Growth, collapse,and self-organizedcriticality incomplex networks Yafeng Wang,1 Huawei Fan,1 Weijie Lin,1,2 Ying-Cheng Lai,3 and Xingang Wang1,∗ 1School ofPhysicsandInformationTechnology, Shaanxi Normal University, Xi’an710062, China 2Department of Physics, Zhejiang University, Hangzhou 310027, China 3School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA (Dated:January7,2016) Networkgrowthisubiquitousinnature(e.g.,biologicalnetworks)andtechnologicalsystems(e.g.,modern infrastructures).Tounderstandhowcertaindynamicalbehaviorscanorcannotpersistastheunderlyingnetwork growsisaproblemofincreasingimportanceincomplexdynamicalsystemsaswellassustainabilityscienceand engineering. Weaddressthequestionofwhetheracomplexnetworkofnonlinearoscillatorscanmaintainits 6 synchronizationstabilityasitexpandsorgrows. Anetworkintherealworldcanneverbecompletelysynchro- 1 nizedduetonoiseand/orexternaldisturbances. Thisisespeciallythecasewhen,mathematically,thetransient 0 synchronous stateduring thegrowthprocess becomes marginallystable, asalocal perturbation cantriggera 2 rapiddeviationofthesystemfromthevicinityofthesynchronousstate.Intermsofthenodaldynamics,alarge scaleavalancheovertheentirenetworkcanbetriggeredinthesensethattheindividualnodaldynamicsdiverge n fromthesynchronousstateinacascadingmannerwithinashorttimeperiod. Becauseofthehighdimension- a J alityofthenetworkedsystem, thetransientprocessforthesystemtorecovertothesynchronous statecanbe extremelylong. Introducingatolerancethresholdtoidentifythedesynchronizednodes, wefindthat,afteran 6 initialstageoflineargrowth, thenetworktypicallyevolvesintoacriticalstatewheretheadditionofasingle ] newnodecancauseagroupofnodestolosesynchronization,leadingtosynchronizationcollapsefortheentire O network. Astatisticalanalysisindicatesthat,thedistributionofthesizeofthecollapseisapproximatelyalge- braic(powerlaw),regardlessofthefluctuationsinthesystemparameters.Thisisindicationoftheemergenceof A self-organizedcriticality.Wedemonstratethegeneralityofthephenomenonofsynchronizationcollapseusinga . n varietyofcomplexnetworkmodels,anduncovertheunderlyingdynamicalmechanismthroughaneigenvector i analysis. l n [ PACSnumbers:05.45.Xt,89.75.Hc 1 v I. INTRODUCTION complexnetworks[1,2]. Forexample,thepioneeringmodel 2 of scale free networks [3] had growth as a fundamental in- 5 Growth is a ubiquitous phenomenon in complex systems. gredient to generate the algebraic degree distribution. The 0 1 Consider, for example, a modern infrastructure in a large growthaspectofthismodelis,however,somewhatsimplistic 0 metropolitanarea. Duetotheinfluxofpopulation,theessen- asitstipulatesamonotonicincreasingbehaviorinthenetwork . tialfacilitiessuchastheelectricalpowergrids,theroads,wa- size,whereasthegrowthbehaviorinrealworldnetworkscan 1 0 tersupply,andallkindsofservicesneedtogrowaccordingly. behighlynon-monotonic. Forexample,intechnologicalnet- 6 The issue of how to maintain the performance of the grow- workssuchastheelectricpowergrid,introducinganewnode 1 ing systems under certain constraints(e.g., quality of living) (e.g., a power station) will increase the load on the existing : becomes critically important from the standpoint of sustain- nodesinthenetwork,whichcantriggeracascadeoffailures v i ability. Todevelopacomprehensivetheoreticalframeworkto when overloadoccurs[4–24]. In this case, the addition of a X understand, at a quantitative level, the fundamental dynam- new node does not increase the network size but instead re- r icsofsustainabilityincomplexsystemssubjecttocontinuous sults in a network collapse [5, 24]. A similar phenomenon a growth is a challengingand open problemat the present. In was also observed in ecological networks, where the intro- thispaper,toshedlightonhowacomplexnetworkcanmain- ductionofanewspeciesmayresultintheextinctionofmany tain its functionandhowsucha functionmay belost during existingspecies[25,26]. Inaneconomiccrisis,thefailureof growth,wefocusonthedynamicsofsynchronization.Inpar- onefinancialinstitutecanresultinfailuresofmanyothersin ticular, if a small network is synchronizable, as it grows in a cascading manner [21, 27]. To take into account the phe- sizethesynchronousstatemaycollapse.Themainpurposeof nomenonofnon-monotonicnetworkgrowthtoavoidnetwork thepaperistouncoverandunderstandthedynamicalfeatures collapse,anearlierapproachwastoconstrainthegrowthac- ofsynchronizationcollapseasthenetworkgrows. Aswillbe cordingto certain functionalrequirementsuch as the system explained,ourmainresultisthatthecollapseisessentiallya stability with respect to certain performance, i.e., to impose self-organizingdynamicalprocesstowardscriticalitywithan the criterion thatthe system mustbe stable at all times [25]. algebraicscalingbehavior. It was revealed that network growth subject to a global sta- From the beginning of modern network science, growth bilityconstraintcanleadtoanon-monotonicnetworkgrowth has been recognized and treated as an intrinsic property of withoutcollapse[28]. Constraintbasedonnetworksynchro- nization was proposed [29], where it was demonstrated that imposing synchronization stability can result in a highly se- ∗Emailaddress:[email protected] lective and dynamic growth process [29] in the sense that it 2 oftentakesmanytimestepsforanewnodetobesuccessfully chronizationconstraintcanbe regardedas a processtowards “absorbed”intotheexistingnetwork. self-organizedcriticality(SOC). Tobe concrete,westudythegrowthofcomplexnetworks InSec.II,wedescribeournetworkgrowthmodelsubjectto under the constraint of synchronization stability. Synchro- synchronizationconstraintand demonstratethe phenomenon nization of coupled