Growing Sheaves on fertile Categories JeskoHu¨ttenhain Spring2010 Abstract A sheaf (on a topological space) encompasses data which is attached to the open sets of some space. Well-known examples include the sheaves ofcontinuousmapsfromonespacetoanotherorthestructuresheafofan affinescheme.Wegiveaself-containedintroductiontotherequiredresults ofcategorytheorybeforeweintroducethenotionofasheaftakingvalues inanycategory. Themainresultstatesthatundercertaincircumstances, everypresheafhasasheafassociatedtoit.Theseresultsaredirectlybased ontheoriginalworksofGray(see[Gr65]). You should note that even of this very abstract setting, there have been significantgeneralizations–ifyouareinterested,[KaSch06]isaverythor- ough textbook. Most of the proofs of the category-theoretical results are takenfrom[Brc94],whichisalsoveryrecommendableforfurtherreading. Contents 1 Categories 2 2 Limits 4 3 IntersectionsandGenerators 9 4 Sheaves 15 5 Sheafification 20 1 1 Categories Definition1.1. AcategoryC consistofthefollowingdata: • AclassOb(C),theobjectsofC. • AsetC(X,Y)forallX,Y ∈Ob(C),theC-morphismsfromXtoY. • ForallX,Y,Z ∈Ob(C)amap C(X,Y)×C(Y,Z) −→ C(X,Z) , (f,g) (cid:55)−→ g◦ f whichwecallthecompositioninC. suchthatthefollowingholds: • ThecompositioninC isassociative: (f ◦g)◦h = f ◦(g◦h). • Forall X ∈ Ob(C) thereexistsid ∈ C(X,X) withthepropertythatfor X all f ∈ C(X,Y)andg ∈ C(Z,X): f ◦id = f andid ◦g = g. X X AcategoryissmallwhenOb(C)isaset. Forourpurposes,acategoryiscalled concreteifitsobjectsaresets,morphismsaremapsbetweenthemandthecom- positionofmorphismsispreciselythecompositionofthesemaps. Notation. Werequiresomecommonterminologyfordealingwithcategories: • WereservetherighttowriteX ∈ C insteadofX ∈Ob(C). • Thenotation f : X →Ymeans f ∈ C(X,Y). Definition1.2. LetC beacategoryand f : X →Y. Thenwecall f 1. an epimorphism if for all h ,h : Y → Z, the equality h ◦ f = h ◦ f 1 2 1 2 alreadyimpliesh = h . 1 2 2. a monomorphism if for all g ,g : Z → X, the equality f ◦g = f ◦g 1 2 1 2 alreadyimpliesg = g . 1 2 3. an isomorphism if there exists a morphism f−1 : Y → X such that f ◦ f−1 =id and f−1◦ f =id . Wecall f−1theinverseof f. Y X Remark. Itiseasytoseethatifaninverseexists,itisunique: Assumingthat g andharebothinverseto f yieldsh = h◦ f ◦g = g. Definition1.3. WesaythattwoobjectsX,Y ∈ C areisomorphicifthereexists anisomorphismX →Y. WedenotethisbyX ∼=Y. 2 Notation. Wewrite 1. f : X (cid:44)→Yif f isamonomorphism (cid:16) 2. f : X Yif f isanepimorphism 3. f : X −→∼ Yif f isanisomorphism. Wealsosaythatamorphismisepicormonicwhenwewanttosaythatitisan epimorphismormonomorphism,respectively.Wesometiemssaythatepimor- phisms(resp. monomorphisms)canberight-cancelled(resp. left-cancelled), whichisjustanotherwaytodescribetheirdefiningproperties. Definition1.4. LetC andDbecategories. AfunctorFfromC