ebook img

Growing Sheaves on fertile Categories PDF

25 Pages·2012·0.297 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Growing Sheaves on fertile Categories

Growing Sheaves on fertile Categories JeskoHu¨ttenhain Spring2010 Abstract A sheaf (on a topological space) encompasses data which is attached to the open sets of some space. Well-known examples include the sheaves ofcontinuousmapsfromonespacetoanotherorthestructuresheafofan affinescheme.Wegiveaself-containedintroductiontotherequiredresults ofcategorytheorybeforeweintroducethenotionofasheaftakingvalues inanycategory. Themainresultstatesthatundercertaincircumstances, everypresheafhasasheafassociatedtoit.Theseresultsaredirectlybased ontheoriginalworksofGray(see[Gr65]). You should note that even of this very abstract setting, there have been significantgeneralizations–ifyouareinterested,[KaSch06]isaverythor- ough textbook. Most of the proofs of the category-theoretical results are takenfrom[Brc94],whichisalsoveryrecommendableforfurtherreading. Contents 1 Categories 2 2 Limits 4 3 IntersectionsandGenerators 9 4 Sheaves 15 5 Sheafification 20 1 1 Categories Definition1.1. AcategoryC consistofthefollowingdata: • AclassOb(C),theobjectsofC. • AsetC(X,Y)forallX,Y ∈Ob(C),theC-morphismsfromXtoY. • ForallX,Y,Z ∈Ob(C)amap C(X,Y)×C(Y,Z) −→ C(X,Z) , (f,g) (cid:55)−→ g◦ f whichwecallthecompositioninC. suchthatthefollowingholds: • ThecompositioninC isassociative: (f ◦g)◦h = f ◦(g◦h). • Forall X ∈ Ob(C) thereexistsid ∈ C(X,X) withthepropertythatfor X all f ∈ C(X,Y)andg ∈ C(Z,X): f ◦id = f andid ◦g = g. X X AcategoryissmallwhenOb(C)isaset. Forourpurposes,acategoryiscalled concreteifitsobjectsaresets,morphismsaremapsbetweenthemandthecom- positionofmorphismsispreciselythecompositionofthesemaps. Notation. Werequiresomecommonterminologyfordealingwithcategories: • WereservetherighttowriteX ∈ C insteadofX ∈Ob(C). • Thenotation f : X →Ymeans f ∈ C(X,Y). Definition1.2. LetC beacategoryand f : X →Y. Thenwecall f 1. an epimorphism if for all h ,h : Y → Z, the equality h ◦ f = h ◦ f 1 2 1 2 alreadyimpliesh = h . 1 2 2. a monomorphism if for all g ,g : Z → X, the equality f ◦g = f ◦g 1 2 1 2 alreadyimpliesg = g . 1 2 3. an isomorphism if there exists a morphism f−1 : Y → X such that f ◦ f−1 =id and f−1◦ f =id . Wecall f−1theinverseof f. Y X Remark. Itiseasytoseethatifaninverseexists,itisunique: Assumingthat g andharebothinverseto f yieldsh = h◦ f ◦g = g. Definition1.3. WesaythattwoobjectsX,Y ∈ C areisomorphicifthereexists anisomorphismX →Y. WedenotethisbyX ∼=Y. 2 Notation. Wewrite 1. f : X (cid:44)→Yif f isamonomorphism (cid:16) 2. f : X Yif f isanepimorphism 3. f : X −→∼ Yif f isanisomorphism. Wealsosaythatamorphismisepicormonicwhenwewanttosaythatitisan epimorphismormonomorphism,respectively.Wesometiemssaythatepimor- phisms(resp. monomorphisms)canberight-cancelled(resp. left-cancelled), whichisjustanotherwaytodescribetheirdefiningproperties. Definition1.4. LetC