nonlinear oscillators has been an active of network collapse. In Sec. III, we analyze the dynamical areaofresearchinnonlinearscience[30–34],anditisanim- and statistical properties of the collapses. In Sec. IV, we portanttypeofcollectivedynamicsoncomplexnetworks[35]. usethemethodofeigenvectoranalysistoexplainthenumer- Earlierstudiesfocusedonsystemsofregularcouplingstruc- ically observed collapse phenomenon. In Sec. V, we study tures, e.g., lattices or globally coupled networks. The dis- continuoustimedynamicsonrandomlygrowingnetworksto covery of the small world [36] and scale free [3] network demonstratethe generalityof the synchronizationbased col- topologies in realistic systems generated a great deal of in- lapsephenomenonanditsSOCcharacteristics.InSec.VI,we terest in studying the interplay between complex network presentconclusionsanddiscussthe implicationsofthe main structure and synchronization [37–51]. Since the structures results. of many realistic networks are not static but evolve with time [52, 53], synchronizationin time-varying complex net- II. MODELOFNETWORKGROWTHSUBJECTTO workswasalsostudied[54–56]torevealthedynamicalinter- SYNCHRONIZATIONCONSTRAINT play betweenthe time-dependentnetworkstructureandsyn- chronization [39, 57, 58]. We note that there was a line of worksthataddressedtheeffectonsynchronizationofdifferent We consider the standard scale-free growth model [3] but waysthatthenetworkstructureevolveswithtime,suchaslink imposeasynchronization-basedconstraintfornodalremoval. rewiring [59, 60], adjustment of coupling weights [61, 62], Specifically,startingfromasmall,synchronizablecoreofm0 change in the coupling scheme [63, 64], but in these works couplednonlinearoscillators(nodes),ateachtimestepng of thenetworksizeisassumedtobefixed. networkgrowth,weaddanewnodewithrandominitialcon- ditionintothenetwork.Thenewnodeisconnectedtomexist- To investigatethe growthofstability-constrainedcomplex ingnodesaccordingtothepreferentialattachmentprobability networks, a keyissue is the differenttime scales involvedin Π = k / k , where i,j = 1,2,...,n are the nodal in- thedynamicalevolution[28,29,65].Fornetworkgrowthcon- i i Pj j dicesandk isthedegreeoftheithnode.Wethenmonitorthe strained by synchronization, there are two key time scales: i systemevolutionforafixedtimeperiod(T )andcalculatethe one associated with the transient synchronization dynamics g nodalsynchronizationerrorδr (tobedefinedbelow). Defin- occurredinastaticnetwork,denotedasT ,andanotherchar- i s ingδr asthetolerancethresholdfornodaldesynchronization, acterizingthespeedofnetworkgrowth,e.g.,thetimeinterval c ifallnodesinthenetworkmeettheconditionδr < δr , the betweentwosuccessivenodaladditions,T .Theinterplaybe- i c g networksize willbe increasedby one. Otherwise, thenodes tweenthe twotime scalescanresultin distinctnetworkevo- with δr > δr will be removedfrom the network, together lution dynamics. For example, for T ≫ T , the stability i c s g withthelinksattachedtothem. Forconvenience,weusethe constraint would have little effect on the network evolution term“collapse”todescribetheprocessofnodalremovaland and,inanapproximatesense,thenetworkgrowsasifnocon- thenumberofremovednodes,∆n,isthecollapsesize. straint were imposed. However, for T ≪ T , the network s g For simplicity, we set the nodal dynamics to be identical remainssynchronizedatalltimes. Inparticular,sincethesta- and adopt the normalized coupling scheme [66, 67], where bilityisdeterminedbythenetworkstructure,e.g.,throughthe thedynamicalevolutionoftheithoscillatorinthenetworkis eigenvaluesofthecouplingmatrix,thedynamicsofnetwork governedby evolution is effectively decoupled from that of synchroniza- tion. ForTs ≈ Tg, complicatednetworkevolutiondynamics ε n can arise [65], where the two types of dynamicalprocesses, x˙i =F(xi)+ Xaij[H(xj)−H(xi)], (1) k i.e., growth and synchronization, are entangled. Depending i j=1 ontheinstantnetworkstructureandsynchronizationbehavior, with F and H representing, respectively, the dynamics of theadditionofanewnodemayeitherincreaseordecreasethe the isolated oscillator and the coupling function. The net- networksize. Forexample,ifthenewnodeinducesadesyn- workstructureischaracterizedbytheadjacencymatrix{a }, ij chronization avalanche, a number of nodes will be removed where a = 1 if oscillators i and j are directly connected, ij iftheirsynchronizationerrorsexceedsomethresholdvalues, and a = 0 otherwise. The parameter ε > 0 is the uni- ij resultinginasuddendecreaseofthenetworksizeandpoten- formcouplingstrength. Notethatthecouplingstrengthfrom tiallyalargescalecollapse. nodej tonodei,c =(εa )/k ,ingeneralisdifferentfrom ij ij i Inthispaper,wefocusontheregimeofT ≈T andintro- that for the opposite direction, so the network is weighted s g duceatolerancethresholdtodetermineifanodehasbecome and directed [67]. The class of models of linearly coupled desynchronized. Specifically, after each transient period of nonlinearoscillatorswith variantsare commonlyused in the evolution,weremoveallnodeswithsynchronizationerrorex- literature of network synchronization [68]. While Eq. (1) is ceeding this threshold. During the course of evolution, the forcontinuous-timedynamicalsystems,networksofcoupled network can collapse at random times. Strikingly, we find nonlinearmapscanbeformulatedinasimilarway. thatthesizeofthecollapsesfollowsanalgebraicscalinglaw, To be concrete, we assume that the individual nodal dy- indicating that the network growth dynamics under the syn- namical process is described by the chaotic logistic map, 3 FIG.1. (Coloronline)Evolutionofanetworkofcoupledchaoticlogisticmapssubjecttosynchronizationconstraint. Thetransientperiodfor