ebook img

Group Theory Applied to Chemistry PDF

276 Pages·2013·3.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Group Theory Applied to Chemistry

Theoretical Chemistry and Computational Modelling Forfurthervolumes: www.springer.com/series/10635 Modern Chemistry is unthinkable without the achievements of Theoretical and Computa- tional Chemistry. As a matter of fact, these disciplines are now a mandatory tool for the molecularsciencesandtheywillundoubtedlymarkthenewerathatliesaheadofus.Tothis end,in2005,expertsfromseveralEuropeanuniversitiesjoinedforcesunderthecoordination oftheUniversidadAutónomadeMadrid,tolaunchtheEuropeanMastersCourseonTheo- reticalChemistryandComputationalModeling(TCCM).Theaimofthiscourseistodevelop scientistswhoareabletoaddressawiderangeofproblemsinmodernchemical,physical, andbiologicalsciencesviaacombinationoftheoreticalandcomputationaltools.Thebook series,TheoreticalChemistryandComputationalModeling,hasbeendesignedbytheedito- rialboardtofurtherfacilitatethetrainingandformationofnewgenerationsofcomputational andtheoreticalchemists. Prof.ManuelAlcami Prof.OtiliaMo DepartamentodeQuímica DepartamentodeQuímica FacultaddeCiencias,Módulo13 FacultaddeCiencias,Módulo13 UniversidadAutónomadeMadrid UniversidadAutónomadeMadrid 28049Madrid,Spain 28049Madrid,Spain Prof.RiaBroer Prof.IgnacioNebot TheoreticalChemistry InstitutdeCiènciaMolecular ZernikeInstituteforAdvancedMaterials ParcCientíficdelaUniversitatdeValència RijksuniversiteitGroningen CatedráticoJoséBeltránMartínez,no.2 Nijenborgh4 46980Paterna(Valencia),Spain 9747AGGroningen,TheNetherlands Prof.MinhThoNguyen Dr.MonicaCalatayud DepartementScheikunde LaboratoiredeChimieThéorique KatholiekeUniversiteitLeuven UniversitéPierreetMarieCurie,Paris06 Celestijnenlaan200F 4placeJussieu 3001Leuven,Belgium 75252ParisCedex05,France Prof.MaurizioPersico Prof.ArnoutCeulemans DipartimentodiChimicaeChimica DepartementScheikunde Industriale KatholiekeUniversiteitLeuven UniversitàdiPisa Celestijnenlaan200F ViaRisorgimento35 3001Leuven,Belgium 56126Pisa,Italy Prof.AntonioLaganà Prof.MariaJoaoRamos DipartimentodiChimica ChemistryDepartment UniversitàdegliStudidiPerugia UniversidadedoPorto viaElcediSotto8 RuadoCampoAlegre,687 06123Perugia,Italy 4169-007Porto,Portugal Prof.ColinMarsden Prof.ManuelYáñez LaboratoiredeChimie DepartamentodeQuímica etPhysiqueQuantiques UniversitéPaulSabatier,Toulouse3 FacultaddeCiencias,Módulo13 118routedeNarbonne UniversidadAutónomadeMadrid 31062ToulouseCedex09,France 28049Madrid,Spain Arnout Jozef Ceulemans Group Theory Applied to Chemistry ArnoutJozefCeulemans DivisionofQuantumChemistry DepartmentofChemistry KatholiekeUniversiteitLeuven Leuven,Belgium ISSN2214-4714 ISSN2214-4722(electronic) TheoreticalChemistryandComputationalModelling ISBN978-94-007-6862-8 ISBN978-94-007-6863-5(eBook) DOI10.1007/978-94-007-6863-5 SpringerDordrechtHeidelbergNewYorkLondon LibraryofCongressControlNumber:2013948235 ©SpringerScience+BusinessMediaDordrecht2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To mygrandson Louis “Theworldissofullofanumberofthings, I’msureweshouldallbeashappyaskings.” RobertLouisStevenson Preface Symmetry is a general principle, which plays an important role in various areas of knowledge and perception, ranging from arts and aesthetics to natural sciences andmathematics.AccordingtoBarut,1 thesymmetryofaphysicalsystemmaybe lookedatinanumberofdifferentways.Wecanthinkofsymmetryasrepresenting • theimpossibilityofknowingormeasuringsomequantities,e.g.,theimpossibility ofmeasuringabsolutepositions,absolutedirectionsorabsoluteleftorright; • theimpossibilityofdistinguishingbetweentwosituations; • theindependenceofphysicallawsorequationsfromcertaincoordinatesystems, i.e.,theindependenceofabsolutecoordinates; • theinvarianceofphysicallawsorequationsundercertaintransformations; • theexistenceofconstantsofmotionsandquantumnumbers; • theequivalenceofdifferentdescriptionsofthesamesystem. Chemistsaremoreusedtotheoperationaldefinitionofsymmetry,whichcrystallo- graphershavebeenusinglongbeforetheadventofquantumchemistry.Theirball- and-stickmodelsofmoleculesnaturallyexhibitthesymmetrypropertiesofmacro- scopicobjects:theypassintocongruentformsuponapplicationofbodilyrotations