ebook img

Ground-Based Simulation of Airplane Upset Using an Enhanced Flight Model by Stacey Fangfei ... PDF

98 Pages·2011·6.48 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ground-Based Simulation of Airplane Upset Using an Enhanced Flight Model by Stacey Fangfei ...

Ground-Based Simulation of Airplane Upset Using an Enhanced Flight Model by Stacey Fangfei Liu A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Aerospace Science and Engineering University of Toronto c Copyright by Stacey F. Liu 2011 (cid:13) Abstract Ground-Based Simulation of Airplane Upset Using an Enhanced Flight Model Stacey Fangfei Liu Master of Applied Science Graduate Department of Aerospace Science and Engineering University of Toronto 2011 Loss-of-control resulting from airplane upset is a leading cause of worldwide commercial aircraft accidents. One of the upset prevention and recovery strategies currently being consideredistoprovidepilotupsetrecoverytrainingusingground-basedflightsimulators. However, to simulate the large amplitude and highly dynamic motions seen in upset conditions, both the flight model and the simulator motion need improvement. In this thesis, an enhanced flight model is developed to better represent the air- craft dynamics in upset conditions. In particular, extension is made to the aerodynamic database of an existing Boeing 747-100 (B-747) model to cover large angle of attack, sideslip and angular rates. The enhanced B-747 model is then used to conduct a set of upset recovery experiments in a flight simulator without motion. The experimental results can be used to identify and potentially correct major motion cueing errors caused by the conventional motion drive algorithm in upset conditions. ii Acknowledgements I would like to express my deep and sincere gratitude to my thesis supervisor Professor Peter Grant for his help, guidance, and encouragement. I would also like to thank my research assessment committee members, Professor Hugh Liu and Professor Christopher Damaren for providing valuable advice and taking the time to review my research. I would like to thank Bruce Haycock for his tremendous support in setting up the simulator experiments and for testing the experiments many times. I am also grateful for the help of the pilots who participated in the upset recovery experiments. Theircontributionsareinvaluableforthisthesisandthecontinuingresearch on airplane upsets. Thanks also go out to students from the Vehicle Simulation Group, Amir Naseri, Nestor Li, Tim Peterson, and Eska Ko for their feedback on some of the issues related to this study, and to Ton Hettema for implementing the stick shaker model that was used in the experiments. Last but not least, I would like to thank my parents for their constant support during the course of my studies. iii Contents 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Scope and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Literature Review 5 2.1 Upset Recovery Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Upset Recovery Training Effectiveness . . . . . . . . . . . . . . . . . . . 6 2.3 Acquiring Aerodynamic Data Beyond the Normal Flight Envelope . . . . 9 2.4 MDA and Study of Motion Fidelity . . . . . . . . . . . . . . . . . . . . . 12 3 Flight Model 14 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 The Existing UTIAS B-747 Model . . . . . . . . . . . . . . . . . . . . . . 15 3.3 NASA T2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Data Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.1 Basic Static Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.2 Control Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.3 Dynamic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5.1 Database Validation . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5.2 Model Behavior Validation . . . . . . . . . . . . . . . . . . . . . . 46 3.5.3 Roll-Off and Directional Divergence at Stall . . . . . . . . . . . . 48 iv 4 Upset Recovery Experiments 58 4.1 Upset Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4 Example MDA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 Conclusions 79 5.1 Summary of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2 Future Research Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 A Microburst Model 82 References 85 v List of Figures 3.1 Axes Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Data Blending Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Real-Time Data Blending Block in Simulink . . . . . . . . . . . . . . . . 22 3.4 Basic Lift and Pitching Moment Coefficients . . . . . . . . . . . . . . . . 27 3.5 Basic Drag Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.6 Sideslip Effects on Basic Lift and Pitching Moment Coefficients . . . . . 28 3.7 C and C vs. β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 l n 3.8 Boeing 747-100 Control Surfaces (figure adapted from ref.