andDbecategories. AfunctorFfromC toDconsistsof thefollowingdata: • ForeveryX ∈Ob(C),anobjectF(X) ∈Ob(D). • ForeverypairofobjectsX,Y ∈Ob(C),amapofsets F = F : C(X,Y) −→ D(F(X),F(Y)). X,Y suchthatF(id ) =id andF(g◦ f) = F(g)◦F(f). Thelatter(compatibility X F(X) withcomposition)isalsobeingreferredtoasfunctoriality. Wewritefunctors asF : C → D. Thecompositionoftwofunctors F : C → D and G : D → E isdefinedto bethefunctorG◦Fwhichisdefinedby(G◦F)(X) = G(F(X))onobjectsand thecomposition G◦F (asmapsofsets) onmorphisms. Itis obviousthatthis definesafunctorC → E. Remark. Beware: Categories and functors together do not form a category, as hinted at before. However, one can consider the category Cat of small cate- gorieswithfuntorsasmorphisms. Definition1.5. LetFandGbetwofunctorsC → D. Anaturaltransformation ϕ : F → G is a class {ϕ : F(X) → G(X) | X ∈Ob(C)} of morphisms such X that F(X) ϕX (cid:47)(cid:47) G(X) F(f) (cid:9) G(f) (cid:15)(cid:15) (cid:15)(cid:15) F(Y) ϕY (cid:47)(cid:47) G(Y) we have G(f)◦ ϕ = ϕ ◦F(f) for all morphisms f : X → Y in C. This X Y propertyisalsoreferredtoasnaturality. Ifthe ϕ areD–isomorphismsforallX ∈Ob(C),wesaythat ϕisanatural X ∼ isomorphism(ornaturalequivalence). WethensometimeswriteF = G. We ϕ defineNat(F,G)tobetheclassofallnaturaltransformationsF → G. 3 Definition 1.6. Let C be a small category and D a category. We denote by Fun(C,D)thefunctorcategorywhere • ObjectsarefunctorsC → D. • MorphismsfromFtoGarethenaturaltransformationsNat(F,G). • Composition of natural transformations ϕ : F → G and ψ : G → H is definedby(ψ◦ϕ) := ψ ◦ϕ foreveryX ∈Ob(C). X X X Remark. Note that C has to be small for this definition to make sense; other- wise, the class of natural transformations from one functor to another is not necessarilyaset. Fact1.7. ThenaturalisomorphismsaretheisomorphismsinFun(C,D). Proof. Simplynotethat ϕ : F → G isanaturaltransformationwithinverse ψ inFun(C,D)ifandonlyifψ ◦ϕ =id forallX. X X F(X) 2 Limits Definition2.1. LetI beasmallcategoryandF : I → C afunctor. Wesaythat (X,ϕ)isaconeoverFwhen{ϕ : X → F(I) | I ∈ I}isafamilyofmorphisms I suchthatforallI–morphismsι : I → J,theequality F(ι)◦ϕ = ϕ holds. We I J saythat(L,λ)isalimitofFifanyothercone(X,ϕ)factorsuniquelythrough Linthesensethat X ∃!µ ϕI (cid:15)(cid:15) ϕJ L λI λJ (cid:15)(cid:15) (cid:125)(cid:125) (cid:33)(cid:33) (cid:15)(cid:15) (cid:47)(cid:47) F(I) F(J) F(ι) Weoftenwritelim(F) := L and λF insteadof λ todenotethedependenceon F. Thedualnotionisthatofacoconeandacolimit: (cid:56)(cid:56)Y(cid:79)(cid:79) (cid:102)(cid:102) ∃!