ebook img

Group Theory in a Nutshell for Physicists PDF

633 Pages·2016·10.036 MB·English
by  A. Zee
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Group Theory in a Nutshell for Physicists

G roup Theory in a Nutshell for Physicists G roup Theory in a Nutshell for Physicists A. Zee P R I N C E T O N U N I V E R S I T Y P R E S S . P R I N C E T O N A N D O X F O R D Copyright©2016byPrincetonUniversityPress PublishedbyPrincetonUniversityPress,41WilliamStreet, Princeton,NewJersey08540 IntheUnitedKingdom:PrincetonUniversityPress, 6OxfordStreet,Woodstock,OxfordshireOX201TR press.princeton.edu Coverimage:ModificationofDerTigerbyFranzMarc(1912); St¨adtischeGalerieimLenbachhausundKunstbau,M¨unchen. AllRightsReserved LibraryofCongressCataloging-in-PublicationData Names:Zee,A.,author Title:Grouptheoryinanutshellforphysicists/A.Zee. Othertitles:Inanutshell(Princeton,N.J.) Description:Princeton,NewJersey:PrincetonUniversityPress,[2016]| ©2016|Series:Inanutshell|Includesbibliographicalreferencesand index. Identifiers:LCCN2015037408|ISBN9780691162690(hardcover:alk.paper)| ISBN0691162697(hardcover:alk.paper) Subjects:LCSH:Grouptheory. Classification:LCCQC20.7.G76Z442016|DDC512/.2—dc23LCrecordavailableat http://lccn.loc.gov/2015037408 BritishLibraryCataloging-in-PublicationDataisavailable ThisbookhasbeencomposedinScalaLFwithZzTEX byCohographicsandWindfallSoftware. Printedonacid-freepaper PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 ToZYH,theonceandfuture Contents Preface xi ABriefReviewofLinearAlgebra 1 I Part I: Groups: Discrete or Continuous, Finite or Infinite I.1 SymmetryandGroups 37 I.2 FiniteGroups 55 I.3 RotationsandtheNotionofLieAlgebra 70 II Part II: Representing Group Elements by Matrices II.1 RepresentationTheory 89 II.2 Schur’sLemmaandtheGreatOrthogonalityTheorem 101 II.3 CharacterIsaFunctionofClass 114 II.4 Real,Pseudoreal,ComplexRepresentations,andtheNumber ofSquareRoots 136 II.i1 CrystalsAreBeautiful 146 II.i2 Euler’sϕ-Function,Fermat’sLittleTheorem,andWilson’sTheorem 150 II.i3 FrobeniusGroups 154 III Part III: Group Theory in a Quantum World III.1 QuantumMechanicsandGroupTheory:Parity,Bloch’sTheorem, andtheBrillouinZone 161 III.2 GroupTheoryandHarmonicMotion:ZeroModes 168 III.3 SymmetryintheLawsofPhysics:LagrangianandHamiltonian 176 viii | Contents IV Part IV: Tensor, Covering, and Manifold IV.1 TensorsandRepresentationsoftheRotationGroupsSO(N) 185 IV.2 LieAlgebraofSO(3)andLadderOperators:CreationandAnnihilation 203 IV.3 AngularMomentumandClebsch-GordanDecomposition 216 IV.4 TensorsandRepresentationsoftheSpecialUnitaryGroupsSU(N) 227 IV.5 SU(2):DoubleCoveringandtheSpinor 244 IV.6 TheElectronSpinandKramer’sDegeneracy 255 IV.7 IntegrationoverContinuousGroups,Topology,CosetManifold, andSO(4) 261 IV.8 SymplecticGroupsandTheirAlgebras 277 IV.9 FromtheLagrangiantoQuantumFieldTheory:ItIsbutaSkip andaHop 283 IV.i1 MultiplyingIrreducibleRepresentationsofFiniteGroups: ReturntotheTetrahedralGroup 289 IV.i2 CrystalFieldSplitting 292 IV.i3 GroupTheoryandSpecialFunctions 295 IV.i4 CoveringtheTetrahedron 299 V Part V: Group Theory in the Microscopic World V.1 IsospinandtheDiscoveryofaVastInternalSpace 303 V.2 TheEightfoldWayofSU(3) 312 V.3 TheLieAlgebraofSU(3)andItsRootVectors 325 V.4 GroupTheoryGuidesUsintotheMicroscopicWorld 337 VI Part VI: Roots, Weights, and Classification of Lie Algebras VI.1 ThePoorManFindsHisRoots 347 VI.2 RootsandWeightsforOrthogonal,Unitary,andSymplecticAlgebras 350 VI.3 LieAlgebrasinGeneral 364 VI.4 TheKilling-CartanClassificationofLieAlgebras 376 VI.5 DynkinDiagrams 384 VII Part VII: From Galileo to Majorana VII.1 SpinorRepresentationsofOrthogonalAlgebras 405 VII.2 TheLorentzGroupandRelativisticPhysics 428 VII.3 SL(2,C)DoubleCoversSO(3,1):GroupTheoryLeadsUs totheWeylEquation 450 VII.4 FromtheWeylEquationtotheDiracEquation 468 VII.5 DiracandMajoranaSpinors:AntimatterandPseudoreality 482 VII.i1 AHiddenSO(4)AlgebraintheHydrogenAtom 491 Contents | ix VII.i2 TheUnexpectedEmergenceoftheDiracEquationinCondensed MatterPhysics 497 VII.i3 TheEvenMoreUnexpectedEmergenceoftheMajoranaEquation inCondensedMatterPhysics 501 VIII Part VIII: The Expanding Universe VIII.1 ContractionandExtension 507 VIII.2 TheConformalAlgebra 515 VIII.3 TheExpandingUniversefromGroupTheory 523 IX Part IX: The Gauged Universe IX.1 TheGaugedUniverse 531 IX.2 GrandUnificationandSU(5) 541 IX.3 FromSU(5)toSO(10) 550 IX.4 TheFamilyMystery 560 Epilogue 565 TimelineofSomeofthePeopleMentioned 567 SolutionstoSelectedExercises 569 Bibliography 581 Index 583 CollectionofFormulas 601

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.