ebook img

Group and Galois Cohomology PDF

56 Pages·2016·0.313 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Group and Galois Cohomology

G G C ROUP AND ALOIS OHOMOLOGY Romyar Sharifi Contents Chapter1. Groupcohomology 5 1.1. Grouprings 5 1.2. Groupcohomologyviacochains 6 1.3. Groupcohomologyviaprojectiveresolutions 10 1.4. Homologyofgroups 12 1.5. Inducedmodules 13 1.6. Tatecohomology 15 1.7. Dimensionshifting 19 1.8. Comparingcohomologygroups 21 1.9. Cupproducts 30 1.10. Tatecohomologyofcyclicgroups 36 1.11. Cohomologicaltriviality 39 1.12. Tate’stheorem 42 Chapter2. Galoiscohomology 47 2.1. Profinitegroups 47 2.2. Cohomologyofprofinitegroups 53 3 CHAPTER 1 Group cohomology 1.1. Grouprings LetGbeagroup. DEFINITION 1.1.1. The group ring (or, more specifically, Z-group ring) Z[G] of a group G consistsofthesetoffiniteformalsumsofgroupelementswithcoefficientsinZ (cid:40) (cid:41) ∑ a g|a ∈Zforallg∈G, almostalla =0 . g g g g∈G withadditiongivenbyadditionofcoefficientsandmultiplicationinducedbythegrouplawonG andZ-linearity. (Here,“almostall”meansallbutfinitelymany.) Inotherwords,theoperationsare ∑ a g+ ∑ b g= ∑(a +b )g g g g g g∈G g∈G g∈G and (cid:32) (cid:33)(cid:32) (cid:33) ∑ a g ∑ b g = ∑(∑ a b )g. g g k k−1g g∈G g∈G g∈G k∈G REMARK 1.1.2. Intheabove,wemayreplaceZbyanyringR,resultingintheR-groupring R[G]ofG. However,weshallneedhereonlythecasethatR=Z. DEFINITION 1.1.3. i. Theaugmentationmapisthehomomorphismε: Z[G]→Zgivenby (cid:32) (cid:33) ε ∑ a g = ∑ a . g g g∈G g∈G ii. TheaugmentationidealI isthekerneloftheaugmentationmapε. G LEMMA 1.1.4. The augmentation ideal IG is equal to the ideal of Z[G] generated by the set {g−1|g∈G}. PROOF. Clearlyg−1∈kerε forallg∈G. Ontheotherhand,if∑g∈Gag =0,then ∑ a g= ∑ a (g−1). g g g∈G g∈G (cid:3) 5 6 1.GROUPCOHOMOLOGY DEFINITION 1.1.5. If G is a finite group, we then define the norm element of Z[G] by NG = ∑ g. g∈G REMARK 1.1.6. a. Wemayspeak,ofcourse,ofmodulesoverthegroupringZ[G]. Wewillreferheretosuch Z[G]-modulesmoresimplyasG-modules. TogiveaG-moduleisequivalenttogivinganabelian group A together with a G-action on A that is compatible with the structure of A as an abelian group,i.e.,amap G×A→A, (g,a)(cid:55)→g·a satisfyingthefollowingproperties: (i) 1·a=aforalla∈A, (ii) g ·(g ·a)=(g g )·aforalla∈Aandg ,g ∈G,and 1 2 1 2 1 2 (iii) g·(a +a )=g·a +g·a foralla ,a ∈Aandg∈G. 1 2 1 2 1 2 b. Ahomomorphismκ: A→BofG-modulesisjustahomomorphismofabeliangroupsthat satisfies κ(ga)=gκ(a) for all a∈A and g∈G. The group of such homomorphisms is denoted byHom (A,B). Z[G] DEFINITION 1.1.7. WesaythataG-moduleAisatrivialifg·a=aforallg∈Ganda∈A. DEFINITION 1.1.8. LetAbeaG-module. i. ThegroupofG-invariantsAG ofAisgivenby AG ={a∈A|g·a=aforallg∈G,a∈A}, whichistosaythelargestsubmoduleofAfixedbyG. ii. ThegroupofG-coinvariantsA