) thenH′(f ↾(n+1))<H(f ↾n)≤H′(f ↾n)andwearedone.Assume H′(f ↾(n+1))6=H(f ↾(n+1)), whichforcesthat(∗∗)H′(f ↾(n+1))=H(f ↾(n+1))+1. Toseethat H′(f ↾(n+1))<H′(f ↾n), assumenot(∗∗∗).ByDefinition3.1,H(f ↾(n+1))<H(f ↾n),so H(f ↾n)≥H(f ↾(n+1))+1 (Basicarithmetic) =H′(f ↾(n+1)) (By(∗∗)) ≥H′(f ↾n) (By(∗∗∗)) ≥H(f ↾n). (By(∗)) Equalityholdsthroughout,andH′(f ↾(n+1))=H′(f ↾n).Contradiction:wechose H′(f ↾(n+1))withparityoppositetoH′(f ↾n). Definition 4.7 For all G,H as in Definition 3.1, f ∈ NN, write G(f) for limn→¥ G(f ↾n) (so G(f) = c S(f)) and write H(f) for limn→¥ H(f ↾ n). Write G ≡ H to indicate that ∀f ∈ NN, G(f) ≡ H(f); write G 6≡ H to indicate that ∀f ∈NN,G(f)6≡H(f)(wepronounceG6≡H as“GisanticongruenttoH”). Lemma4.8 SupposeG:N<N→{0,1}andH:N<N→a witnessthatSisguess- ablewith<a mindchanges.ThereisanH′:N<N→a suchthatG,H′witnessthat Sisguessablewith<a mindchanges,andsuchthatthefollowinghold. IfG(0/)≡a thenH′6≡G. IfG(0/)6≡a thenH′≡G. 8 S.Alexander Proof Iclaimthatwithoutlossofgenerality,wemayassumethefollowing(∗): IfG(0/)≡a thenH(0/)6≡G(0/). IfG(0/)6≡a thenH(0/)≡G(0/). To seethis, supposenot: eitherG(0/)≡a andH(0/)≡G(0/), orelse G(0/)6≡a and H(0/)6≡G(0/).Ineithercase,H(0/)≡a .IfH(0/)≡a thenH(0/)+16=a ,andso,since H(0/)<a ,H(0/)+1<a ,meaningwemayadd1toH(0/)toenforcetheassumption. Having assumed (∗), we may use Lemma 4.6 to construct H′ :N<N →a such thatG,H′witnessthatSisguessablewith<a mindchanges,H′(0/)=H(0/),andH′ changesparitypreciselywhenGchangesparity.Thelatterfacts,combinedwith(∗), provethelemma. Proposition4.9 SupposeG:N<N→{0,1}andH:N<N→a +1witnessthatS isguessablewith<a +1mindchanges.IfG(0/)=0thenS∈Da . Proof ByLemma4.8wemaysafelyassumethefollowing: IfG(0/)≡a +1thenH 6≡G. IfG(0/)6≡a +1thenH≡G. Inotherwords, (∗)IfG(0/)≡a thenH≡G. (∗∗)IfG(0/)6≡a thenH6≡G. Foreachh <a ,let Ah ={f ∈NN : H(f)≤h }. (H(f)asinDefinition4.7) IclaimS=Da ((Ah )h <a ),whichwillprovethepropositionsinceeachAh isclearly open. Suppose f ∈S,Iwillshow f ∈Da ((Ah )h <a ). Since f ∈S,H(f)6=a ,because if H(f) were =a , this would imply that G never changes its mind on f, forcing limn→¥ G(f ↾n)=limn→¥ G(0/)=0,contradictingthefactthatGguessesS. SinceH(f)6=a ,H(f)<a . Itfollowsthatforh =H(f)wehave f ∈Ah andh isminimalwiththisproperty. Case 1: G(0/) ≡ a . By (∗), H ≡ G. Since f ∈ S, limn→¥ G(f ↾ n) = 1, so h = limn→¥ H(f ↾ n) ≡ 1. Since a ≡ G(0/) = 0, this shows h 6≡ a , putting f ∈Da ((Ah )h <a ). Case 2: G(0/) 6≡ a . By (∗∗), H 6≡ G. Since f ∈ S, limn→¥ G(f ↾ n) = 1, so h = limn→¥ H(f ↾ n) ≡ 0. Since a 6≡ G(0/) = 0, this shows h 6≡ a , so f ∈Da ((Ah )h <a ). Conversely,suppose f ∈Da ((Ah )h <a ), Iwillshow f ∈S. Leth beminimalsuch that f ∈Ah (bydefinitionofAh ,h =H(f)). BydefinitionofDa ((Ah )h <a ),h 6≡a . Case1:G(0/)≡a .By(∗),H≡G.Sincelimn→¥ H(f ↾n)=H(f)=h 6≡a ≡G(0/)=0, weseelimn→¥ H(f ↾n)=1.SinceH≡G,limn→¥ G(f ↾n)=1,forcing f ∈Ssince GguessesS. Case2: G(0/)6≡a . By(∗∗),H6≡G. Since limH(f ↾n)=H(f)=h 6≡a 6≡G(0/)=0, n→¥ we see limn→¥ H(f ↾n)=0. Since H 6≡G, limn→¥ G(f ↾n)=1, again showing f ∈S. Corollary 4.10 If S is guessable with < a +1 mind changes, then S ∈Da or Sc∈Da . GuessingandMind-changing 9 Proof LetG,HwitnessthatSisguessablewith<a +1mindchanges.IfG(0/)=0 thenS∈Da byProposition4.9. Ifnot,then(1−G),H witnessthatSc isguessable with<a +1mindchanges,and(1−G)(0/)=0,soSc∈Da byProposition4.9. CombiningCorollaries4.5and4.10provesTheorem4.2. 