ν ψI ψJ (cid:61)(cid:61)C (cid:97)(cid:97) γI γJ (cid:47)(cid:47) F(I) F(J) F(ι) 4 Again,wewritecolim(F) :=CandγF insteadofγsometimes. Example2.2. Pullbacksarelimitsoffunctorsfromthepathcategoryof • (cid:15)(cid:15) (cid:47)(cid:47) • • whereasequalizersarelimitsoffunctorsfromthepathcategoryof (cid:47)(cid:47) • (cid:47)(cid:47) • Also, products indexed by some set I are limits of functors from the discrete categoryover I. Lemma2.3. LetF : I → C beafunctor. • If (L,λ) isthelimitof F, thenanytwomorphisms f,g : X → L areequal ⇔ λ ◦ f = λ ◦gforall I ∈ I. I I • If(C,γ)isthecolimitofF,thenanytwomorphisms f,g :C →Yareequal⇔ f ◦γ = g◦γ forall I ∈ I. I I Proof. We prove only the first statement since the second follows dually (and equallytrivial): Both f andgarefactorizationsofthecone(X,(λ ◦ f)). I Definition2.4. WesaythatacategoryC has(co)limitsoftypeI ifeveryfunc- tor F : I → C has a (co)limit. A category is said to be (co)complete if it has limitsoftypeI foranysmallcategoryI. Proposition2.5. LetI andC besmallcategoriesandD anycategory. Let F : I → Fun(C,D). WedenotebyF(−)(X) : I → Dthefunctordefinedby (cid:31) (cid:47)(cid:47) I F(I)(X) (cid:31) (cid:47)(cid:47) f F(f) X (cid:15)(cid:15) (cid:15)(cid:15) (cid:31) (cid:47)(cid:47) J F(J)(X) If F(−)(X) has a limit for all X ∈ Ob(C), then F has a limit (L,(λ )) such that I (L(X),(λX))isalimitofF(−)(X). I Proof. Inthefollowing,letalways f : X →YbeaC–morphismandι : I → J a I–morphism. Let(L(X),λX)denotethelimitofF(−)(X)where λX : L(X) → F(I)(X) suchthat λX = F(ι) ◦λX. (1) I J X I 5 ThenaturalityofF(ι) F(I)(X) F(ι)X (cid:47)(cid:47) F(J)(X) F(I)(f) (cid:9) F(J)(f) (cid:15)(cid:15) (cid:15)(cid:15) (cid:47)(cid:47) F(I)(Y) F(J)(Y) F(ι)Y impliesthatthemapsF(I)(f)◦λX satisfy I F(ι) ◦F(I)(f)◦λX = F(J)(f)◦F(ι) ◦λX = F(J)(f)◦λX Y I X I J andthereforeconstituteaconeoverF(−)(Y). Consequently, L(X) λXI ∃!L(f) λXJ (cid:126)(cid:126) (cid:15)(cid:15) (cid:32)(cid:32) F(I)(X) L(Y) F(J)(X) F(I)(f) F(J)(f) λY λY (cid:15)(cid:15) (cid:126)(cid:126) I J (cid:32)(cid:32) (cid:15)(cid:15) (cid:47)(cid:47) F(I)(Y) F(J)(Y) F(ι)Y thereexistsauniquemorphismL(f) : L(X) → L(Y)withthepropertythat λY◦L(f) = F(I)(f)◦λX. (2) I I We now claim that L is functorial. Indeed, assume that g : Y → Z is another C–morphism,thenwehave λZ◦L(g◦ f) = F(I)(g◦ f)◦λX I I = F(I)(g)◦F(I)(f)◦λX I = F(I)(g)◦λY◦L(f) I = λZ◦L(g)◦L(f) I and by the uniqueness of (2), this asserts functoriality. We also observe that theequality(2)meansthatλ : L → F(I)isanaturaltransformationforevery I I ∈ Ob(I) (or, look at the parallelograms in the diagram). By (1), the pair (L,(λ ))constitutesaconeoverF. I ToverifythatitisalimitofF,assumethat(K,(κ ))isanotherconeoverF. I Sincetheκ alsosatisfiy I ∀X ∈Ob(C) :κX = F(ι) ◦κX, (3) J X I 6 wegetauniquemorphismµX : K(X) → L(X) K(X) ∃!