Algebraic & Geometric Topology13(2013)2383–2404 msp Growth of regulators in finite abelian coverings THANG TQ LÊ Weshowthattheregulator,whichisthedifferencebetweenthehomologytorsionand thecombinatorialRay–Singertorsion,offiniteabeliancoveringsofafixedcomplex hassub-exponentialgrowthrate. 54H20;57Q10,37B50,37B10 1 Introduction 1.1 Basedfreecomplexovergroupringanditsquotients Suppose (cid:25) isafinitelypresentedgroupand ZŒ(cid:25)(cid:141) isthegroupringof (cid:25) overthering Z ofintegers. Let C beafinitelygeneratedbasedfree ZŒ(cid:25)(cid:141)–complex @ @ @ @ 0!Cm(cid:0)!m Cm(cid:0)1 (cid:0)m!(cid:0)1Cm(cid:0)2(cid:0)!(cid:1)(cid:1)(cid:1)(cid:0)!2 C1(cid:0)!1 C0!0: Here “based free” means each C is a free ZŒ(cid:25)(cid:141)–module equipped with a preferred k base. For a normal subgroup (cid:128) C (cid:25) let C(cid:128) WD ZŒ(cid:25)=(cid:128)(cid:141)˝ZŒ(cid:25)(cid:141)C. Assume that the index Œ(cid:25) W (cid:128)(cid:141) is finite. Then C(cid:128) is a finitely generated based free Z–complex, where the preferredbaseof ZŒ(cid:25)=(cid:128)(cid:141)˝ZŒ(cid:25)(cid:141)Ck isdefinedusingtheoneof Ck inanaturalway. A prototypical case is the following. Suppose Xz ! X is a regular covering with (cid:25) the group of deck transformations and X a finite CW–complex. Choose a lift in z z X of each cell of X. Then the CW–complex C of X induced from that of X is a finitelygeneratedbasedfree ZŒ(cid:25)(cid:141)–complex. Foranormalsubgroup (cid:128) C(cid:25), C(cid:128) isthe CW–complex ofthecovering X(cid:128),corresponding tothegroup (cid:128),and Hk.C(cid:128)/ isthe kth homologyofthecovering X(cid:128). Usually,interestinginvariantsdonotdependonthe choiceoftheliftsofcellsof X. Published: 2July2013 DOI:10.2140/agt.2013.13.2383 2384 ThangTQLê 1.2 Twotorsions Wecandefinetwotorsionsofthequotientcomplex C(cid:128),thehomologytorsion (cid:28)H.C(cid:128)/ andthecombinatorialRay–Singertorsion (cid:28)RS.C(cid:128)/,asfollows. Thehomologytorsion is (cid:18)Y(cid:3) (cid:19)(cid:0)1 (cid:28)H.C(cid:128)/WD jtorZ.Hk.C(cid:128)//j 2RC; k where tor .M/ isthe Z–torsionpartofthefinitelygeneratedabeliangroup M,and Z Q(cid:3) a isthealternatingproduct k k Y(cid:3)a DYa.(cid:0)1/k: k k k k TheRay–Singertorsionof C(cid:128) is (cid:28)RS.C(cid:128)/DY(cid:3)det0.@k/2RC k 0 where det isthegeometricdeterminantoflinearmapsbetweenbasedHermitianspaces. 0 Werecallthedefinitionof det inSection2. 1.3 Comparison: generalquestion We want tocompare theasymptotics ofthe two torsionsas (cid:128) becomes “thinnerand thinnerin (cid:25)”,sothat (cid:25)=(cid:128) approximates (cid:25) inthefollowingsense. Afiniteset S of generatorsof (cid:25) definesawordlengthfunction l (andhenceametric)on (cid:25). Define S h(cid:128)iWDminfl .x/jx2(cid:128)nfegg: S Here e istheunitof (cid:25). Inallthatfollows,statementsdonotdependonthechoiceof thegeneratorset S,sincethemetricsoftwodifferentgeneratorsetsarequasi-isometric. We are interested in the following question: Suppose C is L2–acyclic (see eg Lück [12]). Underwhatconditionsdoesitholdthat (1) lim ln.