ebook img

Ground and Excited State Aromaticity PDF

86 Pages·2012·4.92 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ground and Excited State Aromaticity

List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Zhu, J.; Dahlstrand, C.; Smith, J. R.; Villaume, S.; Ottosson, H. On the Importance of Clar Structures of Polybenzenoid Hydrocarbons as Revealed by the π-contribution to the Electron Localization Function. Symmetry 2010, 2, 1653- 1682. II Dahlstrand, C.; Yamazaki, K.; Zhu, J.; Villaume, S.; Kilså, K.; Ottosson, H. Substituent Effects on the Electron Affinities and Ionization Energies of Tria-, Penta-, and Heptafulve- nes: A Computational Study. J. Org. Chem. 2010, 75(23), 8060-8068. III Tong, H.; Dahlstrand, C.; Villaume, S.; Zhu, J.; Piqueras, M. C.; Crespo, R.; Ottosson, H. Fulvenes: Compounds for which the Singlet-Triplet Energy Gaps are Closely Linked to Aromaticity and Aromaticity Differences. Manuscript (2012) IV Dahlstrand, C.; Rosenberg, M.; Kilså, K.; Ottosson. H. Explo- ration of the π-Electronic Structure of Singlet, Triplet, and Quintet States of Fulvenes, and Fulvalenes Using the Elec- tron Localization Function. J. Phys. Chem. Accepted (2012) V Rosenberg, M.; Dahlstrand, C.; Ottosson, H.; Kilså, K. Ma- nipulation of Excited State Energies in Fulvenic Molecules. Preliminary manuscript (2012) VI Dahlstrand, C.; Jahn, B.; Grigoriev, A.; Villaume, S.; Ahuja, R., Ottosson, H. Tuning the Band Gap of Polyfulvenes by Use of “Handles”: On the Effects of Exocyclic Substitution, Ben- zannulation, and Ring Methylation. Manuscript (2012) Reprints were made with permission from the respective publishers. Works not included in this thesis: • Rosenberg, M.; Dahlstrand, C.; Kilså, K.; Ottosson, H. Excited State Aromaticity and Antiaromaticity: Opportunities for Photo- physical and Photochemical Rationalizations. Chem. Rev. Manu- script (2012) • Dahlstrand, C. Aromaticity Effects in Polybenzenoid Hydrocar- bons and in Substituted Fulvenes: A Computational Study. Thesis for the degree of Licentiate of technology (2010) Author Contribution The author wishes to clarify his contributions to the included papers. I Performed a large part of the calculations and contributed partly to manuscript writing. II Performed a large part of the calculations and contributed ex- tensively to project development, data analysis and manuscript writing. III Performed a majority of the calculations, and contributed exten- sively to data analysis and manuscript writing. IV Performed a majority of the calculations. Contributed exten- sively to project development, manuscript writing and data analysis. V Preformed all synthetic work and provided the initial computa- tional results. VI Performed all oligomer calculations and a few initial PBC cal- culations. Contributed extensively to project development, manuscript writing, and data analysis. Contents 1. Introduction...............................................................................................13 1.1. Single Molecule Electronics..............................................................13 1.2. Electronics based on Molecular Materials........................................14 2. Aromaticity...............................................................................................15 2.1. A Short Historical Background.........................................................15 2.2. Different Types of Aromaticity.........................................................16 2.3. Spin State Multiplicity......................................................................17 2.4. Aromaticity in the Singlet Ground State...........................................18 2.4.1. Aromaticity Criteria...................................................................18 2.5. Aromaticity in the Lowest Triplet and Quintet Excited States..........19 2.6. Aromaticity Indices...........................................................................19 2.6.1. Harmonic Oscillator Model of Aromaticity (HOMA)...............19 2.6.2. Nucleus Independent Chemical Shifts (NICS)..........................20 2.6.3. NICS scan..................................................................................20 2.6.4. Electron Localization Function (ELF).......................................21 3. Computational Quantum Chemistry.........................................................22 3.1. Elementary Quantum Mechanics......................................................22 3.2. Hartree-Fock (HF) and post-Hartree-Fock Methods.........................23 3.3. Basis Sets...........................................................................................24 3.4. Density Functional Theory (DFT).....................................................24 3.5. Calculating Molecular Properties......................................................26 4. Aromaticity of Polybenzenoid Hydrocarbons...........................................27 4.1. Properties of Polybenzenoid Hydrocarbons......................................27 4.1.2. Clar Resonance Structures.........................................................27 4.1.3. Properties of the Electron Localization Function......................29 4.1.4. Describing PBHs through the π-Component of the Electron Localization Function..........................................................................31 4.2. Influence on π-Electronic Structure due to the Fusion of Ethylene or Benzene Ring Fragments onto PBHs.......................................................33 