µX (cid:15)(cid:15) κXI L(X) κXJ λXI λXJ (cid:13)(cid:13) (cid:126)(cid:126) (cid:32)(cid:32) (cid:17)(cid:17) (cid:47)(cid:47) F(I)(X) F(J)(X) F(ι)X withthepropertythatκX = λX◦µX forall I ∈Ob(I). Also, I I λY◦L(f)◦µX (=2) F(I)(f)◦λX◦µX = F(I)(f)◦κ I I X (=3)κY◦K(f) = λY◦µY◦K(f) I I so L(f)◦µX = µY ◦K(f) by 2.3. This means that µ : K → L is the unique naturaltransformationwithκ = λ ◦µ–andhence,wearedone. I I Corollary2.6. IfC is(co-)complete,thensoisFun(I,C). Definition2.7. Adirectedset(I,≤)isasetIwithareflexive,transitiverelation “≤” with the additional property that every pair of elements i,j ∈ I has an upperbound,i.e. anelementk ∈ I suchthati ≤ kand j ≤ k. Asmallcategory I withOb(I) = I and (cid:40) {i → j} ; i ≤ j I(i,j) = ∅ ; otherwise forsomedirectedset(I,≤)isthencalledadirectedcategory. LetIbeadirectedcategory.AfunctorF : I → Ciscalledadirectedfunctor.It canberepresentedasafamilyofobjectsX = F(i)andmorphisms f = F(i → i ij j). In this case, we say that (X, f ) is a directed diagram in C. A colimit of i ij typeI iscalledadirectlimit. Wethenwrite limX :=colim(F) −→ i Dually, a functor G : Iop → C is given by a family of objects Y = G(i) and i morphisms g = F(i ← j). Wesaythat(Y,g )isaninversediagraminC. A ij i ij limitoftypeIopiscalledaninverselimitandwewrite limY :=lim(F) ←− i 7 Fact2.8. InsideacategoryC,assumethat f(cid:48) (cid:47)(cid:47) P X g(cid:48) × g (cid:15)(cid:15) (cid:15)(cid:15) (cid:47)(cid:47) Y S f isapullbackdiagram. If gisamonomorphism(resp. isomorphism),thensois g(cid:48). In otherwords,anypullbackofamonomorphism(resp. isomoprhims)ismonic(resp. an isomorphism). Proof. Assume that g is monic and let u,v : Q → P be two morphisms such thatg(cid:48)◦u = g(cid:48)◦v. Wedefineg(cid:48)(cid:48) := g(cid:48)◦uand f(cid:48)(cid:48) := f(cid:48)◦u. Thus, f ◦g(cid:48)(cid:48) = f ◦g(cid:48)◦u = g◦ f(cid:48)◦u = g◦ f(cid:48)(cid:48) means that (Q, f(cid:48)(cid:48),g(cid:48)(cid:48)) is a cone. Therefore, u is the unique morphism that makesthefollowingdiagramcommute: Q f(cid:48)(cid:48) u (cid:31)(cid:31) (cid:30)(cid:30) f(cid:48) (cid:47)(cid:47) P X g(cid:48)(cid:48) g(cid:48) g (cid:32)(cid:32) (cid:15)(cid:15) (cid:15)(cid:15) (cid:47)(cid:47) Y S f Ontheotherhand,wealsohaveg(cid:48)◦v = g(cid:48)◦u = g(cid:48)(cid:48). From g◦ f(cid:48)◦v = f ◦g(cid:48)◦v = f ◦g(cid:48)◦u = f ◦g(cid:48)(cid:48) = g◦ f(cid:48)(cid:48) wecancancelg(itismonic)toobtain f(cid:48)◦v = f(cid:48)(cid:48) = f(cid:48)◦u–andbyuniqueness ofu,thisimpliesu = v. Let us assume now that g is an isomorphism. It is then easy to see that P :=Y, f(cid:48) := g−1◦ f andg(cid:48) := id isapullback,andanytwopullbacksdiffer Y byuniqueisomorphism(whichwillthenbeg(cid:48)). Fact/Definition 2.9. The kernel pair of a C–morphism f : X → Y is a triple (K,α,β)with α (cid:47)(cid:47) K X β × f (cid:15)(cid:15) (cid:15)(cid:15) (cid:47)(cid:47) X Y f iftheabovepullbackdiagramexists. 8 Fact2.10. For f : X →Y,thefollowingconditionsareequivalent: 1. f isamonomorphism. 