(cid:28)H.C(cid:128)//(cid:0)ln.(cid:28)RS.C(cid:128)// D0? j(cid:25) W(cid:128)j h(cid:128)i!1; j(cid:25)W(cid:128)j<1 Themotivationofthisquestioncomesfromthequestion[12]: canoneapproximate L2–torsionsbyfinite-dimensionalanalogs? Insomefavorableconditions,oneexpects thatthegrowthrateofeachof (cid:28)H and (cid:28)RS isthe L2–torsion,hencetheymustbethe same. Algebraic & Geometric Topology,Volume13(2013) Growthofregulatorsinfiniteabeliancoverings 2385 Remark 1.1 (a) If f(cid:128) ;n D 1;2;:::g is a sequence of exhausting nested normal n subgroupsof (cid:25),ie, (cid:128)nC1(cid:26)(cid:128)n and Tn(cid:128)nDfeg,then limn!1h(cid:128)niD1. Thelimit in(1)ismoregeneral(stronger)thanthelimitofanexhaustingnestedsequence,aswe donothavethe“nested”property. (b) Thereexistsasequence (cid:128)nC(cid:25) suchthat limn!1h(cid:128)niD1 ifandonlyif (cid:25) is residuallyfinite. Hence,thelefthandsideof(1)makessenseonlywhen (cid:25) isresidually finite. (c) Define tr(cid:25).x/Dıx;e for x2(cid:25). Thisfunctionaltraceisthebaseforthedefinition ofmanycombinatorial L2–invariants. Forafixed x2(cid:25),wehave (2) lim tr(cid:25)=(cid:128).x/Dtr(cid:25).x/: h(cid:128)i!1 Thisisthereasonwhyoneexpectsthatas h(cid:128)i!1,many L2–invariants(undersome technicalconditions)canbeapproximatedbythecorrespondinginvariantsof (cid:25)=(cid:128). 1.4 Mainresults Themainresultofthepapertreatsthecase (cid:25) DZn. Theorem1 Suppose C isan L2–acyclicfinitelygeneratedbasedfree CŒZn(cid:141)–complex. Then(1),with (cid:25) DZn,holdstrue. Wewillnotgivethedefinitionof L2–acyclicity. Instead,for (cid:25) DZn,wewillusean equivalent definition (Elek [4], Lück [12]): the L.2/ homology H.2/.C/ vanishes if k and only if Hk.C˝ZŒZn(cid:141)F/D0. Here F is the fractional field of the commutative domain ZŒZn(cid:141). Remark1.2 (a) Ourresultdoesnotimplythat lim ln.(cid:28)H.C(cid:128)// D lim ln.(cid:28)RS.C(cid:128)// ; j(cid:25) W(cid:128)j j(cid:25) W(cid:128)j h(cid:128)i!1; h(cid:128)i!1; j(cid:25)W(cid:128)j<1 j(cid:25)W(cid:128)j<1 as we cannot prove the existence of each of the limits. For (cid:25) D Z, it was known thatbothlimitsexistandareequaltothe L2–torsionof C;seeGonzález-Acuñaand Short [6], Riley [17], and Lück [12]. Even for the case where (cid:25) D Z2 and C is a 2–termcomplex 0!C !C !0 (sothatonly H .C/ isnon-trivial),thereisstill 1 0 0 no proof of the conjecture that the L2–torsion is equal to either of the above limits. Forresultsanddiscussionsofthisandrelatedconjectures,seeLück[12;11],Bergeron andVenkatesh[1],Lê[10;9],FriedlandJackson[5],andSilverandWilliams[20]. Algebraic & Geometric Topology,Volume13(2013) 2386 ThangTQLê (b) Itshouldbenotedthattheexactcalculationofthetorsionpartofthehomologyof finitecoverings,evenintheabeliancase,isverydifficult;seeHillmanandSakuma[7], MayberryandMurasugi[13],andPorti[15]forsomepartialresults. 