toDconsistsof thefollowingdata: • ForeveryX ∈Ob(C),anobjectF(X) ∈Ob(D). • ForeverypairofobjectsX,Y ∈Ob(C),amapofsets F = F : C(X,Y) −→ D(F(X),F(Y)). X,Y suchthatF(id ) =id andF(g◦ f) = F(g)◦F(f). Thelatter(compatibility X F(X) withcomposition)isalsobeingreferredtoasfunctoriality. Wewritefunctors asF : C → D. Thecompositionoftwofunctors F : C → D and G : D → E isdefinedto bethefunctorG◦Fwhichisdefinedby(G◦F)(X) = G(F(X))onobjectsand thecomposition G◦F (asmapsofsets) onmorphisms. Itis obviousthatthis definesafunctorC → E. Remark. Beware: Categories and functors together do not form a category, as hinted at before. However, one can consider the category Cat of small cate- gorieswithfuntorsasmorphisms. Definition1.5. LetFandGbetwofunctorsC → D. Anaturaltransformation ϕ : F → G is a class {ϕ : F(X) → G(X) | X ∈Ob(C)} of morphisms such X that F(X) ϕX (cid:47)(cid:47) G(X) F(f) (cid:9) G(f) (cid:15)(cid:15) (cid:15)(cid:15) F(Y) ϕY (cid:47)(cid:47) G(Y) we have G(f)◦ ϕ = ϕ ◦F(f) for all morphisms f : X → Y in C. This X Y propertyisalsoreferredtoasnaturality. Ifthe ϕ areD–isomorphismsforallX ∈Ob(C),wesaythat ϕisanatural X ∼ isomorphism(ornaturalequivalence). WethensometimeswriteF = G. We ϕ defineNat(F,G)tobetheclassofallnaturaltransformationsF → G. 3 Definition 1.6. Let C be a small category and D a category. We denote by Fun(C,D)thefunctorcategorywhere • ObjectsarefunctorsC → D. • MorphismsfromFtoGarethenaturaltransformationsNat(F,G). • Composition of natural transformations ϕ : F → G and ψ : G → H is definedby(ψ◦ϕ) := ψ ◦ϕ foreveryX ∈Ob(C). X X X Remark. Note that C has to be small for this definition to make sense; other- wise, the class of natural transformations from one functor to another is not necessarilyaset. Fact1.7. ThenaturalisomorphismsaretheisomorphismsinFun(C,D). Proof. Simplynotethat ϕ : F → G isanaturaltransformationwithinverse ψ inFun(C,D)ifandonlyifψ ◦ϕ =id forallX. X X F(X) 2 Limits Definition2.1. LetI beasmallcategoryandF : I → C afunctor. Wesaythat (X,ϕ)isaconeoverFwhen{ϕ : X → F(I) | I ∈ I}isafamilyofmorphisms I suchthatforallI–morphismsι : I → J,theequality F(ι)◦ϕ = ϕ holds. We I J saythat(L,λ)isalimitofFifanyothercone(X,ϕ)factorsuniquelythrough Linthesensethat X ∃!µ ϕI (cid:15)(cid:15) ϕJ L λI λJ (cid:15)(cid:15) (cid:125)(cid:125) (cid:33)(cid:33) (cid:15)(cid:15) (cid:47)(cid:47) F(I) F(J) F(ι) Weoftenwritelim(F) := L and λF insteadof λ todenotethedependenceon F. Thedualnotionisthatofacoconeandacolimit: (cid:56)(cid:56)Y(cid:79)(cid:79) (cid:102)(cid:102) ∃!