2. Thekernelpairof f existsandisgivenby(X,id ,id ). X X 3. Thekernelpair(K,α,β)of f existsandα = β. Proof. Fortheimplication(1)⇒(2),itsufficestoverifytheuniversalproperty ofthecone(X,id ,id ):Giventwomorphismsu,v : Z → Xwith f ◦u = f ◦v, X X since f is monic, the unique factorization is given by u = v. The implication (2)⇒(3)isobvious. For(3)⇒(1),letu,v : Z → X besuchthat f ◦u = f ◦v. Then,thereexistsauniqueh : Z → Ksuchthatu = α◦h = β◦h = v. 3 Intersections and Generators Definition3.1. LetC beacategoryandX ∈Ob(C)anobject. Onthe(possibly proper)class{(U,u) | u :U (cid:44)→ X},wedefineabinaryrelationby (U,u) ≤ (V,v) :⇔ ufactorsthroughv ⇔ ∃ν :U →V : u = v◦ν Itiseasytoseethatthisisapartialorder.Wecontinuetodefineanequivalence relation (U,u) ∼ (V,v) :⇔ u ≤ vandv ≤ u The equivalence classes with respect to ∼ are called the subobjects of X, de- notedbySub(X). Fact 3.2. Let X be an object and (U,u) ∼ (V,v) two representatives of the same subobjectofX.Then,UandVareisomorphicviathefactorizationofuthroughv(and vthroughu). Proof. Bydefinition, vfactorsthroughuviasomeν : V (cid:44)→ U whichhastobe monicsincebothuandvaremonic. Equivalently,ufactorsthroughvviasome µ :U (cid:44)→V,so U(cid:95)(cid:95) (cid:111)(cid:95) u (cid:47)(cid:47)(cid:63)(cid:63)X µ (cid:9) ν (cid:31) (cid:31)(cid:31) (cid:127) v V Now u◦ν◦µ = v◦µ = u = u◦id and u canbeleft-cancelled, sowehave U ν◦µ =id andsymmetrically,wegetµ◦ν =id . U V 9 Notation 3.3. For ease of notation, we mean byU ∈ Sub(X) the equivalence class of a pair denoted by (U,ι ). This notation is slightly abusive because U there might be more than one monomorphism U (cid:44)→ X. However, we shall neverabuseittoimplythecontrary. Definition3.4. AcategoryC iscalledwell-poweredwhenSub(X)isasetfor anyobjectX ∈Ob(C). Example3.5. Clearly,thecategorySetsiswell-powered:Thesubobjectsofany set are in bijection with its subsets. Similarly, the categories Grp and Ab are well-powered. Definition3.6. LetXbeanobjectofsomecategoryC. Theintersectionofany familyofsubobjectsofU⊆Sub(X)isdefinedtobeitsinfimuminSub(X),ifit exists. Wedenotethisby (cid:92) U:= inf (U). Sub(X) Furthermore,theunionofUisdefinedtobeitssupremum (cid:91) U:= sup (U). Sub(X) InthecaseU = {U,V},wewriteU∩V := (cid:84)UaswellasU∪V := (cid:83)Uand similarlyforallfinitesetsU. Fact 3.7. Let X be an object of a category C such that Sub(X) is a set. Then, the intersection of any family of subobjects of X exists if and only if the union of any familyofsubobjectsofXexists. Proof. Thisfollowsbecause inf(U) = sup{V | ∀U ∈U:V ≤U} sup(U) = inf{V | ∀U ∈U:V ≥U} holdsinanypartiallyorderedset. Proposition3.8. LetU andV betwosubobjectsofX. Ifthepullbackofthediagram (cid:111) (cid:47)(cid:47) (cid:111)(cid:111) (cid:47) U ιU X ιV V exists,itistheintersectionU∩V. Proof. Weconsiderthepullbackdiagram W(cid:79) (cid:111) λU (cid:47)(cid:47)U(cid:79) λV × ιU (cid:15)(cid:15) (cid:15)(cid:15) (cid:111) (cid:47)(cid:47) V X ιV 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.