ofAisgivenby G A =A/I A, G G whichistosay(notingLemma1.1.4)thelargestquotientofAfixedbyG. EXAMPLE 1.1.9. a. IfAisatrivialG-module,thenAG =AandA ∼=A. G b. OnehasZ[G] ∼=Z. WehaveZ[G]G =(N )ifGisfiniteandZ[G]G =(0)otherwise. G G 1.2. Groupcohomologyviacochains ThesimplestwaytodefinetheithcohomologygroupHi(G,A)ofagroupGwithcoefficients in a G-module A would be to let Hi(G,A) be the ith derived functor on A of the functor of G- invariants. However,notwishingtoassumehomologicalalgebraatthispoint,wetakeadifferent tack. DEFINITION 1.2.1. LetAbeaG-module,andleti≥0. i. Thegroupofi-cochainsofGwithcoefficientsinAisthesetoffunctionsfromGi toA: Ci(G,A)={f : Gi →A}. 1.2.GROUPCOHOMOLOGYVIACOCHAINS 7 ii. Theithdifferentialdi =di : Ci(G,A)→Ci+1(G,A)isthemap A di(f)(g ,g ,...,g)=g · f(g ,...g) 0 1 i 0 1 i i + ∑(−1)jf(g ,...,g ,g g ,g ,...,g)+(−1)i+1f(g ,...,g ). 0 j−2 j−1 j j+1 i 0 i−1 j=1 WewillcontinuetoletAdenoteaG-modulethroughoutthesection. WeremarkthatC0(G,A) istakensimplytobeA,asG0 isasingletonset. Theproofofthefollowingislefttothereader. LEMMA 1.2.2. Foranyi≥0,onehasdi+1◦di =0. REMARK 1.2.3. Lemma1.2.2showsthatC·(G,A)=(Ci(G,A),di)isacochaincomplex. WeconsiderthecohomologygroupsofC·(G,A). DEFINITION 1.2.4. Leti≥0. i. WesetZi(G,A)=kerdi,thegroupofi-cocyclesofGwithcoefficientsinA. ii. We set B0(G,A)=0 and Bi(G,A)=imdi−1 for i≥1. We refer to Bi(G,A) as the group ofi-coboundariesofGwithcoefficientsinA. We remark that, since di◦di−1 =0 for all i≥1, we have Bi(G,A)⊆Zi(G,A) for all i≥0. Hence,wemaymakethefollowingdefinition. DEFINITION 1.2.5. WedefinetheithcohomologygroupofGwithcoefficientsinAtobe Hi(G,A)=Zi(G,A)/Bi(G,A). ThecohomologygroupsmeasurehowfarthecochaincomplexC·(G,A)isfrombeingexact. Wegivesomeexamplesofcohomologygroupsinlowdegree. LEMMA 1.2.6. a. ThegroupH0(G,A)isequaltoAG,thegroupofG-invariantsofA. b. Wehave Z1(G,A)={f : G→A| f(gh)=gf(h)+ f(g)forallg,h∈G} and B1(G,A) is the subgroup of f : G→A for which there exists a∈A such that f(g)=ga−a forallg∈G. c. IfAisatrivialG-module,thenH1(G,A)=Hom(G,A). PROOF. Let a∈A. Then d0(a)(g)=ga−a for g∈G, so kerd0 =AG. That proves part a, and part b is simply a rewriting of the definitions. Part c follows immediately, as the definition ofZ1(G,A)reducestoHom(G,A),andB1(G,A)isclearly(0),inthiscase. (cid:3) Weremarkthat,asAisabelian,wehaveHom(G,A)=Hom(Gab,A),whereGab isthemaxi- malabelianquotientofG(i.e.,itsabelianization). One of the most important uses of cohomology is that it converts short exact sequences of G-modules to long exact sequences of abelian groups. For this, in homological language, we needthefactthatCi(G,A)providesanexactfunctorinthemoduleA. 