about proper and improper axes of symmetry. Needless to say, the practitioner of quantumchemistryandmolecularmodelingisnotconcernedwithballsandsticks, butwithsubatomicparticles,nuclei,andelectrons.Itishardtoseehowbodilyro- tations,whichleaveallinterparticledistancesunaltered,couldaffectinanywaythe studyofmolecularphenomenathatonlydependontheseinternaldistances.Hence, thepurposeofthebookwillbetocometotermswiththesubtlemetaphorsthatre- lateourmacroscopicintuitiveideasaboutsymmetrytothemolecularworld.Inthe endthereadershouldhaveacquiredtheskillstomakeuseofthemathematicaltools ofgrouptheoryforwhateverchemicalproblemshe/shewillbeconfrontedwithin thecourseofhisorherownresearch. 1A.O. Barut, Dynamical Groups and Generalized Symmetries in Quantum Theory, Bascands, Christchurch(NewZealand)(1972) vii Acknowledgements The author is greatly indebted to many people who have made this book possi- ble: to generations of doctoral students Danny Beyens, Marina Vanhecke, Nadine Bongaerts,BrigitteConinckx,IngridVos,GeertVandenberghe,GeertGojiens,Tom Maes, Goedele Heylen, Bruno Titeca, Sven Bovin, Ken Somers, Steven Comper- nolle, Erwin Lijnen, Sam Moors, Servaas Michielssens, Jules Tshishimbi Muya, andPieterThyssen;topostdocsAmuthaRamaswamy,SergiuCojocaru,Qing-Chun Qiu,GuangHu,RuBoZhang,FanicaCimpoesu,DieterBraun,StanislawWalçerz, WillemVandenHeuvel,andAtsuyaMuranaka;tothemanycolleagueswhohave been my guides and fellow travellers to the magnificent viewpoints of theoretical understanding: Brian Hollebone, Tadeusz Lulek, Marek Szopa, Nagao Kobayashi, Tohru Sato, Minh-Tho Nguyen, Victor Moshchalkov, Liviu Chibotaru, Vladimir Mironov,IsaacBersuker,ClaudeDaul,HartmutYersin,MichaelAtanasov,Janette Dunn, Colin Bates, Brian Judd, Geoff Stedman, Simon Altmann, Brian Sutcliffe, Mircea Diudea, Tomo Pisanski, and last but not least Patrick Fowler, companion in many group-theoretical adventures. Roger B. Mallion not only read the whole manuscriptwithmeticulouscareandprovidednumerouscorrectionsandcomments, but also gave expert insight into the intricacies of English grammar and vocabu- lary. I am very grateful to L. Laurence Boyle for a critical reading of the entire manuscript,takingoutremainingmistakesandinconsistencies. I thank Pieter Kelchtermans for his help with LaTeX and Naoya Iwahara for the figures of the Mexican hat and the hexadecapole. Also special thanks to Rita Jungbluthwhorescuedmefromeverythingthatcouldhavedistractedmyattention from writing this book. I remain grateful to Luc Vanquickenborne who was my mentorandpredecessorinthelecturesongrouptheoryatKULeuven,onwhichthis bookisbased.Mythoughtsofgratitudeextendalsotobothmydoctoralstudent,the lateSamEyckens,andtomyfriendandcolleague,thelatePhilipTregenna-Piggott. Bothstartedthejourneywithmebut,atanearlystage,weretakenawayfromthis life. MyfinalthanksgotoMonique. ix Contents 1 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 OperationsandPoints . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 OperationsandFunctions . . . . . . . . . . . . . . . . . . . . . . 4 1.3 OperationsandOperators . . . . . . . . . . . . . . . . . . . . . . 8 1.4 AnAideMémoire . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 FunctionSpacesandMatrices . . . . . . . . . . . . . . . . . . . . . . 11 2.1 FunctionSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 LinearOperatorsandTransformationMatrices . . . . . . . . . . . 12 2.3 UnitaryMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 TimeReversalasanAnti-linearOperator . . . . . . . . . . . . . . 16 2.