networktobesynchronizedisTg = 300,andthetolerancethresholdfordesynchronizationatthenodallevelisδrc = 10−10. (a)Variation ofthenetworksize,n,withthetimestepofnodeaddition,ng. The(red)filledcirclesaretheresultsforTg = 300andδrc = 10−10,and the(blue)opensquaresareforTg = 300andδrc = 10−9. (b)Timeevolutionofthenetworkaveragedsynchronizationerror,hδri. Inset: thecorresponding semi-logarithmicplot. (c)Timeevolutionofthesynchronization error, δr ,forthreetypicalnodesinthenetwork. (d-f) i Snapshotsofthenodalsynchronizationerrors,δri,forthreedifferenttimeinstants:(d)t=123Tg+1,(e)t=123Tg+5,and(f)t=124Tg. Nodeswithδr>δr arerepresentedbyfilledcircles. c x(t+1) = F[x(t)] = 4x(t)[1−x(t)], andchooseH(x) = this scenario of small-scale collapse followed by growth is F(x)asthecouplingfunction. Thecouplingstrengthisfixed changeddramatically.AsshowninFig.1(a),forn =471,a g at ε = 1. The initial network consists of m0 = 8 globally catastrophiccollapseeventoccurs,whichremovesover75% coupled nodes, which is synchronizable for the given cou- of the nodes in the network (from 471 to 111). More strik- pling strength. For a fixed time interval T = 300, we in- ingly,thereisnogrowthaftertheevent-thenetworkcontin- g troducea new node(map)into the networkwith a randomly ues to collapse. At the end of n = 472, not a single node g chosen initial condition in the interval (0,1) by attaching it remainsin the network, i.e., the networkhas collapsedcom- totheexistingnodesaccordingtothepreferentialattachment pletely. rule.Thesynchronizationerrorisdefinedasδr =|x −hxi| To gain more insights into the dynamics of network col- i i withhxi= x /nbeingthenetwork-averagedstate,which lapse, we monitor the system evolution for the time period Pi i is calculated at the end of each time interval Tg. We set the 123Tg <t<124Tg,i.e.,theresponseofthenetworkdynam- tolerance threshold to be δr = 10−10 (somewhat arbitrar- ics to the additionof the 124thnode. Figure 1(b) shows the c ily). Thegrowingprocessisterminatedeitherifthenetwork timeevolutionoftheaveragednetworksynchronizationerror, hascompletelycollapsed(n ≈ 0) orwhen its size reachesa hδri= δr /n,whereitsvalueapproacheszerorapidwith Pi i presetupperbound(e.g,1000). time. A semi-logarithmic plot reveals an exponentially de- Figure1showsthenetworksizenversusthetimestepn . creasingbehaviorforhδri[insetofFig.1(b)],indicatingthat g We see that, after an initial period of linear growth (n ≤ the network is able to restore synchronization for relatively g 123),thenetworksizeissuddenlydecreasedfromn=128to largevaluesofT . However,forT = 300,attheendofthe g g 103,signifyingthatacollapseeventofsize∆n = 25hasoc- timeintervalt=124T ,thesynchronizationerrorsofcertain g curredaftertheadditionofthe124thoscillator. Afterthecol- nodesexceedthethreshold,leadingtotheirremovalfromthe lapse,thenetworkbeginstoexpandagain. Inthesubsequent network. The synchronizationerrors for three typical nodes time evolution, collapse of different sizes occurs at random are shown in Fig. 1(c). Examiningthe individualnodalsyn- times,e.g.,∆n=22atn =379and∆n=10atn =418. chronization errors δr , we find that, the “disturbance” trig- g g i For relatively small network size, when a collapse eventoc- geredbytheadditionofanewnodespreadsquicklyoverthe curs, the removednodesaccountforonlya smallfractionof network,asshowninFig.1(d). Afterthedisturbancereaches the nodes in the entire network (e.g., ∆n/n < 10%), with the maximal dynamicalrange at t ≈ 123T +5 [Fig. 1(e)], g growthfollowedimmediatelyafterthecollapse. However,as it beginsto shrink and, at the end of thistime interval, there the network size exceeds a critical value, say n = 400, are still a few nodes with δr > δr , as shown in Fig. 1(f). max c 4 Basedontheirdynamicalresponses,thenodescanberoughly dcaivlliyd,efdorinmtootshtrneoedceast,eagsortiimese, ainscsrheoawsensδinrFfiirgs.t1in(cc)r.eaSsepsecainfid- 10-1 (a) (k)]pdel [n thendecreases,e.g.,the126thnode. Therearealsonodesfor l vstwheaherlvuic1eeh2st5htohtafhetδ,vnrsaoolrdmueeeme.staiFoimnfineδaasrbl,lodythue,ectthr0nee,earewse.egan.mr,oetodhaneeo,f1tweo2wnh9iotnchsaoenldloiyendswterfo.iotdWhruwtecimthaioilecsn,oheion.tghbto.e-, (k)p1del 0-3 [(k)]npdel pp(dkel()k) 40 80 k 120 l thenetworktriggersanetworkcollapse,infactremainsinthe -5 10 network. 2 4 6 k 0 1 2 10 10 10 III. STATISTICALPROPERTIESOFCOLLAPSEAND k SELF-ORGANIZEDCRITICALITY -1 (b) 10 In terms of practical significance, the following questions aboutnetworkcollapseareofinterest:(1)whatkindofnodes 10-2 are more likely to be removed? (2) what is the size distri- n) bution of the collapse? (3) how frequentis the networkcol- ( -3 ol10 lapsed? and(4)whataretheeffectsofthetolerancethreshold pc Tg , rc wδrecaadnddregsrsotwheinsgeqinuteesrtvioalnsTgnuomnetrhiceaclloyl.lapse? In this section 10-4 Tg , rc Asimplewaytoidentifytheremovednodesistoexamine -5 10 theirdegrees.WiththesameparametersasinFig.1,weplotin 0 1 2 3 Fig.2(a)thenormalizeddegreedistribution,p (k),ofthere- 10 10 10 10 del n movednodescollectedfromalargenumberofcollapseevents FIG.2.(Coloronline)StatisticalpropertiesofcollapseandSOC.(a) (exceptthecatastrophiconethattotallydestroysthenetwork). Degreedistributionp (k)oftheremovednodes(filledcircles).For Weseethatthedistributioncontainsapproximatelythreedis- del k∈[m,40],thescalingbehaviorisp (k)∼kγ,withγ ≈−2.83. tinct segmentswith differentscaling behaviors. Specifically, del For k ≤ m and k ≥ 40, p (k) increases and decreases with k del for k ∈ [1,m], p (k) increases with k exponentially. For del exponentially,respectively.Opensquaresareforthedegreedistribu- k ∈ [m,40], pdel(k) decreaseswith k algebraicallywith the tionp(k)ofthegeneratednetwork.