1.5 Refinement Suppose (cid:25) is residually finite and the L2–homology H.2/.C/D0 for some k. For k anynormalsubgroup (cid:128) C(cid:25) offinite index, thehomologygroup Hk.C(cid:128)/ isa finitely generated abelian group. Because Hk.2/.C/ D 0 one should expect that Hk.C(cid:128)/ is negligible. Infact,atheoremofLück[11](andKazhdanforthiscase)saysthat lim rkZHk.C(cid:128)/ D0: j(cid:25) W(cid:128)j h(cid:128)i!1; j(cid:25)W(cid:128)j<1 Thismeansthefreepart Hk.C(cid:128)/free of Hk.C(cid:128)/ issmallcomparedtotheindex. There is another measure of the free part Hk.C(cid:128)/free, denoted by Rk.C(cid:128)/ and called the regulator, or volume; see [1] and Section 3. Another expression of the fact that Hk.C(cid:128)/free is small compared to the index is expressed in the following statement, whichcomplementstheresultofKazhdanandLück. Theorem2 Suppose C isafinitelygeneratedbasedfree ZŒ(cid:25)(cid:141)–complexwith (cid:25) DZn and H.2/.C/D0 forsomeindex k. Then k (3) lim lnvol.Hk.C(cid:128)/free/ D0: j(cid:25) W(cid:128)j h(cid:128)i!1; j(cid:25)W(cid:128)j<1 Remark1.3 Thequestion(andsomeformoftheconjecture)aboutthegrowthrateof regulatorswasfirstraisedin[1],where,amongotherthings,aspecialcaseofTheorem2 was established: It was proved that if (cid:25) D Zn and (cid:128) runs the set of sublattices of the form kZn, then (3) holds. The proof there can be modified to include the case when (cid:128) runsthesetofuniformsublattices,asdefinedin[16]. Ourresultremovesany restrictionon (cid:128). 1.6 Ontheproofs Fortheproofsweusetoolsincommutativealgebraandalgebraicgeometry. Inparticular, we make essential use of the theory of torsion points in Q–algebraic set (a simple versionoftheManin–Mumfordprinciple). Wehopethatthemethodsandresultscan beadaptedtothecaseofelementaryamenablegroups. Algebraic & Geometric Topology,Volume13(2013) Growthofregulatorsinfiniteabeliancoverings 2387 Acknowledgements IwouldliketothankMBaker,NBergeron,HDao,WLück,AThom,UZannierand theanonymousrefereeforhelpfuldiscussions/comments. Theauthorissupportedin partbyanNSFgrant. 1.7 Organizationofthepaper InSection2werecallthenotionsofgeometricdeterminantandvolume. Wediscuss therelationbetweenhomologyandRay–SingertorsionsinSection3. Anoverviewof thetheoryoftorsionpointsinalgebraicsetisgiveninSection4. Section5containsa crucialgrowthestimatewhich isneededintheproofsofthemain theorems,givenin Section6. 2 Geometric determinant, lattices and volume in based Her- mitian spaces Inthissectionwerecallthedefinitionofgeometricdeterminantandbasicfactsabout volumesoflatticesinbasedHermitianspaces. 2.1 Geometricdeterminant Foralinearmap fW V !V ,whereeach V isafinite-dimensionalHermitianspace, 1 2 i thegeometricdeterminant det0.f/ isthe product ofallnon-zero singular values of f . Recall that x 2R is singular value of f if x (cid:21)0 and x2 is an eigenvalue of f(cid:3)f . Byconvention, det0.f/D1 if f isthe0map. Thuswealwayshave det0.f/>0. Sincethemaximalsingularvalueof f isthenorm kfk,wehave (4) det0.f/(cid:20)kfkdimV2 if f isnon-zero. Remark2.1 Thegeometricmeaningof det0f isthefollowing. Themap f restricts toalinearisomorphism f0 from Im.f(cid:3)/ to Im.f/;eachisaHermitianspace. Then det0f D jdet.f0/j, where the ordinary determinant det.f0/ is calculated using or- thonormalbasesoftheHermitianspaces. 