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 TheSymmetryofAmmonia . . . . . . . . . . . . . . . . . . . . . 21 3.2 TheGroupStructure . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 SomeSpecialGroups . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.5 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.6 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.7 OverviewofthePointGroups . . . . . . . . . . . . . . . . . . . . 34 SphericalSymmetryandthePlatonicSolids . . . . . . . . . . . . 34 CylindricalSymmetries . . . . . . . . . . . . . . . . . . . . . . . 40 3.8 RotationalGroupsandChiralMolecules . . . . . . . . . . . . . . 44 3.9 Applications:MagneticandElectricFields . . . . . . . . . . . . . 46 3.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 xi xii Contents 4 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1 Symmetry-AdaptedLinearCombinationsofHydrogenOrbitalsin Ammonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2 CharacterTheorems . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 CharacterTables . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4 MatrixTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.5 ProjectionOperators . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.6 SubductionandInduction . . . . . . . . . . . . . . . . . . . . . . 69 4.7 Application:Thesp3 HybridizationofCarbon . . . . . . . . . . . 76 4.8 Application:TheVibrationsofUF . . . . . . . . . . . . . . . . . 78 6 4.9 Application:HückelTheory . . . . . . . . . . . . . . . . . . . . . 84 CyclicPolyenes . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 PolyhedralHückelSystemsofEquivalentAtoms . . . . . . . . . . 91 TriphenylmethylRadicalandHiddenSymmetry . . . . . . . . . . 95 4.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5 WhathasQuantumChemistryGottoDowithIt?. . . . . . . . . . . 103 5.1 ThePrequantumEra . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2 TheSchrödingerEquation . . . . . . . . . . . . . . . . . . . . . . 105 5.3 HowtoStructureaDegenerateSpace . . . . . . . . . . . . . . . . 107 5.4 TheMolecularSymmetryGroup . . . . . . . . . . . . . . . . . . 108 5.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.1 OverlapIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2 TheCouplingofRepresentations . . . . . . . . . . . . . . . . . . 115 6.3 SymmetryPropertiesoftheCouplingCoefficients . . . . . . . . . 117 6.4 ProductSymmetrizationandthePauliExchange-Symmetry . . . . 122 6.5 MatrixElementsandtheWigner–EckartTheorem . . . . . . . . . 126 6.6 Application:TheJahn–TellerEffect . . . . . . . . . . . . . . . . . 128 6.7 Application:Pseudo-Jahn–Tellerinteractions . . . . . . . . . . . . 134 6.8 Application:LinearandCircularDichroism . . . . . . . . . . . . 138 LinearDichroism . . . . . . . . . . . . . . . . . . . . . . . . . . 139 CircularDichroism. . . . . . . . . . . . . . . . . . . . . . . . . . 144 6.9 InductionRevisited:TheFibreBundle . . . . . . . . . . . . . . . 148 6.10 Application:BondingSchemesforPolyhedra. . . . . . . . . . . . 150 EdgeBondinginTrivalentPolyhedra . . . . . . . . . . . . . . . . 155 FrontierOrbitalsinLeapfrogFullerenes . . . . . . . . . . . . . . 156 6.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7 SphericalSymmetryandSpins . . . . . . . . . . . . . . . . . . . . . 163 7.1 TheSpherical-SymmetryGroup . . . . . . . . . . . . . . . . . . . 163 7.2 Application:Crystal-FieldPotentials . . . . . . . . . . . . . . . . 167 7.3 InteractionsofaTwo-ComponentSpinor . . . . . . . . . . . . . . 170

Description:
Chemists are used to the operational definition of symmetry, which crystallographers introduced long before the advent of quantum mechanics. The ball-and-stick models of molecules naturally exhibit the symmetrical properties of macroscopic objects. However, the practitioner of quantum chemistry and
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.