(b)Sizedistributionpcol(∆n)of exponentγ ≈ −2.83. For k ∈ [40,120], pdel(k) decreases thecollapseeventforparametersTg = 300andδrc = 10−10. For withk exponentially. Since,inourmodeleachnewnodehas ∆n ∈ [1,100], thescalingisp (∆n) ∼ ∆nγ withγ ≈ −0.85. col m = 8 links, it issomewhatsurprisingto see fromFig. 2(a) Opensquaresareforthesizedistributionofthecollapseeventsfor thatsomenodeshavetheirdegreessmallerthanm. Thisphe- Tg = 200andδrc = 10−10. Thealgebraicscalingofthecollapse nomenon can be attributed to the node removal mechanism: sizesignifiesSOC.Theresultsareaveragedover100networkreal- izations. whenanodeisremoved,alllinksassociatedtoitarealsore- moved.Anotherphenomenonisthatp (k)reachesitsmax- del imumatk = 8,whichseemstocontradictthepreviousresult that nodes of large degrees are more stable with respect to gebraic scaling: pcol(∆n) ∼ ∆nγ, with γ ≈ −0.85. For synchronizationthanthoseofsmalldegrees[61,66–68]. ∆n>100,anexponentialtailisobserved.Totestwhetherthe Sincep (k)isobtainedfromalargenumberofcollapses, exponentialtailisaresultofthefinitesizeeffect,wedecrease del to uncover the interplay between nodal stability and degree, the transientperiod to Tg = 200 and plotthe distributionof weneedtotakeintoaccountthedegreedistributionp(k)ofthe thecollapse size again. (Aswe willdemonstratelater, asTg generatednetwork. To findp(k), we use thelargestnetwork isdecreased,themaximumnetworksize nmax willdecrease emergedinthegrowthprocess(thenetworkformedimmedi- monotonically.)Figure2(b)indicatesthat,comparingwiththe ately before the catastrophic collapse) and obtain the degree case of Tg = 300, the regime of algebraic scaling is shifted distribution for an ensemble of such networks. The results towardtheleftforTg = 200. Specifically,forTg = 200,we arealsoshowninFig.2(a). Weseethatthetwodistributions, havepcol(∆n)∼∆nγ intheinterval∆n∈[1,50],wherethe p (k) andp(k), coincide with each other well, where p(k) fittedexponentisabout−0.79. del alsocontainsthreedistinctsegmentsandreachesitsmaximum The emergence of algebraic scaling in the size distribu- atk =m. Theconsistencybetweenp (k)andp(k)suggests tion of networkcollapse is interesting fromthe viewpointof del thatthenodalstabilityisindependentofthedegree. Statisti- SOC that occurs in many real-world complex systems. For cally,wethusexpectthatthesmallandlargedegreenodesto a dynamical system subject to continuousexternal perturba- haveequalprobabilitytoberemoved. tions, duringits evolutiontowardsSOC, it can appearstable Figure2(b)showsthecollapsesizedistribution,wherethe for a long periodof time before a catastrophic event occurs, catastrophicnetworksizen isnotincluded. Weseethat, andtheprobabilityforthecatastrophecanbemarkedlylarger max in the interval∆n ∈ [1,100], the distribution follows an al- than intuitively expected (algebraic versus exponential scal- 5 ing)[69,70]. Inourcase, thereisalongtimeperiodofsyn- 0.4 chronizationstability inspite ofthe small-size collapses, but (a) catastrophic collapses that remove all or most of the nodes -8 rc=10 in the network can occur, albeit rarely. There are a variety 0.3 -10 rc=10 of models for SOC, but the unique feature of our model is -12 thatitexploitsnetworksynchronizationstabilityasamecha- f rc=10 0.2 nismforcatastrophicfailures. Sincesynchronizationisubiq- uitous in natural and man-made complex systems, the find- ing of SOC in synchronization-stability-constrainednetwork 0.1 mayhavebroadimplications.Forinstance,synchronizationis commonlyregardedas the dynamicalbasis for normalfunc- 0.0 tioning of the power grids [71], and there is empirical evi- 0 100 200 300 400 dencethatthe size of the blackoutsfollowsroughlyan alge- T braicdistribution[72]. g We proceed to study the frequency of network collapse. 400 (b) rc=10-8 tLheet n∆unm′bbeer othfenpoedreiosdsuocfcecsosnivtienluyouasddneedtwionrtok gthreownteht,wio.er.k, 300 nmax rc=10--1102 300 200 rc=10 between two adjacent collapses. The collapse frequency is 100 f = 1/h∆n′i, where h∆n′i is the averagedperiod. For the n1200 0 sameparametersinFig.1,wefindf ≈ 1/21. Thatis,onav- 0 100 200 300 400 erage the network collapses every 21 new additions. Since Tg the synchronization errors are evaluated at the end of each 100 transient intervaland nodesare removedaccordingto a pre- definedtolerancethreshold,weexpectthecollapsefrequency 0 to depend on the parameters Tg and δrc. This is apparent 0 100 200 300 400 in Fig. 1(a), where thenetworkgrowthunderthe parameters T = 300andδr = 10−9 isalsoshown. We seethat,com- Ts g c paringwiththecaseofδr =10−10,thecatastrophiccollapse FIG.3. (Coloronline)Behaviorofthecollapsefrequency. (a)The c ispostponed. ToassesstheinfluenceofTg andδrc onf,we collapse frequency f as a function of the transient interval Tg for show in Fig. 3(a) f versus Tg for differentvalues of δrc. It differentvaluesofthetolerancethresholdδrc. (b)Thefirstcritical can be seen that, with the increase of Tg or δrc, f decreases networksizen1 versusTg fordifferentvaluesofδrc. Inset: depen- dence of the maximum network size n on T . The results are monotonically. max g averagedover100networkrealizations. Fortheprocessofnetworkgrowth,twoparticularlyrelevant quantities are: (1) the critical network size n1 at which the firstcollapseoccursand(2)themaximumnetworksizen beyond which a catastrophic collapse occurs. Similar tomthaxe whereDF(xs)andDH(xs)aretheJacobianmatricesofthe local dynamics and the coupling function evaluated on x , collapsefrequency,thesetwoquantitiesdependontheparam- s respectively. Equation (2) is obtained by linearizing Eq. (1) etersTg andδrc. Figure3(b)showsn1 (nmax)versusTg for about the synchronous manifold x , which characterizes its differentvaluesofδr . Weseethat,asT orδr isincreased, s c g c local stability [73]. To keep the expandednetwork synchro- n1(nmax)increasesmonotonically.Thatis,byincreasingTg nizable, a necessary conditionis that all the synchronization orδr ,onecanpostponethefirstandthecatastrophicnetwork c errors,{δx }approachzeroexponentiallywithtime. Project- collapsebuteventuallyitwilloccur. i ingδx intotheeigenspacespannedbytheeigenvectore of i i thenetworkcouplingmatrixC ={c }={εa /k },wecan ij ij i diagonalizethencoupledvariationalequationsintondecou- IV. PHYSICALTHEORYOFSYNCHRONIZATIONBASED pledmodesintheblockedform NETWORKCOLLAPSE Say at step n′ of the growth, the network contains n−1 ξ˙l =[DF(xs)+σDH(xs]·ξl,l =1,...,n, (3) synchronizedoscillators and a new oscillator of random ini- whereξ isthelthmodetransversetothesynchronousmani- tial condition is introduced. Due to the new oscillator, the l trajectoriesoftheexistingoscillatorsleave,atleasttemporar- foldxs,and0 = σ1 > σ2 > ... > σn aretheeigenvaluesof thecouplingmatrixC. Amongthenmodes,theoneassoci- ily,thesynchronousmanifoldx . Letδx = x −x bethe s i i s atedwithσ =0representsthemotionwithinthesynchronous distanceof the ithoscillatorfromthe manifold,whichis the manifold. The network is synchronizable only when all the synchronizationerror.Theevolutionofδx isgovernedbythe i transversemodes(ξ ,j =2,...,n)arestable,i.e.,thelargest followingvariationalequation: j Lyapunov exponentamong these modes should be negative: n Λ(σ) < 0. Fortypicalnonlinearoscillatorsandsmoothcou- ε δx˙i =DF(xs)·δxi+ XaijDH(xs)·[δxj−δxi], (2) plingfunctions,previousworks[73–75]showedthatΛ(σ)can ki j=1 benegativewithinaboundedregionintheparameterspaceof 6 σ,i.e.,Λ(σ)<0forσ ∈(σ,σ ). Thus,thenecessarycondi- l r tiontomakethesynchronousstatestableisσ <σ <σ for (a) allthetransversemodes(j =2,...,n).Forthlechajoticlorgis- 0.6 dl 0.04 dr ticmapusedinournumericalsimulations,wehaveσ = 0.5 l 0.03 andσr =1.5. dl,r 0.4 379 418 The eigenvalue analysis, also known as the master stabil- 380 400 420 ity function (MSF) analysis, is standard in synchronization 0.2 analysis [73, 74]. It notonly indicates whether a network is synchronizable,butalsoquantifiesthedegreeofsynchroniza- tion stability as well as the synchronization speed in certain 0.0 379418 situations[76–78]. Specifically, by examiningtheLyapunov 0 100 200 300 400 500 exponentsassociatedwiththetwoextrememodes,Λ(σ2)and n Λ(σn), one can predict whether the network is synchroniz- g able and how stable (unstable) the synchronous state is. In 0.4 (b) general, the smaller Λ(σ2) and Λ(σn) are, the more stable -8 the synchronous state is [73–75]. Because of the relation rc=10 0.3 -10 Λ(σ2,n) ∝ σ2,n, near the critical points σl and σr, the net- rc=10 -12 work synchronizability can be characterized by the stability n rc=10 distancesdl =σ2−σl anddr =σr −σn. Forasynchroniz- mi 0.2 d ablenetwork,wehaved > 0. Moreover,thelargerd and l,r l d are, themorestablethesynchronousstate willbe. Other- r 0.1 wise,ifoneofthedistancesisnegative,thesynchronousstate willbeunstable.Intheasynchronouscase,thesmallerd and l d are,themoreunstablethesynchronousstatewillbe. 0.0 r 0 100 200 300 As the network synchronizability can be characterized by T g the stability distancesd , we calculate the evolutionof d l,r l,r FIG. 4. (Color online) Behavior of synchronization distances. (a) duringthecourseofnetworkgrowth,asshowninFig.4(a).In Time evolution of the stability distances d . Inset: a magnifica- accordance with the process of network growth (Fig. 1), the l,r tionofpartoftheevolution.(b)Thesmalleststabilitydistanced timeevolutionofd alsoconsistsofdistinctregimes.Firstly, min l,r versusthetransientinterval T fordifferentvaluesofthetolerance g as n increase from 1 to 123, d approaches zero quickly. g l,r threshold δrc. The results are averaged over 100 network realiza- Secondly,intheintervalng ∈ (123,470),dl,r remainsabout tions. zero. A magnificationofthisintervalrevealsthat, whiled l,r tendtoreachzero, theprocessisoccasionallyinterruptedby somesmallincrements. Checkingthepointsatwhichd in- catastrophiccollapseisexplicitlydemonstrated. l,r creasesuddenly[insetofFig.4(a)],wefindthatthesepoints The fact that dl,r become approximately zero prior to correspondto exactlythetime instantsof networkcollapses. a catastrophic collapse implies that the network becomes Forexample,forn = 379,d increasesfrom0.032to0.041 marginallystable during the growing process, i.e., the oscil- g l [Fig. 4(a)], while at the same time there is a collapse event lator trajectories deviate only slightly from the synchronous in which the network size changes from n = 344 to 322 manifold.Inthiscase,desynchronizationisdeterminedbythe [Fig. 1(a)]. Finally, at the critical instant ng = 472 where two extreme modes, σ2 and σn, as the corresponding trans- the catastrophic collapse occurs, dl and dr change suddenly verseLyapunovexponentsΛ(σ2,n)arelargerthanthoseasso- to0.21and0.22,respectively. ciated with other transversemodes[79]. This feature makes possible a theoretical analysis of the collapse phenomenon. Figure 4 thus indicates that, for the entire process of net- work growth, the stability distances d remain positive so In particular, assuming dl,r ≈ 0 and Λ(σ2) > Λ(σn) (so l,r thatthe2ndtransversemodeismoreunstable),wehavethat thatthenetworkissynchronizableatalltime. Thatis,evenat desynchronization is mainly determined by the 2nd mode, thetime whena collapseoccurs,nonodewouldberemoved ifthetransienttimeT issufficientlylong.Itmaythenbesaid with ξ2(t) ∼ exp[Λ(σ2)t]. Since Λ(σ2) ≈ 0, we have g that,withrespecttotheimpactofthenetworksynchronizabil- ξ2(t) ∼ Λ(σ2)t. Transformingthis mode back to the nodal ity(asdeterminedbythenetworkstructure),networkcollapse space,weobtainδri = |e2,iξ2| ∼ |e2,iΛ(σ2)t|, wheree2,i is isequallyinfluencedbythetransientsynchronizationdynam- the ith componentof the eigenvectore2 associated with σ2. ics. IncreasingT canthuseffectivelypostponethecollapses For the given network structure, the value of Λ(σ2) is fixed. g Wethushave as the network grows, a manifestation of which is a further decreaseind atthecollapses. Letd betheminimumof l,r min δri ∝|e2,i|, (4) d duringtheprocessofnetworkgrowth. Figure4(b)shows l,r d versus T for different values of δr . As anticipated, whichestablishesaconnectionbetweenthenetworkstructure min g c increasing the value of T or δr results in a monotonic de- andtheoscillatorstability.Itisonlynecessarytocalculatethe g c crease in the valueofd , which agreeswith the resultsof eigenvectorassociated with the mostunstable modeto iden- min direct simulations in Fig. 3(b) where a postponement of the tifytheunstableoscillators, 7 zero, we have δri ≈ δri(0)|ej′,i|[1 + Λ(σj′)Tg]. Setting 0.3 (a) δri =δrc,wegetthecriticalelement ec ≈δrc/[δri(0)(1+Λ(σj′)Tg)]. (i)|2,n 0.2 Thus, whether the ith oscillator is removed solely depends e | on the element ej′,i. In particular, if |ej′,i| > ec, we have 0.1 δr > δr so that the oscillator will be removed; otherwise i c it willremainin the network. Assumingthe oscillatorshave the same initial error δr(0), we can estimate the size of the 0.0 networkcollapsesimplybycountingthenumberofelements -10 0.0 1.0 r 2.0 10 satisfying the inequality |ej′,i| > ec. To verify this idea, i wegeneratescale-freenetworks,calculatetheeigenvectore2, (b) andidentifythelargestelementemaxofe2. Choosingecran- -1 domlyfromtherange(0,e )[sinced(0)isdependentupon 10 max the(random)initialconditionofthenewlyaddedoscillator], ’ we truncate the eigenvector elements, where the number of n) 10-2 truncatedelementsisthecollapsesize. Werepeatthistrunca- ’ (pcol tionprocedureforalargenumberofstatisticalrealizationsand -3 calculatethesizedistributionofthecollapses.Theresultfora 10 networkofsizen=800isshowninFig.5(b).Weseethatthe sizedistributioncalculatedfromtheeigenvectoranalysisalso 10-4 100 101 102 103 ffiottlelodwesxpaonnaelngteibsrγai′c≈sc−al0in.9g1:.pT′choils(∆isnin)g∼ood∆angγr′e,ewmheenrtewtihthe n the one obtained from direct simulations [Fig. 2(b)], where FIG. 5. (Color online) Relation between key eigenvector and syn- the algebraicscalingexponentis γ ≈ −0.85for the interval chronizationerror. (a)Thelinearrelationshipbetweentheabsolute eigenvectorelements|e2,n(i)|andtheoscillatorsynchronizationer- ∆n∈[1,100]. rorsδr atdifferent stepsof thenetwork growth. Filledcirclesare i for the case of ng = 418, Λ(σ2) > Λ(σn), where the relation |e2(i)|∼δriholds.Opensquaresspecifythecaseofng =379and V. ALTERNATIVEMODELSOFNETWORKDYNAMICS Λ(σ2)<Λ(σn)wherewehave|en(i)|∼δri. (b)Sizedistribution ofnetworkcollapsepredictedfromtheeigenvectoranalysis.Thedis- Todemonstratethegeneralityofthesynchronizationbased tributionfollowsanalgebraicscalinglaw: p′col(∆n) ∼ ∆nγ′,with networkcollapsephenomenonanditsSOCcharacteristics,we thefittedexponentbeingγ′ ≈−0.91. simulatecontinuoustimedynamicsonnetworksthatgrowac- cordingtoalternativerulesotherthanthepreferentialattach- ment mechanism. In fact, in network modeling, the way by Relation (4) can be verified numerically. As shown in the whicha new nodeis addedto the existingnetworkcan have insetofFig.4(a),atthegrowingstepng = 379,thenetwork a determining role in the network structure [1]. For exam- contains n = 322 oscillators and the two extreme eigenval- ple, in unconstrained growing networks, random attachment ues are (σ2,σn) = (0.538,1.468). Since Λ(σ2) = −0.079 cannotleadtoanyscalefreefeaturebutresultsinanexponen- and Λ(σn) = −0.066, desynchronization is determined by tialdegreedistribution[80]. Since the networkstructurehas the nth mode. Figure 5(a) shows the synchronizationerrors a significant effect on synchronization, we expect the char- (measured at the end of the 379th growing step) δri versus acteristicsofnetworkgrowthdynamicsfollowingrandomat- the absolute eigenvector element |e2,i| for all the oscillators tachmentto be differentfrom those from the preferentialat- inthenetwork,whichisobtainedfromthenetworkcoupling tachmentrule. Besidesthenetworkstructure,oureigenvector matrixC. We see thatδri increaseswith|en,i| linearly. The analysisindicatesthatthesynchronizationbehaviorisalsode- linear relationship is also observed when the 2nd transverse pendentuponthenodaldynamicsandthecouplingfunction. mode is more unstable. For example, at the growing step Forexample,foradifferenttypeofnodaldynamics,theMSF ng = 418, the network contains n = 350 oscillators and curvecanbedramaticallydifferent,soisthestabilityparam- the two pertinentLyapunovexponentsare [Λ(σ2),Λ(σn)] = eter region [73–75]. We are led by these considerations to (−0.070,−0.081). The linear variation of δri with |e2,i| is study continuous-timeoscillator networks that grow accord- alsoshowninFig.5(a). ingtotherandomattachmentrule. Relation (4) can also be used to interpret the size distri- WechoosethechaoticRo¨ssleroscillator[81]describedby bution of the network collapses observed numerically [e.g., (dx/dt,dy/dt,dz/dt)=(−y−z,x+0.2y,0.2+xz−9.0z). Fig. 2(b)]. Let δr (0) be the initial synchronizationerror of The oscillators at different nodes are coupled through the x i the ith oscillator inducedby the newly added oscillator. Af- variablewiththecouplingfunctionH([x,y,z]T)=[0,y,0]T. ter a transient phase of length T , the error becomes δr ≈ Wedefinethesynchronizationerrorasδr =|x −hxi|. The g i i i δri(0)|ej′,i|exp[Λ(σj′)Tg], with j′ = 2 or n (dependingon couplingstrengthisfixedatε=0.35.Thestablesynchroniza- which mode is more unstable). As Λ(σj′) is approximately tionregionfromtheMSFcurveisopenattherightside[75], 8 ment between the theoreticalpredication and the direct sim- 80 (a) ulation results is not as good as that for the preferential at- rc=10-5 tachmentgrowthrule. Forexample,bytruncatingthe eigen- 60 rc=10--79 vtaeicntopr′e(2∆onf)a∼ran∆dnomγ′ nweittwhoγr′k≈of−n0.=94.80T0henoddieffse,rewneceobin- rc=10 col 1 40 the value of the algebraic scaling exponentcan be attributed n to the limited size of the network generated subject to the synchronization constraint as well as to the relatively short 20 transient period (small values of T ). In fact, in a computa- g tionallyfeasibleimplementationoftherandomgrowthmodel 0 3 withcontinuous-timedynamics,thelargestnetworkgenerated 0.0 0.5 1.0 1.5 2.0 10 hasthesizen≈50,renderingsomewhatseverethefinitesize T g effect. Nonetheless,inspiteofthefinite-sizeeffect,theSOC featuresofthenetworkcollapsephenomenonarerobust. -1 (b) 10 ’ VI. CONCLUSIONS n) 10-2 (pcol -3 00..23 (i)|e|2 pleGxrnowettwhorokrseixnpnaantsuiroen, sisocaietfyu,nadnadmteencthanlofleoagtiucraelsoyfstceomms-. 10 0.1 Growth, however, is often subject to constraints. Tradi- 0.0 ri 0.0 0.5 1.0 10-5 tional models of complex networks contain certain growth 0 1 2 3 mechanism,suchasonebasedonthepreferentialattachment 10 10 10 10 rule[3],butimposenoconstraint.Apparently,whengrowthis n constrained,typicallythenetworkcannotexpandindefinitely, FIG.6. (Coloronline)Synchronization basedcollapseinnetworks of continuous-time nonlinear oscillators. For networks of chaotic nor can its size be a monotonousfunction of time. As a re- Ro¨ssleroscillatorsformedaccordingtotherandomlinkattachment sult,duringthegrowthprocesstheremustbetimeswhenthe rule, the network collapse phenomenon and its SOC characteris- networksizeisreduced(collapse). Butaretheregenericfea- tics: (a) the critical network size n1 versus the transient time Tg tures of the collapse events? For example, statistically what for different values of the tolerance threshold δrc and (b) distribu- isthedistributionofthecollapsesize,andarethereuniversal tionofthecollapsesizesfor∆n ∈ [1,40]: pcol(∆n) ∼ ∆nγ with characteristicsinthedistribution? γ ≈ −0.58. Opensquaresrepresentthesizedistributionpredicated Thispaperaddressestheseintriguingquestionsusingsyn- fromtheeigenvectoranalysis.Inset:thelinearrelationbetween|e2,i| chronization as a concrete type of constraint. In particular, andδriaspredicted[Relation(4)]. Thedataareaveragedover100 takingintoaccounttheeffectsofdesynchronizationtolerance networkrealizations. andsynchronizationspeed,weproposeandinvestigategrow- ing complex networks subject to the constraint of synchro- nizationstability.Wefindthat,asnewnodesarecontinuously i.e., the transverse mode i is stable for σi > σl ≈ 0.157. addedintothenetwork,itcanself-organizeitselfintoacriti- Adopting the random attachment rule, we grow the network calstatewheretheadditionofasinglenodecantriggeralarge underthe constraintof synchronizationstability and find the scalecollapse. Statisticalanalysisofthecharacteristicsofthe phenomenonof networkcollapse tobe robust. For example, collapseeventssuchasthedegreedistributionofthecollapsed Fig. 6(a) shows the critical network size n1 versus the tran- nodes, the collapsefrequency,andthe collapse size distribu- sient time Tg for different values of the tolerance threshold tion, indicates that constraint induced network collapse can δrc. We see that, while n1 increases monotonicallywith Tg be viewed as an evolutionaryprocesstowardsself-organized andδrc,therateissomewhatsmallerthanthatassociatedwith criticality. The SOC feature is especially pronouncedas the the preferential attachment rule [Fig. 3(b)], indicating that collapsesizefollowsanalgebraicscalinglaw. Wedevelopan therandomattachmentruletendsto makenetworkcollapses eigenvectoranalysis to understand the origin of the network more frequent. Figure 6(b) shows the algebraic distribution collapsephenomenonandtheassociatedscalingbehaviors. ofthecollapsesize: p (∆n) ∼ ∆nγ for∆n ∈[1,50],with col In a modern society, cities and infrastructurescontinue to γ ≈−0.58.TheseresultssuggestthattheSOCcharacteristics expand. In social media, various groups (social networks) ofthenetworkcollapsephenomenonarerobust,regardlessof keepgrowing.Whenconstraintsareimposed,e.g.,manifested thedetailsofthenetworkgrowthmechanismandofthenodal asgovernmentalpoliciesoronlinesecurityrules,howwould dynamicalprocesses. theunderlyingnetworkrespond?Canconstraintsleadtolarge FortherandomlygrowingchaoticRo¨sslernetwork,wefind scale, catastrophiccollapseofthe entirenetwork? These are thattherelationshipbetweenthesynchronizationerrorδr and difficultbuthighlypertinentquestions. Ourfindingsprovide i theeigenvectorelemente2,i canstillbedescribedby(4)[in- some hints aboutthe dynamicalfeaturesof the network col- setinFig.6(b)]. However,whenanalyzingthealgebraicsize lapsephenomenon,butmuchfurthereffortsareneededinthis distribution using the eigenvectors, we note that the agree- directionofcomplexsystemsresearch. 9 ACKNOWLEDGEMENT Thiswork was supportedby the NationalNaturalScience Foundation of China under Grant No. 11375109 and by the FundamentalResearchFundsfortheCentralUniversitiesun- der Grant No. GK201303002. YCL was supportedby ARO underGrantNo.W911NF-14-1-0504. [1] R.AlbertandA.