5 Higher-orderGuessability Inthissectionweintroduceanotionthatgeneralizesguessabilitytoprovideachar- acterizationforDDD 0m +1 (1≤m <w 1). WewillshowthatS∈DDD 0m +1 ifandonlyifSis m th-orderguessable.Throughoutthissection,m denotesanordinalin[1,w ). 1 Definition 5.1 Let S = (S0,S1,...) be a countably infinite tuple of subsets S ⊆NN. i (i) Forevery f ∈NN,writeS(f)forthesequence(c (f),c (f),...)∈{0,1}N. S0 S1 (ii) WesaythatSisguessablebasedonS ifthereisafunction G:{0,1}<N→{0,1} (calledanS-guesserbasedonS)suchthat∀f ∈NN, limG(S(f)↾n)=c (f). n→¥ S Gametheoretically,weenvisionagamewhereI (thesequencechooser)haszero informationandII (theguesser)haspossiblybetter-than-perfectinformation: II is allowedtoask (onceperturn)whetherI’ssequencelies invariousS. ForeachS, i i playerI’sact(byansweringthequestion)ofcommittingtoplayasequenceinS or i inScissimilartotheact(describedin[6],p.366)ofchoosingaI-imposedsubgame. i Example5.2 IfS enumeratesthesetsoftheform{f ∈NN : f(i)= j},i,j∈N thenitisnothardtoshowthatSisguessable(inthesenseofDefinition1.1)ifand onlyifSisguessablebasedonS. Definition5.3 WesaySism th-orderguessableifthereissomeS =(S0,S1,...) asinDefinition5.1suchthatthefollowinghold. (i) SisguessablebasedonS. (ii) ∀i,Si∈DDD 0mi+1 forsomem i<m . Theorem5.4 Sism th-orderguessableifandonlyifS∈DDD 0m +1. In order to prove Theorem 5.4 we will assume the following result, which is a specialization and rephrasing of Exercise 22.17 of [5] (pp. 172–173, attributed to Kuratowski). Lemma5.5 Thefollowingareequivalent. (i) S∈DDD 0m +1. (ii) Thereisasequence(Ai)i∈N,eachAi∈DDD 0mi+1 forsomem i<m ,suchthat S= A = A . m m [n m\≥n \n m[≥n ProofofTheorem5.4 10 S.Alexander (⇒) Let S = (S ,S ,...) and G witness that S is m th-order guessable (so each 0 1 Si∈DDD 0mi+1forsomem i<m ). Foralla∈{0,1}andX ⊆NN,define X, ifa=1; Xa=(cid:26) NN\X, ifa=0. For notational convenience, we will write “G(~a) = 1” as an abbreviation for “0 ≤ a ,...,a ≤ 1 and G(a ,...,a ) = 1,” provided m is clear from con- 0 m−1 0 m−1 text. Observethatforall f ∈NNandm∈N,G(S(f)↾m)=1ifandonlyif m−1 f ∈ Saj. j G([~a)=1 j\=0 Now,given f :N→N, f ∈S ifandonlyifG(S(f)↾n)→1, whichistrueifand onlyif∃n∀m≥n,G(S(f)↾m)=1. Thus f ∈Siff∃n∀m≥n,G(S(f)↾m)=1 m−1 iff∃n∀m≥n, f ∈ Saj j G([~a)=1 j\=0 m−1 iff f ∈ Saj. j [n m\≥nG([~a)=1 j\=0 So m−1 S= Saj. j [n m\≥nG([~a)=1 j\=0 Atthesametime,sinceG(S(f)↾m)→0whenever f 6∈S,wesee f ∈Sifandonly if∀n∃m≥nsuchthatG(S(f)↾m)=1. Thusbysimilarreasoningtotheabove, m−1 S= Saj. j \n m[≥nG([~a)=1 j\=0 Foreachm, m−1Saj isafiniteunionoffiniteintersectionsofsetsinDDD 0 G(~a)=1 j=0 j m ′+1 forvariousmS′<m ,thTus G(~a)=1 mj=−01Sajj itselfisinDDD 0mm+1forsomem m<m .Letting Am= G(~a)=1 mj=−01Sajj,SLemmaT5.5saysS∈DDD 0m +1. (m⇐<)AmSs,ssuumchetShTa∈tDDD 0m +1. ByLemma5.5,thereare(Ai)i∈N,eachAi∈DDD 0mi+1forsome i S= A = A . (∗) m m [n m\≥n \n m[≥n IclaimthatSisguessablebasedonS =(A ,A ,...). DefineG:{0,1}<N→{0,1} 0 1 byG(a ,...,a )=a ,IwillshowthatGisanS-guesserbasedonS. 0 m m Suppose f ∈S.By(∗),∃ns.t.∀m≥n, f ∈A andthusc (f)=1.Forallm≥n, m Am G(S(f)↾(m+1))=G(c (f),...,c (f)) A0 Am =c (f) Am =1, so limn→¥ G(S(f) ↾ n) = 1. A similar argument shows that if f 6∈ S then limn→¥ G(S(f)↾n)=0.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.