[23]) . . . . . . 30 3.9 Stabilizer and Elevator Effects on C and C . . . . . . . . . . . . . . . 35 m D 3.10 Aileron Effect on C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 l 3.11 Rudder Effect on C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 n 3.12 Spoiler Effects on C and C . . . . . . . . . . . . . . . . . . . . . . . . . 36 D l 3.13 Dynamic Data - Longitudinal . . . . . . . . . . . . . . . . . . . . . . . . 42 3.14 Dynamic Data - Rolling Moment . . . . . . . . . . . . . . . . . . . . . . 43 3.15 Dynamic Data - Yawing Moment . . . . . . . . . . . . . . . . . . . . . . 44 3.16 Stall Maneuver Used for Coefficient Comparison . . . . . . . . . . . . . . 51 3.17 Coefficient Comparison - Longitudinal . . . . . . . . . . . . . . . . . . . 52 3.18 Coefficient Comparison - Lateral . . . . . . . . . . . . . . . . . . . . . . . 53 3.19 Comparing to Boeing Simulation: Large Roll Upset . . . . . . . . . . . . 54 3.20 Comparing to Accident Data: Stall . . . . . . . . . . . . . . . . . . . . . 55 3.21 Comparing to EUR Stall Simulation and Flight Test . . . . . . . . . . . 56 3.22 Roll and β at Stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.23 Comparing Roll-Off Behavior . . . . . . . . . . . . . . . . . . . . . . . . 56 vi 3.24 Stability Derivatives and Simulation Results Using the Roll Model . . . . 57 4.1 Experiment Example Results: Upset Scenario 1 . . . . . . . . . . . . . . 68 4.2 Experiment Example Results: Upset Scenario 2 . . . . . . . . . . . . . . 69 4.3 Experiment Example Results: Upset Scenario 3 . . . . . . . . . . . . . . 70 4.4 Experiment Example Results: Upset Scenario 4 . . . . . . . . . . . . . . 71 4.5 Experiment Example Results: Upset Scenario 5 . . . . . . . . . . . . . . 72 4.6 Experiment Example Results: Upset Scenario 6 . . . . . . . . . . . . . . 73 4.7 QLC Envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.8 Example MDA Outputs for Upset Scenario 1 . . . . . . . . . . . . . . . . 77 4.9 Example MDA Outputs for Upset Scenario 3 . . . . . . . . . . . . . . . . 78 A.1 Wind Experienced by Aircraft On Approach . . . . . . . . . . . . . . . . 84 vii List of Tables 3.1 Maximum Control Surface Deflections . . . . . . . . . . . . . . . . . . . . 31 4.1 Summary of Reference Upset Scenarios . . . . . . . . . . . . . . . . . . . 59 viii Nomenclature α angle of attack, degrees β sideslip angle, degrees φ Euler roll angle, degrees θ Euler pitch angle, degrees ψ Euler yaw angle, degrees p roll rate, deg/s q pitch rate, deg/s r yaw rate, deg/s u airspeed along the body x-axis, m/s v airspeed along the body y-axis, m/s w airspeed along the body z-axis, m/s X force along the body x-axis, N Y force along the body y-axis, N Z force along the body z-axis, N L rolling moment about the body x-axis, N m · M pitching moment about the body y-axis, N m · N yawing moment about the body z-axis, N m · n longitudinal acceleration, G x n lateral acceleration, G y n normal load factor, G z ω steady-state rate (wind-axis roll rate) ss V true airspeed, knots or m/s V equivalent airspeed, knots or m/s eq W wind speed, m/s: i = x,y,z i b wing span, m c¯ mean aerodynamic chord, m g acceleration of gravity, m/s2 C non-dimensional aerodynamic coefficient: i = X,Y,Z,L,D,l,m,n i ix δ aileron deflection, degrees: positive right aileron up and left aileron down a δ elevator deflection, degrees: positive trailing edge down e δ flap deflection, degrees f δ rudder defection, degrees: positive trailing edge left r δ stabilizer deflection, degrees: positive trailing edge down s δ speed brake handle position (0-1) or spoiler panel deflection (deg) spo ∆ incremental value I moment of inertia, kg m2: i = xx, yy, zz, xz i · AAIB UK Air Accidents Investigation Branch ADI attitude director indicator CFIT controlled flight into terrain C.G. center of gravity EUR enhanced upset recovery (NASA’s full-scale enhanced flight model) FAA U.S. Federal Aviation Administration FDR flight data recorder FRS flight research simulator IFS in-flight simulator ILS instrument landing system JTSB Japan Transport Safety Board LaRC Langley Research Center LOC loss-of-control MDA motion drive algorithm NASA U.S. National Aeronautics and Space Administration NTSB U.S. National Transportation Safety Board URT upset recovery training UTIAS University of Toronto Institute for Aerospace Studies Subscripts X force component along the body x-axis Y force component along the body y-axis Z force component along the body z-axis x

Description:
However, to simulate the large amplitude and highly dynamic motions seen in upset conditions, both the flight of upset recovery experiments in a flight simulator without motion attitude director indicator. CFIT .. training), the Microsoft Flight Simulator trained group, and the centrifuge-based si
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.