2.2 BasedHermitianspaceandvolume Suppose W is a finite-dimensional based Hermitian space, ie, a C–vector space equipped with an Hermitian product .(cid:1);(cid:1)/ and a preferred orthonormal basis. The Z–submodule (cid:127)(cid:26)W spannedbythebasisiscalledthefundamentallattice. Algebraic & Geometric Topology,Volume13(2013) 2388 ThangTQLê Fora Z–submodule(alsocalledalattice) ƒ(cid:26)W with Z–basis v ;:::;v ,define 1 l vol.ƒ/Dˇˇdet(cid:0).vi;vj/li;jD1(cid:1)ˇˇ1=2: Byconvention,thevolumeofthe0spaceis1. If ƒ(cid:26)(cid:127),wesaythat ƒ isanintegral lattice. Itisclearthat vol.ƒ/(cid:21)1 if ƒ isanintegrallattice. Fora C–subspace V (cid:26)W ,thelattice V.Z/WDV \(cid:127) iscalledthe Z–supportof V . Wedefine vol.V/WDvol.V.Z//: Alattice ƒ(cid:26)(cid:127) isprimitiveifiscutoutfrom (cid:127) bysomesubspace,ie, ƒDV.Z/ for somesubspace V (cid:26)W . Bydefinition,anyprimitivelatticeisintegral. As usual, we say that a subspace V (cid:26)W is definedover Q if it is defined by some linear equationswith rational coefficients(using the coordinatesin the preferredbase). Itiseasytoseethat V isdefinedover Q ifandonlyifitisspannedbyits Z–support. Suppose V ;V aresubspacesof W definedover Q,and fW V !V isa C–linear 1 2 1 2 map. Wesaythat f isintegralif f.V.Z//(cid:26)V.Z/. 1 2 Wesummarizesomewell-knownpropertiesofvolumesoflattices(seeegBertrand[2]). Proposition 2.1 Suppose V ;V are subspaces of W defined over Q of a based 1 2 Hermitianspace W and fW V !V isanintegral,non-zero C–linearmap. Then 1 2 (5) vol.V CV /(cid:20)vol.V / vol.V /; 1 2 1 2 (6) vol.kerf/volŒf.V.Z//(cid:141)Ddet0.f/ vol.V /: 1 1 Foradetaileddiscussionof(6)anditsgeneralizationstolatticesinZŒZn(cid:141),seeRaimbault [16]. 3 Regulator, homology torsion and Ray–Singer torsion Inthissectionweexplaintherelationbetweenthehomologytorsionandthecombina- torialRay–Singertorsion. Proposition3.1ofthissectionwillbeusedintheproofof maintheorems. Throughoutthissectionwefixafinitelygeneratedbasedfree Z–complex E 0!Emd(cid:0)m!(cid:0)1Em(cid:0)1d(cid:0)m!(cid:0)1Em(cid:0)2(cid:0)!(cid:1)(cid:1)(cid:1)(cid:0)d!2 E1(cid:0)d!1 E0!0: DefineaHermitianproducton E ˝ C suchthatthepreferredbaseisanorthonormal k Z base. Now E ˝ C becomesabasedHermitianspace. k Z Algebraic & Geometric Topology,Volume13(2013) Growthofregulatorsinfiniteabeliancoverings 2389 Weusethenotation Zk Dkerdk; Bk DImdkC1; Bk D.Bk˝ZC/\Ek: Let dk(cid:3)W Ek(cid:0)1!Ek beadjointof dk and DkW Ek !Ek bedefinedby Dk Ddk(cid:3)dkCdkC1dk(cid:3)C1: 3.1 Ray–Singertorsionandhomologytorsion DefinetheRay–Singertorsionandthehomologytorsionof E by (cid:28)RS.E/DY(cid:3)det0.dk/2RC; k (cid:18)Y(cid:3) (cid:19)(cid:0)1 (cid:28)H.E/D jtor .H .E//j : Z k k Remark3.1 TheRay–Singertorsionandthehomologytorsioncanbedefinedthrough theclassicalReidemeistertorsionasfollows. Let hz beanorthonormalbasisof