Ground-state Structure and Dynamics Jonathan Yates [email protected] Materials Modelling Laboratory, Oxford Materials !"#$%&’( H !"#$%&’%$"(%)*&$%#’’+,&#$(-%.&$"%!/012 !"#$$%&’($)*(+#,-*(.#$*&$%/" !"#$%&’( !" #! $%&"’ #%,+*3(0’&+*%4#,$+0 Forces !"#)*&’( () #! *+),- . " / !"0 - # . $ 12%3$ $%&34 $%%% 0 .0 5 $ $%&"$$0 62%37$ $%&"$%0 2$$ $%&"$$ For a given set of atomic positions the !"# $ % !%506%,+7(’%+)$%$+%8(%#%8)*,"%+4%’7#99%*)78(0’%#*-%$"&’%&’%*+$%,+*3(*&(*$%$+%:9+$;%<+%"(0(%.(%,+*3(0$(- ions will experience a force ! & % ’ " ’& =+)9(’%:(0%7+9(,)9(%$+%>&9+%=+)9(’%:(0%7+9(;%?"(%,+*3(0’&+*%&’%’((*%&*%$"(%@0#:";%?"(%*($%0(’)9$%&’%$"#$ .(%+8$#&*%@0#:"’%$"#$%9++>%9&>(%$"(%+*(’%&*%$"(%8++>’%#*-%.(%"#3(%#%,9(#0(0%&-(#%+4%$"(%)*&$’;%!(%#9’+ ’,#9(-%$"(%AB#A&’%8C%-&3&-&*@%8C%DEFBG; !"#)$&’( 89:(;,<( ()0 =>-:?.9@9! % "%2$0 % 0 A.+"- % *.B-0 R After minimising the energy of the electrons . " / # . $ 12%3 $%34 - ;,<(C<9!-D % *.B-0 A.+"-8+)-, % E&&&&&&&&&&&&&&&E0 E&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&E !" $%%% CASTEP will compute the ionic forces ( " ’ (v. cheap using Hellman-Feyman theorem) " -!! " ! & "" ) *+ .""""" %"" !"" ,!! ***************** Symmetrised Forces ***************** $" "y * * %" g * Cartesian components (eV/A) * !"! ""!r * -------------------------------------------------- * ,"!e+!! "$n * x y z * $" E " * * " " * N 1 0.56342 0.00000 0.00000 * &" %!! " ! * N 2 -0.56342 0.00000 0.00000 * #" " * * ****************************************************** ! !!"!# ! !"!# !"$ !"$# !"% !"%# & ! ’ """""""""""(""" Rule of Thumb Force>1.0 eV/ is a large force R Å )* +,-#)$&( %&/&012345&% DFT+spectroscopy: Oxford 2009 Jonathan R. Yates 2 !"#$%&’( H !"#$%&’%$"(%)*&$%#’’+,&#$(-%.&$"%!/012 !"#$$%&’($)*(+#,-*(.#$*&$%/" !"#$%&’( !" #! $%&"’ #%,+*3(0’&+*%4#,$+0 !"#)*&’( () #! *+),- . " / !"0 - # . $ 12%3$ $%&34 $%%% 0 .0 5 $ $%&"$$0 62%37$ $%&"$%0 2$$ $%&"$$ !"# $ % !%506%,+7(’%+)$%$+%8(%#%8)*,"%+4%’7#99%*)78(0’%#*-%$"&’%&’%*+$%,+*3(*&(*$%$+%:9+$;%<+%"(0(%.(%,+*3(0$(- ! & % ’ " ’& =+)9(’%:(0%7+9(,)9(%$+%>&9+%=+)9(’%:(0%7+9(;%?"(%,+*3(0’&+*%&’%’((*%&*%$"(%@0#:";%?"(%*($%0(’)9$%&’%$"#$ .(%+8$#&*%@0#:"’%$"#$%9++>%9&>(%$"(%+*(’%&*%$"(%8++>’%#*-%.(%"#3(%#%,9(#0(0%&-(#%+4%$"(%)*&$’;%!(%#9’+ ’,#9(-%$"(%AB#A&’%8C%-&3&-&*@%8C%DEFBG; !"#)$&’( 89:(;,<( ()0 =>-:?.9@9! % "%2$0 % 0 A.+"- % *.B-0 Crystalline materials . " / # . $ 12%3 $%34 - ;,<(C<9!-D % *.B-0 A.+"-8+)-, % E&&&&&&&&&&&&&&&E0 E&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&E !" $%%% ( " ’ " -!! " ! & "" ) *+ .""""" %"" !"" ,!! Ground-state structure at zero Kelvin corresponding $" "y %" g to a minimum in the energy (all ionic forces are !"! ""!r ,"!e+!! zero) "$n $" E " " " &" %!! " ! #" If we consider a crystalline material ground-state " ! structure is a minimum in the Enthalpy (zero force !!"!# ! !"!# !"$ !"$# !"% !"%# and stress) & ! ’ """""""""""(""" R )* We can use the forces, and stress to guide us+, t-o#) t$h&e( %&/&012345&% minimum More precisely we use a minimisation algorithm called BFGS (Broyden–Fletcher–Goldfarb–Shanno) DFT+spectroscopy: Oxford 2009 Jonathan R. Yates 3 !"#$%&’( H !"#$%&’%$"(%)*&$%#’’+,&#$(-%.&$"%!/012 !"#$$%&’($)*(+#,-*(.#$*&$%/" !"#$%&’( !" #! $%&"’ #%,+*3(0’&+*%4#,$+0 Minimisation !"#)*&’( () #! *+),- . " / !"0 - # . $ 12%3$ $%&34 $%%% 0 .0 5 $ $%&"$$0 62%37$ $%&"$%0 2$$ $%&"$$ !"# $ % !%506%,+7(’%+)$%$+%8(%#%8)*,"%+4%’7#99%*)78(0’%#*-%$"&’%&’%*+$%,+*3(*&(*$%$+%:9+$;%<+%"(0(%.(%,+*3(0$(- To find ground-state of system ! & % ’ " ’& =+)9(’%:(0%7+9(,)9(%$+%>&9+%=+)9(’%:(0%7+9(;%?"(%,+*3(0’&+*%&’%’((*%&*%$"(%@0#:";%?"(%*($%0(’)9$%&’%$"#$ .(%+8$#&*%@0#:"’%$"#$%9++>%9&>(%$"(%+*(’%&*%$"(%8++>’%#*-%.(%"#3(%#%,9(#0(0%&-(#%+4%$"(%)*&$’;%!(%#9’+ 1- Minimise energy of electrons for fixed ionic ’,#9(-%$"(%AB#A&’%8C%-&3&-&*@%8C%DEFBG; positions 2- Evaluate forces on ions (+stress) !"#)$&’( 89:(;,<( ()0 =>-:?.9@9! % "%2$0 % 0 A.+"- % *.B-0 R . " / # . $ 12%3 $%34 - 3- Move ions, unit cell according to BFGS algorithm ;,<(C<9!-D % *.B-0 A.+"-8+)-, % E&&&&&&&&&&&&&&&E0 E&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&E !" $%%% ( " ’ " -!! Repeat steps 1-3 until the maximum " ! & "" ) *+ .""""" force / stress is below a specified value %"" !"" ,!! $" (plus a few other conditions) "y %" g !"! ""!r ,"!e+!! "$n $" E " " " &" %!! " ! #" " Important note: BFGS will find the closest local ! minimum - this might not be the global minimum !!"!# ! !"!# !"$ !"$# !"% !"%# & ! ’ """""""""""(""" R )* +,-#)$&( %&/&012345&% DFT+spectroscopy: Oxford 2009 Jonathan R. Yates 4 Constraints We can apply contraints to system during minimisation •Fix positions of an atom or a set of atoms (for example fix heavy atoms and only allow H atoms to move) •Fix unit cell (all or only allow given lattice vectors or angles to change) •Fix centre of mass •Apply a pressure to the unit cell: for example to find structure at given pressure - study phase changes Note: CASTEP can also fix bond lengths, or bond angles. These are ʻnon-linear contraints and so harder to apply. We canʼt use BFGS minimisation and must use the ʻdelocalised internalsʼ approach. DFT+spectroscopy: Oxford 2009 Jonathan R. Yates 5 What it can tell you (-?3’!?9’@3’$2AA’>)BC D %EB:A:5*:B4’5)9F’A29G3-,’?9F’?9GA2, D %EB:A:5*:B4’H2AA’.?*?4232*, D I:,H*:4:9?3:9G’523J229’H)4.23:9G’,3*BH3B*2, D %A?,3:H’H)9,3?93, D #B*=?H2’*2H)9,3*BH3:)9, D &*2,,B*27F*:;29’.-?,2’3*?9,:3:)9, D #3?*3:9G’.):93’=)*’4?9<’?F;?9H2F’ :9;2,3:G?3:)9,’K !"#$%&’()*+,-).’/001 #2.32452*’613-7/6,3 89:;2*,:3<’)=’>)*+ DFT+spectroscopy: Oxford 2009 Jonathan R. Yates 6 What is the right structure? Need to think carefully about your problem BFGS will find nearest minima. Is this what you want? Maybe there are multiple minima Can compare total energy of minima to find the lowest If the energies are close these might all be physically relevant Two polymorphic forms of MNA both are stable at rtp Does your system have some disorder? Is it static disorder Is there a time-scale involved Minimisation will give the 0K structure. A diffraction experiment would have been performed at a finite temperature. A spectroscopic measurement might have been made at a different The ground-state energies of the temperature. systems are close. But the spectroscopic signatures (NMR, vibrational) are quite different. DFT+spectroscopy: Oxford 2009 Jonathan R. Yates 7 Where to get your crystal structure Diffraction: Structures deposited in the ICSD (inorganic) and CSD (organic) X-ray Diffraction: Many structures available (and equipment is common), but hydrogen positions inaccurate Neutron Diffraction: Good resolution for light elements - but few structures available For symmetric molecules or 1 or 2 dimensional systems (eg nanotubes): work out by hand, or use a programs such as tubegen, Materials Studio. Use random numbers or NMR Active research areas - see posters by Elodie and Gareth this evening DFT+spectroscopy: Oxford 2009 Jonathan R. Yates 8 Phonons The first step in a calculation of the phonon frequencies is to perform a geometry optimisation to obtain a structure with no forces on the ions. Harmonic lattice dynamics is based on a Taylor expansion of the total energy about the equilibrium coordinates - assumes first order term (ie groundstate force) is zero Formalism valid for finite stress - so can compute change in phonon frequency with pressure The presence of negative eigenvalues (“imaginary frequencies”) shows we are not at a minimum of the energy - maybe a saddle point. This might indicate the system is unstable to a distortion Knowledge of the phonons tells us something about the systemʼs response to temperature - can incorporate this information into property calculations at finite temperature DFT+spectroscopy: Oxford 2009 Jonathan R. Yates 9 Comparison of ND and XRD Sucrose - 3 structures in CSD NRD • Neutron diffraction, G.M. Brown and H.A. Levy Acta Cryst. B29, 790-797 (1973). XRD-91 • X-ray diffraction, R. C. Hynes Y. Le Page , J. App. Cryst., 24 (1991) p352 XRD-73 • X-ray diffraction, J. C. Hanson L. C. Sieker L. H. Jensen , Acta Crysta, B, 29 (1973) p797 Compare Forces (eV/Å) for Expt and Partial Relaxed (PR = only H atoms can more) structures NNRRDD XXRRDD--9911 XXRRDD--7733 Expt PR Expt PR Expt PR HHyyddrrooggeenn Mean Force 0.6065 0.0011 7.1615 0.0014 12.7606 0.0037 Maximum Force 3.8200 0.0027 20.7193 0.0036 66.0071 0.0081 HHeeaavvyy Mean Force 0.6028 0.2613 6.4252 0.3285 11.4669 0.2028 AAttoommss Maximum Force 3.9187 0.4565 19.9329 0.9787 65.7079 0.3764 NRD max force (3.8eV/ on O-H of length = 0.912 Å) Å Relaxed bond length = 0.977 Å XRD-73 max force (66eV/ on O-H of length = 0.636 Å) Å Note: We kept the unit cell fixed during the relaxation. This is important when using standard functions LDA/GGA as they do no discribe dispersion/Van der Waals forces well - and these have a large contribution to the cohesion of molecular crystals. See Timʼs poster this evening DFT+spectroscopy: Oxford 2009 Jonathan R. Yates 10