ν ψI ψJ (cid:61)(cid:61)C (cid:97)(cid:97) γI γJ (cid:47)(cid:47) F(I) F(J) F(ι) 4 Again,wewritecolim(F) :=CandγF insteadofγsometimes. Example2.2. Pullbacksarelimitsoffunctorsfromthepathcategoryof • (cid:15)(cid:15) (cid:47)(cid:47) • • whereasequalizersarelimitsoffunctorsfromthepathcategoryof (cid:47)(cid:47) • (cid:47)(cid:47) • Also, products indexed by some set I are limits of functors from the discrete categoryover I. Lemma2.3. LetF : I → C beafunctor. • If (L,λ) isthelimitof F, thenanytwomorphisms f,g : X → L areequal ⇔ λ ◦ f = λ ◦gforall I ∈ I. I I • If(C,γ)isthecolimitofF,thenanytwomorphisms f,g :C →Yareequal⇔ f ◦γ = g◦γ forall I ∈ I. I I Proof. We prove only the first statement since the second follows dually (and equallytrivial): Both f andgarefactorizationsofthecone(X,(λ ◦ f)). I Definition2.4. WesaythatacategoryC has(co)limitsoftypeI ifeveryfunc- tor F : I → C has a (co)limit. A category is said to be (co)complete if it has limitsoftypeI foranysmallcategoryI. Proposition2.5. LetI andC besmallcategoriesandD anycategory. Let F : I → Fun(C,D). WedenotebyF(−)(X) : I → Dthefunctordefinedby (cid:31) (cid:47)(cid:47) I F(I)(X) (cid:31) (cid:47)(cid:47) f F(f) X (cid:15)(cid:15) (cid:15)(cid:15) (cid:31) (cid:47)(cid:47) J F(J)(X) If F(−)(X) has a limit for all X ∈ Ob(C), then F has a limit (L,(λ )) such that I (L(X),(λX))isalimitofF(−)(X). I Proof. Inthefollowing,letalways f : X →YbeaC–morphismandι : I → J a I–morphism. Let(L(X),λX)denotethelimitofF(−)(X)where λX : L(X) → F(I)(X) suchthat λX = F(ι) ◦λX. (1) I J X I 5 ThenaturalityofF(ι) F(I)(X) F(ι)X (cid:47)(cid:47) F(J)(X) F(I)(f) (cid:9) F(J)(f) (cid:15)(cid:15) (cid:15)(cid:15) (cid:47)(cid:47) F(I)(Y) F(J)(Y) F(ι)Y impliesthatthemapsF(I)(f)◦λX satisfy I F(ι) ◦F(I)(f)◦λX = F(J)(f)◦F(ι) ◦λX = F(J)(f)◦λX Y I X I J andthereforeconstituteaconeoverF(−)(Y). Consequently, L(X) λXI ∃!L(f) λXJ (cid:126)(cid:126) (cid:15)(cid:15) (cid:32)(cid:32) F(I)(X) L(Y) F(J)(X) F(I)(f) F(J)(f) λY λY (cid:15)(cid:15) (cid:126)(cid:126) I J (cid:32)(cid:32) (cid:15)(cid:15) (cid:47)(cid:47) F(I)(Y) F(J)(Y) F(ι)Y thereexistsauniquemorphismL(f) : L(X) → L(Y)withthepropertythat λY◦L(f) = F(I)(f)◦λX. (2) I I We now claim that L is functorial. Indeed, assume that g : Y → Z is another C–morphism,thenwehave λZ◦L(g◦ f) = F(I)(g◦ f)◦λX I I = F(I)(g)◦F(I)(f)◦λX I = F(I)(g)◦λY◦L(f) I = λZ◦L(g)◦L(f) I and by the uniqueness of (2), this asserts functoriality. We also observe that theequality(2)meansthatλ : L → F(I)isanaturaltransformationforevery I I ∈ Ob(I) (or, look at the parallelograms in the diagram). By (1), the pair (L,(λ ))constitutesaconeoverF. I ToverifythatitisalimitofF,assumethat(K,(κ ))isanotherconeoverF. I Sincetheκ alsosatisfiy I ∀X ∈Ob(C) :κX = F(ι) ◦κX, (3) J X I 6 wegetauniquemorphismµX : K(X) → L(X) K(X) ∃!