ker.D /˝ CDH .E˝ C/. Withthebases fhz g k k Z k Z k ofthehomologyof E˝ C,onecandefinetheReidemeistertorsion (cid:28)R.E˝ C;fhz g/, Z Z k defineduptosigns(seeegTuraev[21]). Itisnotdifficulttoshowthat (cid:28)RS.E/Dˇˇ(cid:28)R.E˝ZC;fhzkg/ˇˇ: Both B and Z areprimitivelatticesin E ,and B (cid:26)Z . Thereisacollection h k k k k k k ofelementsof Z (cid:26)E thatdescendtoabasisofthegroup Z =B ,thefreepartof k k k k H .E/. Sinceh isabasisofH .E˝ C/,theReidemeistertorsion(cid:28)R.E˝ C;fh g/ k k k Z Z k isdefined. ItisnotdifficulttoprovethefollowinggeneralizationoftheMilnor–Turaev formula[14;21]: (cid:28)H.E/Dj(cid:28)R.E˝ C;fh g/j: Z k 3.2 Regulators By definition, H .E/DZ =B . The Z–torsion of H .E/ is B =B , and the free k k k k k k part H .E/ is isomorphic to Z =B . For this reason, we define the volume k free k k vol.H .E/ / tobe k free vol.Z / R .E/WD k : k vol.B / k Algebraic & Geometric Topology,Volume13(2013) 2390 ThangTQLê Herewefollowthenotationof[1],where R iscalledtheregulator. UsingIdentity k (6),onecanprove(see[1,Formula2.2.4]) (cid:18) (cid:19) Y(cid:3) (7) (cid:28)RS.E/D(cid:28)H.E/ R .E/ : k k Wewillusethefollowingestimateoftheregulator. Proposition3.1 Let Rz WDvol.kerD /. Forevery k,onehas k k Rz (cid:21)R (cid:21) 1 : k k z R k Proof Let W betheorthogonalcomplementof B ˝ C in Z ˝ C and pW Z ˝ k Z k Z k Z C!W betheorthogonalprojection. Then R Dvol.p.Z //: k k ByHodgetheory(forfinitelygenerated Z–complexes), ker.D /DE \W DW.Z/: k k Itfollowsthat ker.D /(cid:26)p.Z /,andhence vol.p.Z //(cid:20)vol.ker.D //,or k k k k (8) R (cid:20)Rz : k k By[2,Proposition1(ii)], vol.Z / Œ.W \Z(cid:3)/WZ (cid:141) (9) R D k D k k ; k vol.B / Rz k k where Z(cid:3) isthe Z–dualof Z in Z ˝ C undertheinnerproduct. Notethat Z(cid:3) is k k k Z k alsotheorthogonalprojectionof E onto Z ˝ C. k k Z Since the numerator of (9) is (cid:21) 1, we have R (cid:21) 1=Rz , which, together with (8), k k provestheproposition. 4 Abelian groups, algebraic subgroups of .C(cid:3)/n and torsion points WereviewsomefactsaboutrepresentationtheoryoffiniteabeliangroupsinSection4.1 andthetheoryoftorsionpointsonrationalalgebraicsets(asimpleversionofManin– Mumfordprinciple)inSections4.2and4.3. Algebraic & Geometric Topology,Volume13(2013) Growthofregulatorsinfiniteabeliancoverings 2391 4.1 Decompositionofthegroupringofafiniteabeliangroup Suppose A is a finite abelian group. The group ring CŒA(cid:141) is an A–module (the regularrepresentation)andisa C–vectorspaceofdimension jAj. Equip CŒA(cid:141) with a Hermitian product so that A is an orthonormal basis. This makes CŒA(cid:141) a based Hermitianspace,with ZŒA(cid:141) thefundamentallattice. LetAyDHom.A;C(cid:3)/,knownasthePontryagindualofA,bethegroupofallcharacters (cid:3) of A. Here C is the multiplicative group of non-zero complex numbers. We have jAyjDjAj. Thetheoryofrepresentationsof A over C iseasy: CŒA(cid:141) decomposesasadirectsum ofmutuallyorthogonalone-dimensional A–modules: M (10) CŒA(cid:141)D Ce(cid:31); (cid:31)2Ay where