4.2.1. Fusion of Ethylene onto a PBH.................................................33 4.2.2. Fusion of a Benzene ring onto a PBH........................................33 4.3. Influence on the π-Electronic Structure of Benzene due to Distortions of the σ-Framework.................................................................................35 5. Aromatic Chameleons...............................................................................37 5.1. Electron Affinity and Ionization Energy...........................................37 5.1.1. Tetrathiafulvalene and tetracyanoquinodimethane....................38 5.1.2. Basis Set Dependence of the Outer Valence Greens’ Function Calculations.........................................................................................39 5.1.3. Orbital Symmetry Considerations.............................................40 5.2. Donor-Acceptor Dyads......................................................................43 5.3. Excited States of Pentafulvenes........................................................45 5.3.1. Rotation about the Exocyclic Bond of Substituted Pentafulvene.46 5.3.2. The Gauge Including Atomic Orbitals Method for Nuclear Magnetic Shieldings............................................................................47 5.3.3. The Connection Between Aromaticity and the Singlet-Triplet Energy Gap..........................................................................................47 5.3.4. NICS-scan on a Potential Ground State Triplet.........................49 5.3.5. Dependence of HOMA, NICS, and ΔE on the C-C Bond ST Lengths................................................................................................50 5.4. π-Electronic Structure of Other Fulvenoid Compounds...................54 5.4.1. Fulvenes and Fulvalenes Investigated by the π-Component of the Electron Localization Function......................................................54 6. Excited State Properties of Substituted Fluorenones and Dibenzofulvenes58 6.1. Synthetic Aspects..............................................................................58 6.2. Excited State Properties of Substituted Fluorenones and Dibenzofulvenes.......................................................................................60 6.2.2. Time-Dependent Density Functional Theory............................60 6.2.3. Polarizable Continuum Model (PCM).......................................61 6.2.4. Exchange of O for C(CN) .........................................................61 2 6.2.5. Substitution at the 2- and 7- positions.......................................62 7. Fulvenes in Polymeric Systems................................................................66 7.1. Conducting Polymers........................................................................66 7.2. Oligomer Extrapolations...................................................................67 7.3. Periodic Boundary Conditions (PBC)...............................................69 7.3.1. Fulvenoid or Quinoid Polyfulvenes...........................................69 7.3.2. Effect of Benzannulation...........................................................70 7.3.3. Benzannulation and Aromaticity...............................................72 8. Concluding Remarks.................................................................................73 9. Summary in Swedish................................................................................74 9.1. Aromaticitet.......................................................................................74 9.2. Polybensenoida kolväten...................................................................75 9.3. Aromatiska kameleonter....................................................................75 9.4. Ledande polymerer............................................................................77 9.5. Slutsats..............................................................................................78 Acknowledgements.......................................................................................79 References.....................................................................................................81 Abbreviations ΔE Singlet-Triplet Energy Gap ST ΔBV Bifurcation Value Difference ΑΝΟ Atomic Natural Orbital AO Atomic Orbital BLA Bond Length Alternation BV Bifurcation Value CASSCF Complete Active Space Self-Consistent Field CASPT2 CASSCF with Second-Order Perturbation Theory CGTF Contracted Gaussian Type Function DCM Dichloromethane DFT Density Functional Theory DMSO Dimethylsulfoxide E Band Gap Energy g E Fermi Energy F EA Electron Affinity EDG Electron Donating Group ELF Electron Localization Function ELF π-Component of Electron Localization Function π eV Electron Volt EWG Electron Withdrawing Group f Fulvenoid-type Structure FET Field-Effect Transistor GGA Generalized Gradient Approximation GIAO Gauge Including Atomic Orbital GTF Gaussian Type Function HF Hartree-Fock HOCO Highest Occupied Crystal Orbital HOMA Harmonic Oscillator Measure of Aromaticity HOMO Highest Occupied Molecular Orbital HOPG Highly Oriented Pyrolytic Graphite

Description:
C.; Crespo, R.; Ottosson, H. Fulvenes: Compounds for which .. VSEPR Valence-Shell Electron-Pair Repulsion .. NN, and NO.50,51 The HOMA of a ring is easily calculated by the formula. ∑. − interface between a pure crystal of TTF and a pure crystal of TCNQ as a y = 0.281 + 0.985x R2= 0.999.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.