-L.Baraba´si,Rev.Mod.Phys.74,47(2002). [32] A.S.Pikovsky,M.G.Rosenblum, andJ.Kurths,Synchroniza- [2] M.E.J.Newman,SIAMRev.45,167(2003). tion: Auniversalconceptinnonlinearsciences,1sted.(Cam- [3] A.-L.Baraba´siandR.Albert,Science286,509(1999). bridgeUniversityPress,Cambridge,2001). [4] D.J.Watts,Proc.Natl.Acad.Sci.U.S.A.99,5766(2002). [33] H.FujisakaandT.Yamada,Prog.Theor.Phys.69,32(1983). [5] A.E.MotterandY.-C.Lai,Phys.Rev.E66,065102(R)(2002). [34] L.M.PecoraandT.L.Carroll,Phys.Rev.Lett.64,821(1990). [6] P.HolmeandB.J.Kim,Phys.Rev.E65,066109(2002). [35] A.Arenas,A.Diaz-Guilera,J.Kurths,Y.Morenob, andC.-S. [7] Y.Moreno, J.B.Go´mez, andA.F.Pacheco, Europhys. Lett. Zhou,Phys.Rep.469,93(2008). 58,630(2002). [36] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440 [8] Y.Moreno,R.Pastor-Satorras,A.Va´zquez, andA.Vespignani, (1998). Europhys.Lett.62,292(2003). [37] M. Barahona and L. M. Pecora, Phys. Rev. Lett. 89, 054101 [9] P.Holme,Phys.Rev.E66,036119(2002). (2002). [10] K.-I.Goh,D.-S.Lee,B.Kahng, andD.Kim,Phys.Rev.Lett. [38] T. Nishikawa, A. E. Motter, Y.-C. Lai, and F. Hoppensteadt, 93,148701(2003). Phys.Rev.Lett.91,014101(2003). [11] P. Crucitti, V. Latora, and M. Marchior, Phys. Rev. E 69, [39] L. Donetti, P. I. Hurtado, and M. A. Mun˜oz, 045104(R)(2004). Phys.Rev.Lett.95,188701(2005). [12] L.Huang,L.Yang, andK.-Q.Yang,Phys.Rev.E73,036102 [40] I.Belykh,M.Hasler,M.Lauret, andH.Nijmeijer,Int.J.Bif. (2006). Chaos15,3423(2005). [13] A.GalstyanandP.Cohen,Phys.Rev.E75,036109(2007). [41] E. Oh, K. Rho, H. Hong, and B. Kahng, Phys. Rev. E 72, [14] L. Huang, Y.-C. Lai, and G. Chen, Phys. Rev. E 78, 036116 047101(2005). (2008). [42] J.G.Restrepo,E.Ott, andB.R.Hunt,Phys.Rev.E71,036151 [15] I. Simonsen, L.Buzna, K. Peters, S. Bornholdt, and D. Hel- (2005). bing,Phys.Rev.Lett.100,218701(2008). [43] L. Huang, K. Park, Y.-C. Lai, L. Yang, and K. Yang, [16] J.P.Gleeson,Phys.Rev.E77,046117(2008). Phys.Rev.Lett.97,164101(2006). [17] R.Yang, W.-X.Wang, Y.-C.Lai, and G.Chen, Phys.Rev. E [44] V.Belykh,I.Belykh, andM.Hasler,PhysicaD224,42(2006). 79,026112(2009). [45] X.G.Wang,L.Huang,Y.-C.Lai, andC.-H.Lai,Phys.Rev.E [18] D.E.Whitney,Phys.Rev.E82,066110(2010). 76,056113(2007). [19] W.-X. Wang, R. Yang, and Y.-C. Lai, Phys. Rev. E 81, [46] J. Go´mez-Garden˜es, Y. Moreno, and A. Arenas, 035102(R)(2010). Phys.Rev.Lett.98,034101(2007). [20] L.HuangandY.-C.Lai,Chaos21,025107(2011). [47] S.-G.Guan,X.-G.Wang,Y.-C.Lai, andC.H.Lai,Phys.Rev. [21] W.-X.Wang,Y.-C.Lai, andD.Armbruster,Chaos21,033112 E77,046211(2008). (2011). [48] L. Huang, Y.-C. Lai, and R. A. Gatenby, Chaos 18, 013101 [22] R.-R.Liu,W.-X.Wang,Y.-C.Lai, andB.-H.Wang,Phys.Rev. (2008). E85,026110(2012). [49] L. Huang, Y.-C. Lai, and R. A. Gatenby, Phys. Rev. E 77, [23] D.Helbing,Nature(London)497,51(2013). 016103(2008). [24] A.Gajduk,M.Todorovsky, andL.Kocarev,Eur.Phys.J.Spe. [50] X.-G.Wang,L.Huang,S.-G.Guan,Y.-C.Lai, andC.H.Lai, Top.223,2387(2014). Chaos18,037117(2008). [25] R.M.May,Nature(London)238,413(1972). [51] L.M.Pecora,F.Sorrentino,A.M.Hagerstrom,T.E.Murphy, [26] S. R. Proulx, D. E. L. Promislow, and P. C. Phillips, Trends andR.Roy,NatureComm.5,4079(2014). Ecol.Evol.20,345(2005). [52] S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079 [27] T. F. C. I. Commission, The Financial Crisis Inquiry Report: (2002). FinalReportoftheNationalCommissionontheCausesofthe [53] P. Holme and M. E. J. Newman, Current Financial and Economic Crisis in the United States Phys.Rev.E74,056108(2006). (PublicAffairs,2011). [54] D.J.Stilwell,E.M.Bollt, andD.G.Roberson,SIAMJ.Appl. [28] J. I.Perotti, O. V. Billoni, F.A. Tamarit, D. R. Chialvo, and Dyn.Syst.5,347(2006). S.A.Cannas,Phys.Rev.Lett.103,108701(2009). [55] M.Porfiri,D.J.Stilwell,E.M.Bollt, andJ.D.Skufca,Physica [29] C.FuandX.Wang,Phys.Rev.E83,066101(2011). D224,102(2006). [30] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, [56] B.Kim,Y.Do, andY.-C.Lai,Phys.Rev.E88,042818(2013). 1sted.(Springer-Verlag,Berlin,1984). [57] P.M.GleiserandD.H.Zanette,Eur.Phys.J.B53,233(2006). [31] S.Strogatz,Sync:TheEmergingScienceofSpontaneousOrder, [58] P.A.Robinson,J.A.Henderson,E.Matar,P.Riley, andR.T. 1sted.(Hyperion,NewYork,2003). Gray,Phys.Rev.Lett.103,108104(2009). [59] R.K.PanandS.Sinha,Phys.Rev.E76,045103(2007). 10 [60] F.SorrentinoandE.Ott,Phys.Rev.Lett.100,114101(2008). [72] G.A.PaganiandM.Aiello,PhysicaA392,2699(2013). [61] C.ZhouandJ.Kurths,Phys.Rev.Lett.96,164102(2006). [73] L.M.PecoraandT.L.Carroll,Phys.Rev.Lett.80,2109(1998). [62] M.Li,S.-G.Guan, andC.-H.Lai,EPL96,58004(2011). [74] G.Hu,J.Yang, andW.Liu,Phys.Rev.E58,4440(1998). [63] S.-W. Son, B. J. Kim, H. Hong, and H. Jeong, [75] L.Huang,Q.-F.Chen,Y.-C.Lai, andL.M.Pecora,Phys.Rev. Phys.Rev.Lett.103,228702(2009). E80,036204(2009). [64] M. Li, X.-G.Wang, Y. Fan, Z.Di, and C.-H.Lai,Chaos 21, [76] R.Wackerbauer,Phys.Rev.E76,056207(2007). 025108(2011). [77] G.X.Qi,H.B.Huang,C.K.Shen,H.J.Wang, andL.Chen, [65] C.T.Butts,Science325,414(2009). Phys.Rev.E77,056205(2008). [66] A. E. Motter, C. S. Zhou, and J. Kurths, Europhys. Lett. 69, [78] C.Brabow, S.Grosskinsky, , andM.Timme,Eur.Phys.J.B 334(2005). 84,613(2011). [67] X.-G.Wang,Y.-C.Lai, andC.-H.Lai,Phys.Rev.E75,056205 [79] C. Fu, H. Zhang, M. Zhan, and X. Wang, (2007). Phys.Rev.E85,066208(2012). [68] L.M.PecoraandT.Carroll,Chaos25,097611(2015). [80] A.-L.Baraba´si, R.Albert, andH.Jeong,PhysicaA272,173 [69] P. Bak, C. Tang, and K. Wiesenfeld, (1999). Phys.Rev.Lett.59,381(1987). [81] O.E.Ro¨ssler,Phys.Lett.A57,397(1976). [70] H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena(OxfordUniversityPress,Oxford,UK,1987). [71] A.E.Motter,S.A.Myers,M.Anghel, andT.Nishikawa,Na- turePhys.9,191(2013).