8 1.GROUPCOHOMOLOGY LEMMA 1.2.7. If α: A→B is a G-module homomorphism, then for each i≥0, there is an inducedhomomorphismofgroups αi: Ci(G,A)→Ci(G,B) taking f toα◦ f andcompatiblewiththedifferentialsinthesensethat di ◦αi =αi+1◦di. B A PROOF. Weneedonlycheckthecompatibility. Forthis,notethat di(α◦ f)(g ,g ,...,g)=g α◦ f(g ,...g) 0 1 i 0 1 i i +∑(−1)jα◦ f(g ,...,g ,g g ,g ,...,g)+(−1)i+1α◦ f(g ,...,g ) 0 j−2 j−1 j j+1 i 0 i−1 j=i =α(di(f)(g ,g ,...,g)), 0 1 i asα isaG-modulehomomorphism(thefactofwhichweuseonlytodealwiththefirstterm). (cid:3) In other words, α induces a morphism of complexes α·: C·(G,A)→C·(G,B). As a conse- quence,oneseeseasilythefollowing NOTATION 1.2.8. Ifnothelpfulforclarity,wewillomitthesuperscriptsfromthenotationin the morphisms of cochain complexes. Similarly, we will consistently omit them in the resulting mapsoncohomology,describedbelow. COROLLARY 1.2.9. AG-modulehomomorphismα: A→Binducesmaps α∗: Hi(G,A)→Hi(G,B) oncohomology. Thekeyfactthatweneedaboutthemorphismoncochaincomplexesisthefollowing. LEMMA 1.2.10. Supposethat ι π 0→A→− B−→C→0 isashortexactsequenceofG-modules. Thentheresultingsequence 0→Ci(G,A)→−ι Ci(G,B)−→π Ci(G,C)→0 isexact. PROOF. Let f ∈Ci(G,A), and suppose ι◦ f =0. As ι is injective, this clearly implies that f =0, so the map ιi is injective. As π◦ι =0, the same is true for the maps on cochains. Next, supposethat f(cid:48)∈Ci(G,B)issuchthatπ◦ f(cid:48)=0. Define f ∈Ci(G,A)byletting f(g ,...,g)∈A 1 i betheuniqueelementsuchthat ι(f(g ,...,g))= f(cid:48)(g ,...,g), 1 i 1 i which we can do since imι = kerπ. Thus, imιi = kerπi. Finally, let f(cid:48)(cid:48) ∈Ci(G,C). As π is surjective,wemaydefine f(cid:48) ∈Ci(G,B)bytaking f(cid:48)(g ,...,g)tobeanyelementwith 1 i π(f(cid:48)(g ,...,g))= f(cid:48)(cid:48)(g ,...,g). 1 i 1 i 1.2.GROUPCOHOMOLOGYVIACOCHAINS 9 Wethereforehavethatπi issurjective. (cid:3) Wenowprovethemaintheoremofthesection. THEOREM 1.2.11. Supposethat ι π 0→A→− B−→C→0 isashortexactsequenceofG-modules. Thenthereisalongexactsequenceofabeliangroups 0→H0(G,A)−→ι∗ H0(G,B)−π→∗ H0(G,C)−δ→0 H1(G,A)→···. Moreover,thisconstructionisnaturalintheshortexactsequenceinthesensethatanymorphism (cid:47)(cid:47) ι (cid:47)(cid:47) π (cid:47)(cid:47) (cid:47)(cid:47) 0 A B C 0 α β γ (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) 0 (cid:47)(cid:47) A(cid:48) ι(cid:48) (cid:47)(cid:47) B(cid:48) π(cid:48) (cid:47)(cid:47)C(cid:48) (cid:47)(cid:47) 0, givesrisetoamorphismoflongexactsequences,andinparticular,acommutativediagram ··· (cid:47)(cid:47) Hi(G,A) ι∗ (cid:47)(cid:47) Hi(G,B) π∗ (cid:47)(cid:47) Hi(G,C) δi (cid:47)(cid:47) Hi+1(G,A) (cid:47)(cid:47) ··· (cid:15)(cid:15) α∗ (cid:15)(cid:15) β∗ (cid:15)(cid:15) γ∗ (cid:15)(cid:15) α∗ ··· (cid:47)(cid:47) Hi(G,A(cid:48)) (ι(cid:48))∗ (cid:47)(cid:47) Hi(G,B(cid:48)) (π(cid:48))∗(cid:47)(cid:47) Hi(G,C(cid:48)) δi (cid:47)(cid:47) Hi+1(G,A(cid:48)) (cid:47)(cid:47) ···. PROOF. Firstconsiderthediagrams 0 (cid:47)(cid:47)Cj(G,A) ι (cid:47)(cid:47)Cj(G,B) π (cid:47)(cid:47)Cj(G,C) (cid:47)(cid:47) 0 dj dj dj (cid:15)(cid:15) A (cid:15)(cid:15) B (cid:15)(cid:15) C 0 (cid:47)(cid:47)Cj+1(G,A) ι (cid:47)(cid:47)Cj+1(G,B) π (cid:47)(cid:47)Cj+1(G,C) (cid:47)(cid:47) 0 for j≥0. NotingLemma1.2.10,theexactsequencesofcokernels(for j=i−1)andkernels(for j=i+1)canbeplacedinaseconddiagram Ci(G,A) ι (cid:47)(cid:47) Ci(G,B) π (cid:47)(cid:47) Ci(G,C) (cid:47)(cid:47) 0 Bi(G,A) Bi(G,B) Bi(G,C) di di di (cid:15)(cid:15) A (cid:15)(cid:15) B (cid:15)(cid:15) C 0 (cid:47)(cid:47) Zi+1(G,A) ι (cid:47)(cid:47) Zi+1(G,B) π (cid:47)(cid:47) Zi+1(G,C) (recalling that B0(G,A) = 0 for the case i = 0), and the snake lemma now provides the exact sequence Hi(G,A)−α→∗ Hi(G,B)−β→∗ Hi(G,C)−δ→i Hi+1(G,A)−α→∗ Hi+1(G,B)−β→∗ Hi+1(G,C). Splicingthesetogethergivesthelongexactsequenceincohomology,exactnessof 0→H0(G,A)→H0(G,B) 10 1.GROUPCOHOMOLOGY beingobvious. Weleavenaturalityofthelongexactsequenceasanexercise. (cid:3) REMARK1.2.12. Themapsδi: Hi(G,C)→Hi+1(G,A)definedintheproofoftheorem1.2.11 areknownasconnectinghomomorphisms. Again,wewilloftenomitsuperscriptsandsimplyre- fertoδ. REMARK 1.2.13. A sequence of functors that take short exact sequences to long exact se- quences(i.e.,whichalsogiverisetoconnectinghomomorphisms)andisnaturalinthesensethat every morphism of short exact sequences gives rise to a morphism of long exact sequences is known as a δ-functor. Group cohomology forms a (cohomological) δ-functor that is universal inasenseweomitadiscussionofhere. 1.3. Groupcohomologyviaprojectiveresolutions Inthissection,weassumeabitofhomologicalalgebra,andredefinetheG-cohomologyofA intermsofprojectiveresolutions. For i ≥ 0, let Gi+1 denote the direct product of i+1 copies of G. We view Z[Gi+1] as a G-moduleviatheleftaction g·(g ,g ,...,g)=(gg ,gg ,...,gg). 0 1 i 0 1 i Wefirstintroducethestandardresolution. DEFINITION1.3.1. The(augmented)standardresolutionofZbyG-modulesisthesequence ofG-modulehomomorphisms ···→Z[Gi+1]−→di Z[Gi]→···→Z[G]→−ε Z, where i d(g ,...,g)= ∑(−1)j(g ,...,g ,g ,...,g) i 0 i 0 j−1 j+1 i j=0 foreachi≥1,andε istheaugmentationmap. At times, we may use (g ,...,g ,...,g)∈Gi to denote the i-tuple excluding g . To see that 0 (cid:98)j i j thisdefinitionisactuallyreasonable,weneedthefollowinglemma. PROPOSITION 1.3.2. Theaugmentedstandardresolutionisexact. PROOF. Inthisproof,taked0 =ε. Foreachi≥0,compute i+1i+1 d ◦d (g ,...,g )= ∑ ∑(−1)j+k−s(j,k)(g ,...,g ,...,g ,...,g ), i i+1 0 i+1 0 (cid:98)j (cid:98)k i+1 j=0k=0 k(cid:54)=j where s(j,k) is 0 if k < j and 1 if k > j. Each possible (i−1)-tuple appears twice in the sum, withoppositesign. Therefore,wehaved ◦d =0. i i+1 Next,defineθ : Z[Gi]→Z[Gi+1]by i θ(g ,...,g)=(1,g ,...,g). i 1 i 1 i

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.