µX (cid:15)(cid:15) κXI L(X) κXJ λXI λXJ (cid:13)(cid:13) (cid:126)(cid:126) (cid:32)(cid:32) (cid:17)(cid:17) (cid:47)(cid:47) F(I)(X) F(J)(X) F(ι)X withthepropertythatκX = λX◦µX forall I ∈Ob(I). Also, I I λY◦L(f)◦µX (=2) F(I)(f)◦λX◦µX = F(I)(f)◦κ I I X (=3)κY◦K(f) = λY◦µY◦K(f) I I so L(f)◦µX = µY ◦K(f) by 2.3. This means that µ : K → L is the unique naturaltransformationwithκ = λ ◦µ–andhence,wearedone. I I Corollary2.6. IfC is(co-)complete,thensoisFun(I,C). Definition2.7. Adirectedset(I,≤)isasetIwithareflexive,transitiverelation “≤” with the additional property that every pair of elements i,j ∈ I has an upperbound,i.e. anelementk ∈ I suchthati ≤ kand j ≤ k. Asmallcategory I withOb(I) = I and (cid:40) {i → j} ; i ≤ j I(i,j) = ∅ ; otherwise forsomedirectedset(I,≤)isthencalledadirectedcategory. LetIbeadirectedcategory.AfunctorF : I → Ciscalledadirectedfunctor.It canberepresentedasafamilyofobjectsX = F(i)andmorphisms f = F(i → i ij j). In this case, we say that (X, f ) is a directed diagram in C. A colimit of i ij typeI iscalledadirectlimit. Wethenwrite limX :=colim(F) −→ i Dually, a functor G : Iop → C is given by a family of objects Y = G(i) and i morphisms g = F(i ← j). Wesaythat(Y,g )isaninversediagraminC. A ij i ij limitoftypeIopiscalledaninverselimitandwewrite limY :=lim(F) ←− i 7 Fact2.8. InsideacategoryC,assumethat f(cid:48) (cid:47)(cid:47) P X g(cid:48) × g (cid:15)(cid:15) (cid:15)(cid:15) (cid:47)(cid:47) Y S f isapullbackdiagram. If gisamonomorphism(resp. isomorphism),thensois g(cid:48). In otherwords,anypullbackofamonomorphism(resp. isomoprhims)ismonic(resp. an isomorphism). Proof. Assume that g is monic and let u,v : Q → P be two morphisms such thatg(cid:48)◦u = g(cid:48)◦v. Wedefineg(cid:48)(cid:48) := g(cid:48)◦uand f(cid:48)(cid:48) := f(cid:48)◦u. Thus, f ◦g(cid:48)(cid:48) = f ◦g(cid:48)◦u = g◦ f(cid:48)◦u = g◦ f(cid:48)(cid:48) means that (Q, f(cid:48)(cid:48),g(cid:48)(cid:48)) is a cone. Therefore, u is the unique morphism that makesthefollowingdiagramcommute: Q f(cid:48)(cid:48) u (cid:31)(cid:31) (cid:30)(cid:30) f(cid:48) (cid:47)(cid:47) P X g(cid:48)(cid:48) g(cid:48) g (cid:32)(cid:32) (cid:15)(cid:15) (cid:15)(cid:15) (cid:47)(cid:47) Y S f Ontheotherhand,wealsohaveg(cid:48)◦v = g(cid:48)◦u = g(cid:48)(cid:48). From g◦ f(cid:48)◦v = f ◦g(cid:48)◦v = f ◦g(cid:48)◦u = f ◦g(cid:48)(cid:48) = g◦ f(cid:48)(cid:48) wecancancelg(itismonic)toobtain f(cid:48)◦v = f(cid:48)(cid:48) = f(cid:48)◦u–andbyuniqueness ofu,thisimpliesu = v. Let us assume now that g is an isomorphism. It is then easy to see that P :=Y, f(cid:48) := g−1◦ f andg(cid:48) := id isapullback,andanytwopullbacksdiffer Y byuniqueisomorphism(whichwillthenbeg(cid:48)). Fact/Definition 2.9. The kernel pair of a C–morphism f : X → Y is a triple (K,α,β)with α (cid:47)(cid:47) K X β × f (cid:15)(cid:15) (cid:15)(cid:15) (cid:47)(cid:47) X Y f iftheabovepullbackdiagramexists. 8 Fact2.10. For f : X →Y,thefollowingconditionsareequivalent: 1. f isamonomorphism. 