e(cid:31) istheidempotent (11) e(cid:31) D 1 X(cid:31).a(cid:0)1/a: jAj a2A The vector subspaces Ce(cid:31) are not only orthogonal with respect to the Hermitian structure,butalsoorthogonalwithrespecttotheringstructureinthesensethat e(cid:31)e(cid:31)0D 0 if (cid:31)¤(cid:31)0. Each Ce(cid:31) isanidealofthering CŒA(cid:141). Fromthetraceidentity(seeegSerre[19,Section2.4])wehave,forevery a2A, X (cid:26)0 ifa¤e; (12) (cid:31).a/D jAj ifa¤e: (cid:31)2Ay Here e2A isthetrivialelement. 4.2 Algebraicsubgroupsof .C(cid:3)/n andlatticesin Zn 4.2.1 Algebraicsubgroupsof.C(cid:3)/n Analgebraicsubgroupof.C(cid:3)/n isasubgroup thatisclosedintheZariskitopology. Foralattice ƒ,ie,asubgroup ƒ of Zn,notnecessarilyofmaximalrank,let G.ƒ/ be thesetofall z2Cn suchthat zkD1 forevery k2ƒ. Herefor kD.k ;:::;k /2Zn 1 n and zD.z ;:::;z /2.C(cid:3)/n weset zkDQ zki. 1 n i i Itiseasytoseethat G.ƒ/ isanalgebraicsubgroup. Theconverseholdstrue: Every algebraic subgroup is equal to G.ƒ/ for some lattice ƒ; see Schmidt [18]. If ƒ is primitive,then G.ƒ/ isconnected,andinthiscaseitiscalledatorus. Algebraic & Geometric Topology,Volume13(2013) 2392 ThangTQLê 4.2.2 Automorphismsof .C(cid:3)/n Anexampleofatorusofdimension l isthestan- dard l–torus T D.C(cid:3)/l (cid:2)1n(cid:0)l (cid:26).C(cid:3)/n,whichis G.„n(cid:0)l/,where „n(cid:0)l Df.k1;:::;kn/2Znjk1D(cid:1)(cid:1)(cid:1)Dkl D0g: The following trick shows that each torus is isomorphic to the standard torus. For details,see[18]. For matrix K 2GL .Z/ with entries .K /n , one can define an automorphism n ij i;jD1 ' of .C(cid:3)/n by K (cid:18) n n n (cid:19) ' .z ;z ;:::;z /D YzK1j;YzK2j;:::;YzKnj : K 1 2 n j j j jD1 jD1 jD1 For any lattice ƒ(cid:26)Zn, ' .G.ƒ//DG.K.ƒ//. When ƒ is a primitive lattice of K rank n(cid:0)l, there is K 2GLn.Z/ such that K.ƒ/D„n(cid:0)l. Then 'K.G.ƒ// is the standard l–torus. 4.2.3 Algebraicsubgroupsandcharactergroups Fixgenerators t ;:::;t of Zn. 1 n Wewillwrite Zn multiplicativelyandusetheidentification ZŒZn(cid:141)DZŒt˙1;:::;t˙1(cid:141). 1 n Suppose (cid:128) (cid:26)Zn is a lattice. Every element z2G.(cid:128)/ defines a character (cid:31) of the z quotientgroup A(cid:128) WDZn=(cid:128) via (cid:31) .tk1(cid:1)(cid:1)(cid:1)tkn/Dzk; where kD.k ;:::;k /: z 1 n 1 n Conversely,everycharacterof A(cid:128) arisesinthisway. Thusonecanidentify G.(cid:128)/ with thePontryagindual Ay(cid:128) via z!(cid:31)z. Wewillwrite ez fortheidempotent e(cid:31)z,andthedecomposition(10),with (cid:128) having maximalrank,nowbecomes M (13) CŒA(cid:128)(cid:141)D Cez: z2G.(cid:128)/ 4.3 Torsionpointsin Q–algebraicsets 4.3.1 Torsionpoints Withrespecttotheusualmultiplication, C(cid:3)WDCnf0g isan abeliangroup,andsoisthedirectproduct .C(cid:3)/n. Thesubgroupoftorsionelements of C(cid:3), denoted by U,is thegroupof rootsofunity,and Un isthe torsionsubgroup of .C(cid:3)/n. If (cid:128) (cid:26)Zn isalatticeofmaximalrank,then G.(cid:128)/ isfinite,and G.(cid:128)/(cid:26)Un. Algebraic & Geometric Topology,Volume13(2013)
Description: