ebook img

Ground-state phase diagram of the one-dimensional half-filled extended Hubbard model PDF

0.66 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ground-state phase diagram of the one-dimensional half-filled extended Hubbard model

Ground-state phasediagram ofthe one-dimensional half-filled extended Hubbard model M. Tsuchiizu1,2 and A. Furusaki1,3 1Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan 2Department of Physics, Nagoya University, Nagoya 464-8602, Japan 3Condensed-MatterTheoryLaboratory,TheInstituteofPhysicalandChemicalResearch(RIKEN),Saitama351-0198,Japan (Dated:January26,2004) 4 Werevisittheground-statephasediagramoftheone-dimensional half-filledextendedHubbardmodelwith 0 on-site (U) and nearest-neighbor (V) repulsive interactions. In the first half of the paper, using the weak- 0 coupling renormalization-group approach (g-ology) including second-order corrections to the coupling con- 2 stants,weshowthatbond-charge-density-wave(BCDW)phaseexistsforU ≈2V inbetweencharge-density- n wave (CDW) and spin-density-wave (SDW) phases. We find that the umklapp scattering of parallel-spin a electronsdisfavorstheBCDWstateandleadstoabicriticalpoint wheretheCDW-BCDWandSDW-BCDW J continuous-transitionlinesmergeintotheCDW-SDWfirst-ordertransitionline.Inthesecondhalfofthepaper, 6 weinvestigatethephasediagramoftheextendedHubbardmodelwitheitheradditionalstaggeredsitepotential 2 ∆orbondalternationδ.Althoughthealternatingsitepotential∆stronglyfavorstheCDWstate(thatis,aband insulator),theBCDWstateisnotdestroyedcompletelyandoccupiesafiniteregioninthephasediagram. Our ] resultisanaturalgeneralizationoftheworkbyFabrizio, Gogolin, andNersesyan[Phys.Rev.Lett.83, 2014 l e (1999)],whopredictedtheexistenceofaspontaneouslydimerizedinsulatingstatebetweenabandinsulatorand - aMottinsulatorinthephasediagramoftheionicHubbardmodel. Thebondalternationδ destroystheSDW r t state and changes it into the BCDW state (or Peierls insulating state). As a result the phase diagram of the s modelwithδcontainsonlyasinglecriticallineseparatingthePeierlsinsulatorphaseandtheCDWphase.The . t additionof∆orδ changestheuniversalityclassoftheCDW-BCDWtransitionfromtheGaussiantransition a intotheIsingtransition. m - PACSnumbers:71.10.Fd,71.10.Hf,71.10.Pm,71.30.+h d n o I. INTRODUCTION repulsion U, the ground state is in the Mott insulating state c [ wherethespinsectorexhibitsquasi-long-rangeorderofspin- densitywave(SDW);wecallittheSDWstate.Intheopposite 2 It is well known that a one-dimensional (1D) spin sys- limitofstrongV,thegroundstateofthehalf-filledEHMhasa v tem has instability to dimerization that changes the system long-rangeorderofthecharge-densitywave(CDW);wecall 7 intoanonmagneticinsulatingstate,theso-calledspin-Peierls this state the CDW state. Furthermore, in the atomic limit 5 state.1 Indeed the spin-Peierls state is realized in many sys- 1 where the electron hopping t is ignored, the CDW state ap- tems including quasi-one-dimensionalorganic compounds2,3 8 pearsforU <2V whereastheuniformstatecorrespondingto and the inorganicmaterial4 CuGeO , andits propertieshave 0 3 theSDWstateisstableforU >2V inonedimension.Strong- 3 been studied extensively both experimentally and theoreti- couplingperturbationtheory in t has established that a first- 0 cally.Ofparticularinterestisasituationinwhichadimerized order phase transition between the SDW state and the CDW t/ state appears spontaneously due to strong correlations and state occurs at U 2V.18,19,20,21 As for the weak-coupling a frustration.5 A well-known example is the frustrated spin-1 ≃ m 2 regime,perturbativerenormalization-group(RG)approachor Heisenbergchainwithnearest-neighbor,J ,andnext-nearest- 1 g-ologyledtoasimilarconclusionthatthegroundstateathalf - neighbor,J ,antiferromagneticexchangeinteractions,where d 2 filling is either in the SDW state or in the CDW state with a n a0.s2p4oJnt.a6neOotuhselrysdyimsteemrizsedofphcausrereinstreianltiezreedstfoarreJ2qu≥asJi-2ocn≃e- continuous phase-transition line at U = 2V.18 Thus, it had o 1 been considered for a long time that the ground-state phase c dimensionalelectronsystemsinorganicmaterials,wherethe diagram of the EHM at half filling has only two phases, the : spin-Peierlsstateappearsduetostrongelectroncorrelationat v SDW and CDW states, and that the order of the phase tran- halffilling7,8,9,10,11,12,13,14andatquarterfilling.15,16 i sitionatU 2V changesfromcontinuoustofirstorderata X ≃ RecentlyitwaspointedoutbyNakamura17andco-workers tricriticalpointwhichwasspeculatedtoexistintheintermedi- ar thataspontaneouslydimerizedstateoccupiesafiniteparam- atecouplingregime.20,22,23,24 Thiscommonviewwasrevised eter space in the ground-statephase diagram of the 1D half- by the Nakamura’s discovery that the BCDW state exists at filledHubbardmodelwiththenearest-neighborrepulsionV, U 2V inbetweentheSDWandCDWphasesintheweak- i.e., the extended Hubbard model (EHM). This spin-Peierls cou≃pling region,17 which is supported by recent large-scale stateisoftencalledbond-charge-density-wave(BCDW)state Monte Carlo calculations.25,26 Related studies of the dimer- or bond-ordered-wave state. The appearance of the BCDW izedstate in theEHM with additionalcorrelationeffectscan state in the purely electronic model is nontrivial and has at- befoundinRefs.[27,28,29,30,31]. tractedmuchattentionfromtheoreticalpointofview. Toap- A related and still controversial issue of current interest preciate this surprising result, let us consider some limiting is whether or not a spontaneously dimerized phase exists in cases. Inthelimitofweaknearest-neighborrepulsionV,orin the 1D Hubbard model with alternating site potential, the thehalf-filledHubbardmodelwithonlytheon-siteCoulomb so-calledionicHubbardmodel.32,33,34,35,36,37,38,39,40,41,42,43,44,45 2 Thissystemwasintroducedasasimpleminimalmodelforthe the 1D EHM with additionalbonddimerization, butwithout neutral-ionic transitions observed in quasi-one-dimensional thestaggeredpotential. Thismodelexhibitsaquantumphase organicmaterials46,47,48 and forferroelectricperovskites.49,50 transition between a dimerized Peierls insulator and a CDW Obviouslythe modelhastwo insulatingphases. The ground state. SectionVIisdevotedtoconclusions,anddetailsofthe stateis(i)abandinsulatorwiththeCDWorderwhenthestag- technicalcalculationsaregiveninAppendixes. geredsitepotentialismuchlargerthantheon-siterepulsionor (ii) a Mottinsulatorwith quasi-long-rangeSDW orderwhen thestaggeredsitepotentialisnegligible.Earlyexactdiagonal- II. EXTENDEDHUBBARDMODEL izationstudies49,50,51ofsmallsystemshavefoundatransition betweenthe twophasesandalso reporteddramaticenhance- In the first half of this paper (Secs. II and III), we con- mentoftheelectron-latticeinteractionbystrongelectroncor- siderthestandard1DEHMwhichhason-site,U,andnearest- relation near a boundary between the band insulating phase neighbor,V,interactions.TheHamiltonianisgivenby (theBIstate)andtheMottinsulatingphase(theSDWstate). Mostly through bosonization analysis of the ionic Hubbard H = −t (c†j,σcj+1,σ+H.c.) model, Fabrizio, Gogolin, and Nersesyan recently argued32 j,σ X thataphaseofaspontaneouslydimerizedinsulator(SDI)in- +U n n +V n n , (2.1) j,↑ j,↓ j j+1 tervenes between the ionic insulating phase (band insulator) j j and the Mott insulating phase. The SDI state is closely re- X X latedtotheBCDWstatementionedabove. Earliernumerical where n c† c 1, n n +n , and c† de- studies34,35,36,38,39,51 havedrawncontradictoryconclusionsas notes thej,σcre≡atiojn,σojp,eσra−tor2ofjan≡elecj,t↑ron wji,t↓h spin σj,σ(= , ↑ to whether the SDI phase exists or not, but more recent nu- )onthejthsite. We assumerepulsiveinteractions,i.e., the ↓ mericalstudiesfind two phase transitionsand the SDI phase couplingconstantsU andV arepositive.NotethattheHamil- in between.37,40,45 Nevertheless there still remain unresolved tonianhasglobalSU(2)spinsymmetry. Followingtheprevi- issuesonthecriticalpropertiesnearthequantumphasetran- ousstudiesonmodelswithcorrelated-hoppinginteractions,28 sitions. weconsidertheCDW,SDW,BCDW,andbond-spin-density- wave (BSDW) phases as potential ordered ground states at In thispaperwe givesupportingtheoreticalargumentsfor halffilling. Theyarecharacterizedbytheorderparameters theexistenceofthespontaneouslydimerizedinsulatingstates inthe1Dhalf-filledextendedHubbardmodelwithandwith- ( 1)j(n +n ), (2.2a) CDW j,↑ j,↓ O ≡ − outstaggeredpotentials. We adoptthestandardbosonization ( 1)j(n n ), (2.2b) SDW j,↑ j,↓ approachandperformbothperturbativeRG analysisvalidin O ≡ − − the weak-coupling regime and semiclassical analysis which OBCDW ≡(−1)j(c†j,↑cj+1,↑+c†j,↓cj+1,↓+H.c.), (2.2c) is expectedto givea qualitativelycorrectpicture evenin the ( 1)j(c† c c† c +H.c.). (2.2d) strong-couplingregime. This paper is organizedas follows. OBSDW ≡ − j,↑ j+1,↑− j,↓ j+1,↓ SectionsIIandIIIaredevotedtotheanalysisofthestandard The order parameter of the BCDW state corresponds to the EHM,i.e.,thesystemwithoutthestaggeredpotential. Some Peierls dimerization operator. We note that the BCDW oftheresultsofthispartarealreadypresentedinRef.52. In state can be also regarded as the p-density-wave state,53 as Sec. II, we introduce the model and reformulate the weak- the order parameter of the BCDW state can be written as couplingtheory, the g-ology, to include higher-ordercorrec- sin(ka)c† c , where c = jOBCDW ∝ k,σ k,σ k+(π/a),σ k,σ ttiivoensHtaomcioltuopnliianngacnodnsdtearnivtse. thWeerebnoosromniazleizlaotiwo-ne-ngerorguypeefqfueac-- PN−1/2 je−ikRPjcj,σ with Rj = ja (a: the lattice spacing, N:thenumberofsites). TheBSDWstatedescribesasite-off- tions. In Sec. III, we determine the ground-state phase dia- diagonaPlSDWstate.28 gram. First, fromtheperturbativeRG analysiswe showthat the BCDW phase occupies a finite region near the U = 2V line in the weak-coupling limit. Next, from the semiclassi- A. g-ologyapproach calanalysiswearguethattheumklappscatteringofparallel- spinelectronsdestabilizestheBCDWphaseandgivesriseto The hopping t generates the energy band with dispersion a bicritical point where the CDW-BCDW and SDW-BCDW ε = 2tcoska,wheretheFermipointsareatk = k = continuous-transition lines merge into the CDW-SDW first- k − ± F π/2a at half filling. In order to analyze the low-energy ordertransitionline. Finally,combiningtheperturbativeRG ± physics near the Fermi points, we introduce a momentum equationswiththesemiclassicalanalysis,weobtaintheglobal cutoff Λ (0 < Λ < k ) and divide the momentum space phase diagram of the 1D EHM. In Sec. IV we study the 1D F into the three sectors (Fig. 1) (i) k R, (ii) k L, and EHMwiththestaggeredsitepotential.Wetakethesamestrat- ∈ ∈ (iii) k / (R L), where R = [k Λ,k + Λ] and egy as in the previous sections and perform a semiclassical ∈ ∪ F − F L = [ k Λ, k +Λ]. We then introduce the follow- analysis of the bosonizedHamiltonian. With the help of the − F − − F ingfermionoperators: perturbativeRGanalysisweobtaintheglobalphasediagram thatindeedhastheSDIphase. WefindthattheBCDWphase a fork R k,+,σ ∈ oftheEHMiscontinuouslydeformedtotheSDIphaseupon c = a fork L (2.3) k,σ  k,−,σ ∈ introducingthealternatingsitepotential. InSec.V,westudy b otherwise.  k,σ  3 ε Theindex ( )ofthecouplingconstantsdenotesthescatter- k k ⊥ ingofelectronswithsame(opposite)spins. −k k F F k −π/a 0 Λ π/a B. Vertexcorrections In the conventional weak-coupling approach to the 1D FIG.1: Single-particleenergy band. The annihilation operator of EHM,17,18 one estimates the coupling constants in Eq. (2.4) an electron near the Fermi points with momentum k ∈ [−kF − onlyuptothelowestorderinU andV: Λ,−kF+Λ](k∈[kF−Λ,kF+Λ])isdenotedak,−,σ(ak,+,σ),and thatofanelectronfarawayfromtheFermipointsisdenotedb . k,σ g = g =(U 2V)a, (2.5a) 1⊥ 3⊥ − Electrons near the Fermi points are shuffled by the two- g = g =(U +2V)a, (2.5b) 2⊥ 4⊥ particlescattering: H = U n n +V n n . int j j,↑ j,↓ j j j+1 g = g = 2Va, (2.5c) Following the standard g-ology approach,18,54 we will focus 1k 3k − P P g = g =+2Va. (2.5d) onthescatteringprocessesbetweenelectronsneartheFermi 2k 4k points,i.e.,thescatteringprocesseswhichinvolvea only. k,±,σ TheHamiltonianforsuchinteractionprocessesis g In analyzing the low-energy physics of Eq. (2.4), one then Hint = + 21Lk :a†k1,p,σ ak2,−p,σ a†k3,−p,σ ak4,p,σ: employs the standard g-ology approach,54 i.e., the perturba- kXi,p,σ tiveRG method,andobtainsflowequationsforthemarginal + g1⊥ :a† a a† a : termsin Eq. (2.4). From this RG analysis18,54 one finds that 2L k1,p,σ k2,−p,σ k3,−p,σ k4,p,σ the g term generates a gap in the charge excitation spec- kXi,p,σ trum3if⊥g > (g +g g ) andg = 0, whereas g 3⊥ 2k 2⊥ 1k 3⊥ + 2k :a† a a† a : the g |term| yie−lds a gap in t−he spin excitatio6n spectrum if 2L k1,p,σ k2,p,σ k3,−p,σ k4,−p,σ 1⊥ kXi,p,σ |g1⊥| > −(g2k − g2⊥ − g1k) and g1⊥ 6= 0. Hence, with g thelowest-ordercouplingconstantsEq.(2.5),onewouldcon- + 2⊥ :a† a a† a : 2L k1,p,σ k2,p,σ k3,−p,σ k4,−p,σ clude that the charge (spin) excitations become massless at kXi,p,σ U 2V = 0 (U 2V 0). This would mean that, as + g3k :a† a a† a : U −increases, both t−he char≥ge and spin sectors become criti- 2L k1,p,σ k2,−p,σ k3,p,σ k4,−p,σ calsimultaneouslyatU =2V,whereadirectandcontinuous kXi,p,σ g CDW-SDWtransitiontakesplace.Thisanalysisisfoundtobe + 3⊥ :a† a a† a : 2L k1,p,σ k2,−p,σ k3,p,σ k4,−p,σ insufficientfromthefollowingargument.The(accidental)si- kXi,p,σ multaneousvanishingofg3⊥andg1⊥resultsfromthelowest- g + 4k :a† a a† a : order estimate in U and V and there is no symmetry princi- 2L k1,p,σ k2,p,σ k3,p,σ k4,p,σ plethatenforcesg andg tovanishsimultaneously. Itis kXi,p,σ possible thatthe hi1g⊥her-ord3e⊥rcorrectionsto g liftthe degen- g + 4⊥ :a† a a† a :, eracyofzerosandchangethetopologyofthephasediagram. 2L k1,p,σ k2,p,σ k3,p,σ k4,p,σ kXi,p,σ Therefore,inordertoanalyzethephasediagramatU ≈ 2V, (2.4) weneedtogobeyondthelowest-ordercalculationofthecou- pling constants in the g-ology. In this section, we compute whereσ = ( )forσ = ( ),Listhelengthofthesystem, thevertexcorrectionsduetovirtualprocessesinvolvinghigh- and::denot↓es↑normalorde↑rin↓g.Thesummationoverthemo- energystates55 byintegratingoutb . Thisprocedureallows k,σ mentumk istakenundertheconditionofthetotalmomentum us to obtain the effective coupling constants g’s that include i beingconserved(equalto 2π/afortheumklappscattering). higher-ordercorrections. ± Theindexp = +/ denotesthe right-/left-movingelectron. − Thecouplingconstantsg andg (g andg )denotethe The second-order vertex diagrams for the coupling con- 1k 1⊥ 3k 3⊥ matrixelementsofthebackward(umklapp)scattering,while stants are shown in Fig. 2. The solid lines denote the low- g and g (g and g ) denote the matrix element of the energy states a , while the dashed lines denote high- 2k 2⊥ 4k 4⊥ k,±,σ forward scattering with the different (same) branch p = . energy states b . The nonzero contributions from the k,σ ± 4 Λonlyweakly,andwecansetΛ=π/4inthefollowinganal- ysisasweareinterestedinthequalitativefeatureofthephase = + + diagram(differentchoiceswillonlyleadtosmallquantitative (cid:1) (cid:2) (cid:3) (cid:4) changes in phase boundaries). Incidentally, the logarithmic a) b) divergenceofC (Λ)inthelimitΛ 0leadstothefamiliar 1 → one-loopRGequations. + + + (cid:5) (cid:6) (cid:7) C. Bosonization c) d) e) FIG. 2: Vertex diagrams with second-order corrections [(a)-(e)]. Having integrated out the high-energy virtual scattering Solid lines denote electron states in the momentum space k ∈ R processes, we now focus on the low-energy states and lin- ork ∈ L,whilethedashedlinesdenoteelectronstatesintheother earizethedispersionofa aroundtheFermipoints. The k,±,σ momentumspace. kinetic-energytermwiththelinearizeddispersionisgivenby H = v (k k )a† a second-ordervirtualprocesses(a)-(e)are 0 F − F k,+,σ k,+,σ k∈R,σ X δg1(a⊥) = −δg3(b⊥) =−4Uπ2tD1a+ Vπt2D2a, (2.6a) + vF(−k−kF)a†k,−,σak,−,σ, (2.9) k∈L,σ X V(U 2V) δg(c) = +δg(c) =+ − D a, (2.6b) 1⊥ 3⊥ πt 1 wherevF = 2taistheFermivelocity. Thefieldoperatorsof U2 V2 theright-andleft-movingelectronsaregivenby δg(a) = δg(b) = D a D a, (2.6c) 2⊥ − 2⊥ −4πt 1 − πt 2 1 δg(a) = +V2D a, (2.6d) ψ+,σ(x) ≡ √L eikxak,+,σ, (2.10a) 1k πt 2 kX∈R δg(c) = (U −2V)2+4V2D a V2D a, (2.6e) ψ−,σ(x) 1 eikxak,−,σ. (2.10b) 1k − 4πt 1 − πt 2 ≡ √L k∈L X V2 δg(a) = D a, (2.6f) 2k −πt 2 We apply the Abelian bosonization method and rewrite the δg(c) = (U −2V)2+4V2D a+ V2D a, (2.6g) kfiienldetsica-se(nseeregyAtpeprmendHix0A=) dxH0 intermsofbosonicphase 3k − 4πt 1 πt 2 R v where = F (2πΠ )2+(∂ θ)2 0 θ x H 4π D1(Λ) ≡ π/2−aΛ codskk, (2.7a) + v4hFπ (2πΠφ)2+(∂xφi)2 , (2.11) Z−π/2+aΛ h i π/2−aΛ sin2k whereθ(φ)isthebosonicfieldwhosespatialderivativeispro- D (Λ) dk . (2.7b) 2 ≡ cosk portionalto the charge(spin) density,[θ(x),φ(y)] = 0. The Z−π/2+aΛ operatorsΠ andΠ arecanonicallyconjugatevariablestoθ θ φ By introducing C (Λ) 2ln[cot(aΛ/2)] and C (Λ) andφ,respectively,andsatisfytheconventionalcommutation 1 2 2cosaΛ,D1(Λ)andD2(≡Λ)arerewrittenasD1(Λ)=C1(Λ≡) relations,[θ(x),Πθ(x′)] = [φ(x),Πφ(x′)] = iδ(x−x′). We and D (Λ) = C (Λ) C (Λ). In terms of C and C , the alsointroducechiralbosonicfields 2 1 2 1 2 − couplingconstantswithsecond-ordercorrectionsaregivenby 1 x θ (x) θ(x) 2π dx′Π (x′) , (2.12) ± θ ≡ 2 ∓ C C (cid:20) Z−∞ (cid:21) g =(U 2V)a 1 1 (U 2V) 2V2a, (2.8a) 1 x 1⊥ − − 4πt − − πt φ±(x) φ(x) 2π dx′Πφ(x′) . (2.13) (cid:20) (cid:21) ≡ 2 ∓ C C (cid:20) Z−∞ (cid:21) g = 2Va 1 (U 2V)2a 2V2a, (2.8b) 1k − − 4πt − − πt One can easily verify that these chiral fields sat- C C isfy the commutation relations [θ (x),θ (x′)] = g =(U 2V)a 1+ 1 (U +6V) + 2V2a, (2.8c) ± ± 3⊥ − 4πt πt [φ±(x),φ±(x′)] = i(π/2)sgn(x x′) and (cid:20) (cid:21) [θ (x),θ (x′)] = [φ (x),±φ (x′)] = iπ/−2. In terms C C + − + − g = 2Va 1 (U 2V)2a+ 2V2a, (2.8d) ofthesefields,thekinetic-energydensityreads 3k − − 4πt − πt v and g2k = +2Va, g2⊥ = (U +2V)a, g4k = +2Va, and 0 = F (∂xθp)2+(∂xφp)2 . (2.14) g =(U +2V)a. ExceptwhenaΛ 1,theC sdependon H 2π 4⊥ ≪ i p=X+,−h i 5 To express the electron field operators ψ with the low-energypropertiesofthe charge(spin)modes,18,54 where p,σ bosonicphasefields,weintroduceanewsetofchiralbosonic g =g +g g ,g =g ,g =g g +g ,and ρ 2⊥ 2k 1k c 3⊥ σ 2⊥ 2k 1k − − fields g = g . The g , g , g , andg termswith scaling di- s 1⊥ cs ρs cσ ρσ mension4couplethespinandchargedegreesoffreedom.The ϕp,↑ =θp+φp, ϕp,↓ =θp−φp, (2.15) gcscouplingcomesfromtheumklappscatteringg3k. Thegρs (g ) coupling is generated from the backward scattering of ρσ whichobeythecommutationrelations antiparallel-(parallel-)spin electronswhile the g coupling cσ isgeneratedfromtheumklappscatteringofelectronswithan- [ϕ (x),ϕ (x′)] = iπsgn(x x′)δ , (2.16a) ±,σ ±,σ′ ± − σ,σ′ tiparallel spins (see Appendix A). These coupling constants [ϕ+,σ(x),ϕ−,σ′(x′)] = iπδσ,σ′. (2.16b) aregivenbyg = g = g = g = 2Vatolowestor- cs ρs cσ ρσ − derinV. CannonandFradkinexaminedtheeffectoftheg Intermsofthephasefieldsϕ ,theelectronfieldoperators cs p,σ term and argued that it plays a crucial role in the first-order canbewrittenas CDW-SDWtransition.22Voitincludedtheg andg terms, ρs cσ ψ (x)= ησ exp[ipk x+ipϕ (x)], (2.17) aswellasthegcsterm,intheperturbativeRGanalysisofthe p,σ √2πa F p,σ couplingconstants,butdidnotconsiderthegρσ term.24 Here wenotethatitisimportanttokeeptheg termaswell,since ρσ where the Klein factor η satisfies the anticommutation re- σ the global SU(2) symmetry in the spin sector is guaranteed lation η ,η = 2δ . One can verify that the operator σ σ′ σ,σ′ onlywheng =g ,g =g ,andg =g . { } σ s cs cσ ρs ρσ definedinEq.(2.17)satisfiesthesameanticommutationrela- tionas the fermionfield operator. ItfollowsfromEq.(2.17) thattheorderparametersinEq.(2.2)arerewrittenas (x) cosθ(x) sinφ(x), (2.18a) SDW O ∝ D. Renormalization-groupequations (x) sinθ(x) cosφ(x), (2.18b) CDW O ∝ (x) cosθ(x) cosφ(x), (2.18c) BCDW O ∝ (x) sinθ(x) sinφ(x). (2.18d) We perform a perturbative RG calculation to examine the BSDW O ∝ low-energypropertiesof the 1D EHM in the weak-coupling regime,takingintoaccountquantumfluctuationsofthephase TheinteractionpartoftheHamiltonianH ,Eq.(2.4),can fields. The operator product expansion (OPE) technique al- int bealso expressedin termsofthebosonfieldsθ andφ . It lows us to systematically handle the higher-order terms in ± ± has been suggested that, besides the marginaloperators, op- the bosonized Hamiltonian (2.19). The one-loop RG equa- erators with higher scaling dimensions can play an impor- tions that describe changes in the coupling constants during tant role in the first-order CDW-SDW transition22,24 which the scalingof theshort-distancecutoff(a aedl) are given → is known to occur in the strong-coupling region of the 1D by(seeAppendixBfortheirderivation) EHM.18,19,20,21Wethusincludeallthetermsofscalingdimen- sion 4 [= 2(chargesector)+2(spinsector)]. We also note d thattherearesomecomplicationsandsubtletiesinbosonizing G = +2G2+G2 +G G , (2.20) the off-site interaction term, i.e., the nearest-neighbor inter- dl ρ c cs s ρs action term V (see Appendix A for detail). We obtain the d G = +2G G G G G G , (2.21) c ρ c s cs cs ρs bosonizedHamiltoniandensity, dl − − d = 1 v (∂ θ )2+v (∂ φ )2 dlGs = −2G2s−GcGcs−G2cs, (2.22) ρ x p σ x p H 2π d pg=Xρ+,−(cid:2) gσ (cid:3) dlGcs = −2Gcs+2GρGcs−4GsGcs + (∂ θ )(∂ θ ) (∂ φ )(∂ φ ) 2π2 x + x − − 2π2 x + x − 2GcGs 2GcGρs 4GcsGρs, (2.23) − − − g g c s d cos2θ+ cos2φ − 2π2a2 2π2a2 Gρs = 2Gρs+2GρGs dl − g cs cos2θ cos2φ 4G G 4G2 4G G , (2.24) − 2π2a2 − c cs− cs− s ρs g ρs (∂ θ )(∂ θ ) cos2φ − 2π2 x + x − whereG aredimensionlesscouplingconstantswith theini- g ν cσ + 2π2 (∂xφ+)(∂xφ−) cos2θ tial values Gν(0) = gν/(4πta). The number of the inde- pendentcouplingconstantsisfive,sincetheSU(2)spinsym- g + 2πρσ2 a2(∂xθ+)(∂xθ−)(∂xφ+)(∂xφ−). (2.19) metry guarantees the relations Gσ = Gs, Gcσ = Gcs, and G =G toholdinthescalingprocedure.Fromthesescal- ρσ ρs The renormalized velocities are v = 2ta + (g + g ing equations, one finds that the G , G , and G terms are ρ 4k 4⊥ ρ c s g )/2πandv =2ta+(g g g )/2π. Themargin−al marginal (the scaling dimension=2),56,57 while the G and 1k σ 4k 4⊥ 1k cs − − terms with the couplings g and g (g and g ) determine G termsareirrelevantoperatorsofthescalingdimension4. ρ c σ s ρs 6 III. PHASEDIAGRAMOFTHEHALF-FILLED TABLE I: Possible ground-state phases and positions of (quasi) EXTENDEDHUBBARDMODEL lockedphasefieldsdeterminedonlyfromthemarginaltermsinEq. (2.19). A. Bond-charge-density-wavestate Phase (θ,φ) (gc,gs) Inthissection,weshowthattheBCDWphaseexistsinbe- SDW (0,±π/2),(π,±π/2) (+,+) tweentheCDWandSDWphasesintheweak-couplingregion CDW (±π/2,0),(±π/2,π) (−,−) ofthe1DEHM. BCDW (0,0),(π,π),(0,π),(π,0) (+,−) Firstwefocusontheweak-couplinglimitU,V t,where BSDW (±π/2,±π/2) (−,+) ≪ wecanneglecttheirrelevanttermsofscalingdimension4and restrictourselvestothemarginalterms g , g , g , andg . ρ σ c s ∝ Effectsofthe irrelevanttermsarediscussed later in this sec- (ii) g < 0 and g > 0: The phase fields are locked at tion. Within this approximation,the Hamiltonianreduces to s c (θ,φ) = (πI ,πI ). The nonvanishing order parameter is two decoupledsine-Gordonmodels, and we can analyze the 1 2 then ,andthegroundstateistheBCDWstate. Both propertiesofthespinandchargemodes,separately. Theone- BCDW O chargeandspinexcitationsaregapped. loopRG equationsfor these couplingconstantsare givenby Eqs.(2.20)–(2.22)withGcs =Gρs =0: (iii) gs > 0 and gc < 0: The field θ is locked at θ = (π/2)+πI ,andthefieldφtendstobearoundφ=(π/2)+ 1 dG (l) = 2G2(l), (3.1) πI2 althoughitis notlockedin the low-energylimit. Inthis dl ρ c casethedominantcorrelationisthatoftheBSDWstate. The d chargeexcitationsaregappedwhereasthespinexcitationsare G (l) = 2G (l)G (l), (3.2) dl c ρ c gapless. d (iv)g > 0andg > 0: Thefieldθ islockedatθ = πI , G (l) = 2G2(l). (3.3) s c 1 dl s − s whereasthe field φ tends to be near φ = (π/2)+πI2. The dominant correlation is the SDW order. The charge excita- The spin excitations are controlled by the G coupling, s tionsaregappedwhilethespinexcitationsaregapless. which is marginally relevant (marginally irrelevant) when CombiningtheresultsofTableIandthecouplingconstants G < 0 (G > 0). If g < 0, then G (l) increases with s s s s | | Eqs.(2.8a) and(2.8c), we obtaintheground-statephasedia- increasingl. Inthiscasethephasefieldφislockedatφ = 0 gramofthe1DEHMintheweak-couplinglimit. ForU larger modπ to gain the energy[see Eq. (2.19)], andconsequently than2V suchthatg >0andg >0,wehavetheSDWphase, thespinexcitationshaveagap. Ontheotherhand,ifg > 0, c s s whileforU sufficientlysmallerthan2V (g <0andg <0) then G (l) decreasesto zero as l increases, and the φ field c s s | | we have the CDW phase. At U = 2V, we see from Eqs. becomesafreefield;thespinsectorhasmasslessexcitations. (2.8a)and(2.8c)thatg (=g )<0andg (=g )>0due The approachof G to zero is very slow ( 1/l), and the φ s 1⊥ c 3⊥ s ∼ totheC term. Thisimpliesthatanewphasedifferentfrom field has a strong tendency to be near φ = π/2 mod π. Al- 2 theCDWandSDWstatesappearsforU 2V. FromTableI, thoughiteventuallyfailsto lockthe phaseφ, the marginally ≈ weidentifythenewphasewiththeBCDWphase. Withinthe irrelevant coupling still has an impact on low-energy prop- approximationweemployhere,thephaseboundarybetween erties by givingrise to logarithmiccorrectionsto correlation functions.58 the BCDW phase and the CDW (SDW) phase is located at The charge sector is governed by the two couplings G c andGρ,whoseRGflowdiagramisoftheKosterlitz-Thouless φ type. Sinceg = (U +6V)a > 0,G isarelevantcoupling ρ c SDW and always flows to strong-couplingregime, unless g = 0. c π CDW This means that G (l) has two strong-couplingfixed points, c G (l) andG (l) ,dependingonitsinitialvalue BCDW c c g > 0→an∞dg < 0. As→see−n∞fromEq.(2.19),therelevantg BSDW c c c withpositive(negative)signimpliesthephaselockingofθat thepositionθ =0(π/2)modπ. Fromtheabovestandardarguments,thegroundstatecanbe 0 π θ identifiedbysimplylookingattheinitialvalueofthecoupling constants g and g . The ground state is classified into four c s cases as summarized in Table I, and the positions of locked phases(θ,φ)forrespectivecasesareshowninFig.3. (i) g < 0 and g < 0: The phase fields are locked at s c (θ,φ)= (π/2)+πI ,πI ,whereI andI areintegers.In 1 2 1 2 thiscase,amongtheorderparametersinEqs.(2.18),onlythe (cid:0)(cid:0)(cid:0) (cid:1)(cid:1)(cid:1) CDWorderparameterhasa finite expectationvalue,andthe groundstate is foundto be the CDW state. Both chargeand FIG.3: PositionsoflockedphasefieldsθandφintheSDW,CDW, spinexcitationsaregapped. BCDW,andBSDWstates. 7 g =0(g =0).Inthisphasediagram,thechargeexcitations g c s s are gapful except on the CDW-BCDW transition line, while thespinexcitationsaregaplessintheSDWphaseandonthe BSDW SDW-BCDW transition line. From Eqs. (3.1)–(3.3), we can SDW estimatethechargegap∆ andthespingap∆ as c s |g | cs g 2πta/gρ 2πta ∆c ≈t |tac| , ∆s ≈texp g (3.4) |gcs| (cid:18) (cid:19) (cid:18) s (cid:19) g 0 c for g g taand0< g ta,respectively. c ρ s | |≪ ≪ − ≪ Nextweexamineeffectsoftheparallel-spinumklappscat- teringg ontheBCDWstate. Weconsiderthesituationvery cs CDW closetotheCDW-BCDWtransitionbyassumingg 0and c gs <0,i.e.,U 2V = C2V2/πt+O(V3/t2). Int≈hiscase BCDW − − thespingapisformedfirstastheenergyscaleislowered.For energies below the spin gap, we can replace cos2φ with its average cos2φ (∆ /t)2. This means that the coupling s h i ≈ constantg ismodifiedas c FIG.4: PhasediagramobtainedbyminimizingthepotentialV(θ,φ) g∗ =g +g cos2φ . (3.5) forgcs <0. Thedoublelinedenotesthefirst-ordertransition,while c c csh i thesinglelinedenotesthesecond-ordertransition. Bicriticalpoints Thus we find that the BCDW state, which is realized for areat(gc,gs)=(±|gcs|,∓|gcs|). g∗ > 0, becomes less favorable due to the g (< 0) term. c cs We note, however,that the CDW-BCDW boundarydoesnot case,weperformasemiclassicalanalysis: weneglectspatial move across the U = 2V line because g cos2φ 2Vaexp[ c(t/V)2]ismuchsmallerthanth|eCcshtermiin|E≈q. variationsofthefieldsinEq.(2.19)andfocusonthepotential, 2 − (2.8c) for V t, where c is a positive constant. A similar ≪ argumentapplies to the regionnear the SDW-BCDW transi- V(θ,φ)= g cos2θ+g cos2φ g cos2θ cos2φ, (3.7) tion.SupposethatU 2V =+C V2/πt+O(V3/t2)where − c s − cs 2 − gs ≈ 0 andgc > 0. Inthis case, asthe energyscale is low- where gcs = g3k < 0. The order parameters of the ered, the charge gap opens first and the θ field is pinned at SDW, CDW, BCDW, and BSDW states take maximum am- θ = 0modπ. Belowthecharge-gapenergyscale,theφfield plitudes when the fields θ and φ are pinned at (θ,φ) = issubjecttothepinningpotentialgs∗cos2φwith πI1,(π/2) + πI2 , (π/2) + πI1,πI2 , (πI1,πI2), and (π/2)+πI ,(π/2)+ πI , respectively, where I and I g∗ =g g cos2θ , (3.6) (cid:0)(cid:0)(cid:0) 1 (cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0) 2 (cid:1)(cid:1)(cid:1) 1 2 s s− csh i are integers. The potentialenergyin these states is obtained (cid:0)(cid:0)(cid:0) (cid:1)(cid:1)(cid:1) where cos2θ (∆c/t)2(1−Gρ). Thus the BCDW phase, by inserting these pinned fields into Eq. (3.7), e.g, VSDW = whichihsnowriea≈lizedforg∗ <0,alsobecomeslessfavorable V πI1,(π/2)+πI2 ,yielding s bnyotthmeo−vegdcsbhceoyson2dθit(h>e0U)t=erm2.VAglianiensthinecpehagscesbcoousn2dθaryis (cid:0)(cid:0)(cid:0) VSD(cid:1)(cid:1)(cid:1)W = −gc−gs−|gcs|, (3.8a) 2Va(c′V/t)πt/V is much smaller than the C| 2 therm ini|E≈q. VCDW = +gc+gs−|gcs|, (3.8b) (2.8a), where c′ is a constantof order 1. Thereforewe con- V = g +g + g , (3.8c) BCDW c s cs − | | cludethat the BCDW phase is robustagainstthe gcs term in V = +g g + g . (3.8d) BSDW c s cs the weak-coupling limit. The analysis in this section estab- − | | lishes the existence of the BCDW phase near U 2V for Wefindthattheg termstabilizestheSDWandCDWstates ≈ cs 0<U,V t. whileitworksagainsttheBCDWandBSDWstates. Compar- ≪ ing these energies, we obtain the phase diagramin the g -g c s planeata fixedg (Fig.4). Inthe presenceoftheg term, cs cs B. First-orderSDW-CDWtransition thedirectCDW-SDWtransitionlineappearsinthisphasedi- agram. Inthissection,wediscusshowtheBCDWphasebecomes We now discuss the nature of the phase transitions. The unstableatstrongcouplingandhowthetwocontinuoustran- potentialV(θ,φ) onvarioustransition linesis shownin Fig. sitionschangeintothefirst-orderSDW-CDWtransition. 5. On the boundary between the SDW and BCDW phases, To our knowledge, Cannon and Fradkin were the first to whichislocatedatg = g andg > g ,thepotential s cs c cs −| | | | arguethattheg term(describingtheumklappscatteringof takestheformV(θ,φ)= g cos2θ+g cos2φ(1 cos2θ) 3k c s − − parallel-spinelectrons), which is conventionallyignoreddue [Fig. 5(a)], which pins the θ field at θ = πI and leaves the 1 to its large scaling dimension, can become relevant at large φ field completely free. We thus find that the SDW-BCDW U andV andcausethefirst-orderCDW-SDWtransition.22To transitioniscontinuous,i.e.,theSDWandBCDWphasesco- get an insight into the effect of the g term in the relevant existwithoutpotentialbarrieronthephaseboundary. Onthe cs 8 (a) V π V π −π 0 φ −π 0 φ 0 0 (cid:13) θ θ π−π π−π (b) FIG. 6: The potential V(θ,φ) on the bicritical point (gc,gs) = (|gcs|,−|gcs|). The potential minima are the lines θ = πI1 and φ=πI2. V π where the potential minima are given by the isolated points (θ,φ) = πI ,(π/2)+πI and (π/2)+πI ,πI . These 1 2 1 2 minimacorrespondtotheSDWstateandtheCDWstate,see (cid:0)(cid:0)(cid:0) (cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0) (cid:1)(cid:1)(cid:1) −π 0 φ Fig.3.Thepointtonoteisthatthereisafinitepotentialbarrier ofheightmin(g ,2g 2g )betweenthecorresponding cs cs c | | | |− | | 0 minimafor the SDW andCDW phases. Hence we conclude θ thatthe CDW-SDWtransitionis first orderwhen g is rele- cs π−π vant. From the above arguments, we find that strong umk- (c) lapp scattering of the parallel-spin electrons destabilizes the BCDW and BSDW states and gives rise to bicritical points (g ,g ) = (g , g )wherethetwocontinuous-transition c s cs cs ± − linesmergeintotheCDW-SDWfirst-ordertransitionline.Let us take a closer look at these bicritical points. Taking into V π account the fact that g > 0 and g < 0 for U 2V in c s ≈ the original EHM, we will focus on the bicritical point at (g ,g ) = (g , g ). The effective potential at the bi- c s cs cs −π 0 φ criticalpoint|take|s−th|efo|rm 0 V(θ,φ)= g(cos2θ+cos2φ cos2θcos2φ), (3.9) θ − − π−π which is shown in Fig. 6. This potential has an interesting feature that its potential minima are not isolated points but FIG. 5: The potential V(θ,φ) on the SDW-BCDW (a), BCDW- the crossing lines θ = πm or φ = πn (m, n: integer). On CDW(b),andCDW-SDW(c)transitionlines. these lines either θ or φ becomesa free field; the theoryhas more freedom than a single free bosonic field, but less than twofreebosonicfields. Wethusexpectthatthetheoryofthe bicriticalpointshouldhaveacentralchargelargerthan1but boundary between the BCDW and CDW phases, located at smallerthan2. Detailed analysisof thecriticaltheoryisleft g = g and g < g , the potential now takes the forafuturestudy. We notethatwheng = 0thefirst-order c cs s cs cs | | −| | form V(θ,φ) = g cos2θ(1 cos2φ) + g cos2φ [Fig. CDW-SDWtransitionlinecollapsesintoatetracriticalpoint, c s − − 5(b)]. The potential locks the φ field at φ = πI , where it (g ,g ) = (0,0), and the phase boundariesin Fig. 4 reduce 2 c s has no effect on the θ field. Thus, we find that the CDW- to the lines g = 0 and g = 0 where all the transitions are c s BCDW transitionisalso continuous. Fromsimilar consider- continuous. ations, we find thatthe SDW-BSDWandBSDW-CDWtran- Fabrizio et al.32 and Bajnok et al.59 discussed effects of sitions are continuous as well. In Fig. 4, the phase bound- higher-frequencyterms,suchassin3θ andcos4θ, whichare aries of continuous transitions are shown by the solid lines. generatedthroughthe renormalization-grouptransformation. On the contrary, the phase boundary shown by the double From the semiclassical arguments, it can be seen that these line in Fig. 4 is of different nature from the others. The termscanalsochangeasecond-ordertransitiontoafirst-order potential V(θ,φ) on the double line is shown in Fig. 5(c), transition.59Infact,itwasarguedthatthesehigher-frequency 9 4 φfieldismarginallyirrelevantandthusthespinsectorshould becomegapless. The phase diagram obtained in this manner is shown in t / CDW Fig. 7. The single lines denote continuous transitions, and V thedoublelinedenotesthefirst-ordertransition. Intheweak- couplinglimit,theBCDWphaseappearsatU 2V andthe ≈ successivecontinuoustransitionsbetweenthe SDW, BCDW, 2 and CDW states occur as V/U increases. When U and V increase along the line U 2V, the BCDW phase first ex- BCDW ≈ pands and then shrinks up to the bicritical point (U ,V ) c c ≈ (5.0t,2.3t) where the two continuous-transition lines meet. SDW Beyondthis pointthe BCDW phase disappearsand we have the direct first-order transition between the CDW and SDW phases. Thephasediagram(Fig.7)issimilartotheonesob- tained by using more sophisticated numerical methods.17,25 0 0 4 8 We note that the position of the first-order transition line in U/t Fig. 7 is not reliable quantitativelyas we have used the per- turbativeRGequations.TherecentMonteCarlocalculation25 givesthemostreliableestimateforthepositionofthebicrit- FIG. 7: Phase diagram of the half-filled 1D extended Hubbard icalpoint, (U ,V ) (4.7 0.1)t,(2.51 0.04)t , which model. Thedoublelinedenotesthefirst-ordertransition, whilethe c c ≈ ± ± agrees with our estimate in Fig. 7 within 10%. The semi- singlelinesdenotethesecond-ordertransitions. Thebicriticalpoint (cid:0)(cid:0)(cid:0) (cid:1)(cid:1)(cid:1) quantitativeagreementgivesusconfidencethatourapproach, isat(Uc,Vc)≈(5.0t,2.3t). semiclassical analysis of the low-energy effective Hamilto- nianderivedwithuseoftheperturbativeRG,isreliableeven termsmaketheSDW-CDWtransitionfirstorderinthestrong- inthestrong-couplingregimenearthemulticriticalpoint. couplingregimeofthe1DEHM.32However,wehaveshown thattheSDW-CDWfirst-ordertransitioncanoccursimplydue totheg termwhichistheleadingirrelevantterminthissys- IV. EFFECTOFSTAGGEREDSITEPOTENTIAL cs tem. Since the higher-frequencytermsare evenless relevant than the gcs term, we expectthat the gcs term should play a In this section, we examine effects of alternating on-site dominantroleinthefirst-ordertransitioninthe1DEHM. modulation of the chemical potential, i.e., the staggered site potential, in the half-filled 1D EHM. The Hamiltonian to be consideredisgivenbyH′ = H +H withH definedinEq. ∆ C. Globalground-statephasediagram (2.1)and To obtain the global phase diagram of the 1D EHM, we H =∆ ( 1)jn . (4.1) ∆ j,σ have numericallysolved the scaling equations(2.20)–(2.24). − j,σ X We findoutwhichphaseisrealizedbylookingatwhichone of the couplings G , G , and G becomes relevant first, as The model is called the ionic Hubbard model if V = 0. c s cs we have discussed in Secs. IIIA and IIIB. First, if G When U = V = 0, the system is a trivial band in- c | | grows with increasing l and reaches, say, 1 first among the sulator, since the ∆ term induces a gap 2∆ at k = | | three couplings, then we stop the integration and compute π/2 in the single-particle spectrum and the lower band is ± G∗ = G G sgn(G ). Since the charge fluctuationsare fully filled. For many years effects of the on-site repul- s s − cs c suppressedbelowthisenergyscale,weareleftwithEq.(3.3), sive interaction U on the band insulator have been investi- whereG isreplacedbyG∗. WeimmediatelyseefromTableI gated intensively32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 s s thatapositive(negative)G∗ leadstotheSDW(BCDW)state from both numerical and analytical approaches. Using the s forG >0andtheBSDW(CDW)stateforG <0. Second, standard bosonization method, Fabrizio, Gogolin, and Ners- c c if G becomes1 first, or more precisely, if G reaches 1 esyanrecentlyarguedthatthegroundstate oftheionicHub- s s | | − first,thenweareleftwithEqs.(3.1)and(3.2),whereG and bardmodelexhibitsthreephasesasU increases: thebandin- ρ G are replaced by G∗ = G G and G∗ = G +G , sulator,theSDI,andtheMottinsulator.32Theorderparameter c ρ ρ − ρs c c cs respectively. We see that a positive (negative) G∗ leads to oftheSDIstateisnothingbutthatoftheBCDWstate,andwe c theBCDW(CDW)state. Finally,when G reaches1first, canregardthe two states asessentially identical. Itwasalso cs | | we stopthe calculationandcompareG andG . Since both arguedthatthequantumphasetransitionfromthebandinsu- c s charge and spin fluctuations are already suppressed by the lator to the SDI state belongs to the Ising universality class G cos2θcos2φpotential,wecandeducethephasefromthe whereastheothertransitionfromtheSDIstatetotheMottin- cs semiclassicalargument. FromFig.4weseethatwehavethe sulator is of the Kosterlitz-Thouless type. Recent numerical SDWstateforG > G andtheCDWstateforG < G . studies,34,35,36,37,38,39,40,41,45however,havereportedcontrover- s c s c − − HerewenotethatintheSDWstatethepinningpotentialtothe sialresultsontheexistenceoftheSDIphase. Someclaimed 10 tofindtwoquantumphasetransitionswhileothersfoundev- TABLEII:Possibleorderedgroundstatesandthepositionof(quasi- idences of only one phase transition. With this issue of the )lockedphasefieldsdeterminedfromEq.(4.4). SDIphaseinmind,inthissectionweinvestigatethephasedi- agramofthe1DextendedHubbardmodelwiththestaggered Phase (θ,φ) site potentialand examinecritical propertiesof the quantum SDW (0,±π/2),(π,±π/2) phasetransitions. BI(forg∆ >0) (+π/2,0),(−π/2,π) We take into account the staggered site potential and the correlationeffectsonequalfootingbytreatingthemasweak BI(forg∆ <0) (+π/2,π),(−π/2,0) BCDW +(π/2)±α0,0 , −(π/2)±α0,π perturbations. WeuseEq.(2.17)torewriteH inthecontin- θ θ uumlimitasH∆ = dx ∆,where32,33 ∆ BSDW (cid:0)((cid:0)(cid:0)+π/2,0±α0φ),(cid:1)(cid:1)(cid:1)−(cid:0)(cid:0)(cid:0)π/2,±(π−α0φ)(cid:1)(cid:1)(cid:1) H (cid:0)(cid:0)(cid:0) (cid:1)(cid:1)(cid:1) R g = ∆ sinθ cosφ (4.2) H∆ −2(πa)2 phases θ and φ are determined from the saddle-point equa- withg =4π∆a.NotethattheCDWorderparameter nisalprfoopr∆coertcioonuaplletodHto∆, and g.∆ThciasnhbaesrtehgeacrdoendseaqsueannOceeCxtDtheWar-t tgi∆onssi:ncθo)s=θ(40g.cIsninorθd−ergt∆osciomspφl)if=yt0heanndotsaitnioφn(s−,l4egtsucsoisnφtro+- OCDW duce acquiresa nonvanishingexpectationvalueforany fi- CDW O niteU andV,aslongasg = 0. Inthissectionwewillde- ∆ 6 notetheinsulatingphaseconnectedtothefree-electronband g g itnhsaunlathtoerC(DUW=phVas=e. 0 and ∆ 6= 0) by the BI phase, rather α0θ ≡(cid:12)cos−1(cid:18)4g∆c(cid:19)(cid:12), α0φ ≡(cid:12)cos−1(cid:18)4g∆s(cid:19)(cid:12), (4.5) (cid:12) (cid:12) (cid:12) (cid:12) ThebosonizedformoftheHamiltonianH′ canbethought (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) of as a generalization of the so-called double sine-Gordon where g /g 4, g /g 4, and 0 α0,α0 π are (DSG) model as H′ contains sine/cosine terms with differ- | ∆ c| ≤ | ∆ s| ≤ ≤ θ φ ≤ assumed.Thesolutionsofthesaddle-pointequationsyieldthe ent frequencies (sinθ and cos2θ, cosφ and cos2φ). The followingfourstateswithdistinctconfigurationsofthelocked DSGtheoryitselfhasbeeninvestigatedintensively32,59,60and phase fields θ and φ (modulo2π): (i) the SDW state with θ shown to have a critical point belongingto the Ising univer- andφlockedat(θ,φ) = (0, π/2)or(π, π/2);(ii)theBI salityclass[c= 1 conformalfieldtheory(CFT)].Toobtaina ± ± 2 statewith(θ,φ) = (+π/2,0),( π/2,π)ifg∆ > 0andwith qualitativeunderstandingofthecriticalpropertiesinoursys- − (θ,φ) = (+π/2,π),( π/2,0)ifg < 0;(iii)the“BCDW” ∆ tem,wefirstperformasemiclassicalanalysisinasimilarway − statewheretheBCDWorderandtheCDWordercoexistand to Sec. III B, before examining the global phase diagram of which is realized when (θ,φ) = (π/2 α0,0) or ( π/2 H′withuseoftheRGmethod. α0,π);(iv)the“BSDW”statewherethe±BSDθWandth−eCDW± θ ordercoexistandwhichisrealizedwhen(θ,φ) = (π/2,0 α0)or π/2, (π α0) .TableIIandFig.8summarizeth±e A. Semiclassicalanalysis poφssible−ordered±gro−undφstatesandcorrespondingpositionsof (cid:0)(cid:0)(cid:0) (cid:1)(cid:1)(cid:1) lockedphasefields. Thepotentialenergiesinthesestatesare In this section, we performa semiclassical analysis to the Hamiltonian ′ = + , where and aregivenby ∆ ∆ H H H H H Eqs. (2.19) and (4.2), respectively. We neglectspatial varia- φ tionsofthefieldandfocusonthelockingpotential: SDW V∆(θ,φ) = gccos2θ+gscos2φ gcscos2θcos2φ π BI − − g sinθ cosφ. (4.3) BCDW ∆ − BSDW First, we examinethe case g = 0, whichcorrespondsto cs thesituationwheretheg termbecomesirrelevantintheRG cs scheme.Thepotentialtobeconsideredis 0 π θ V0(θ,φ) V (θ,φ) ∆ ≡ ∆ |gcs=0 = g cos2θ+g cos2φ g sinθ cosφ. c s ∆ − − (4.4) Due to its double-frequency structure, possible locations of the phase locking are different from the ones we found in Sec. III B. For example, when g > 0 (g > 0), the two c s kinds of potentials proportional to sinθ and cos2θ (cosφ FIG.8: Positionsoflocked phasefieldsθ andφinthefourstates andcos2φ) competewitheach other.59,60 Thelockingof the wheng∆ >0.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.