2. Thekernelpairof f existsandisgivenby(X,id ,id ). X X 3. Thekernelpair(K,α,β)of f existsandα = β. Proof. Fortheimplication(1)⇒(2),itsufficestoverifytheuniversalproperty ofthecone(X,id ,id ):Giventwomorphismsu,v : Z → Xwith f ◦u = f ◦v, X X since f is monic, the unique factorization is given by u = v. The implication (2)⇒(3)isobvious. For(3)⇒(1),letu,v : Z → X besuchthat f ◦u = f ◦v. Then,thereexistsauniqueh : Z → Ksuchthatu = α◦h = β◦h = v. 3 Intersections and Generators Definition3.1. LetC beacategoryandX ∈Ob(C)anobject. Onthe(possibly proper)class{(U,u) | u :U (cid:44)→ X},wedefineabinaryrelationby (U,u) ≤ (V,v) :⇔ ufactorsthroughv ⇔ ∃ν :U →V : u = v◦ν Itiseasytoseethatthisisapartialorder.Wecontinuetodefineanequivalence relation (U,u) ∼ (V,v) :⇔ u ≤ vandv ≤ u The equivalence classes with respect to ∼ are called the subobjects of X, de- notedbySub(X). Fact 3.2. Let X be an object and (U,u) ∼ (V,v) two representatives of the same subobjectofX.Then,UandVareisomorphicviathefactorizationofuthroughv(and vthroughu). Proof. Bydefinition, vfactorsthroughuviasomeν : V (cid:44)→ U whichhastobe monicsincebothuandvaremonic. Equivalently,ufactorsthroughvviasome µ :U (cid:44)→V,so U(cid:95)(cid:95) (cid:111)(cid:95) u (cid:47)(cid:47)(cid:63)(cid:63)X µ (cid:9) ν (cid:31) (cid:31)(cid:31) (cid:127) v V Now u◦ν◦µ = v◦µ = u = u◦id and u canbeleft-cancelled, sowehave U ν◦µ =id andsymmetrically,wegetµ◦ν =id . U V 9 Notation 3.3. For ease of notation, we mean byU ∈ Sub(X) the equivalence class of a pair denoted by (U,ι ). This notation is slightly abusive because U there might be more than one monomorphism U (cid:44)→ X. However, we shall neverabuseittoimplythecontrary. Definition3.4. AcategoryC iscalledwell-poweredwhenSub(X)isasetfor anyobjectX ∈Ob(C). Example3.5. Clearly,thecategorySetsiswell-powered:Thesubobjectsofany set are in bijection with its subsets. Similarly, the categories Grp and Ab are well-powered. Definition3.6. LetXbeanobjectofsomecategoryC. Theintersectionofany familyofsubobjectsofU⊆Sub(X)isdefinedtobeitsinfimuminSub(X),ifit exists. Wedenotethisby (cid:92) U:= inf (U). Sub(X) Furthermore,theunionofUisdefinedtobeitssupremum (cid:91) U:= sup (U). Sub(X) InthecaseU = {U,V},wewriteU∩V := (cid:84)UaswellasU∪V := (cid:83)Uand similarlyforallfinitesetsU. Fact 3.7. Let X be an object of a category C such that Sub(X) is a set. Then, the intersection of any family of subobjects of X exists if and only if the union of any familyofsubobjectsofXexists. Proof. Thisfollowsbecause inf(U) = sup{V | ∀U ∈U:V ≤U} sup(U) = inf{V | ∀U ∈U:V ≥U} holdsinanypartiallyorderedset. Proposition3.8. LetU andV betwosubobjectsofX. Ifthepullbackofthediagram (cid:111) (cid:47)(cid:47) (cid:111)(cid:111) (cid:47) U ιU X ιV V exists,itistheintersectionU∩V. Proof. Weconsiderthepullbackdiagram W(cid:79) (cid:111) λU (cid:47)(cid:47)U(cid:79) λV × ιU (cid:15)(cid:15) (cid:15)(cid:15) (cid:111) (cid:47)(cid:47) V X ιV 10