Grothendieck Rings and Motivic Integration Grothendieck Rings and Motivic Integration Karl R(cid:246)kaeus (cid:13)c KarlR(cid:246)kaeus,Stockholm2009 ISBN978-91-7155-834-3 PrintedinSwedenbyUS-AB,Stockholm2009 Distributor:StockholmUniversity,FacultyofScience,DepartmentofMathematics,10691Stockholm Abstract This thesis consists of three parts: In Part I we study the Burnside ring of the (cid:28)nite group G. This ring has a natural structure of a λ-ring, {λn}n∈N. However, a priori λn(S), where S is a G-set, can only be computed recursively, by (cid:28)rst computing λ1(S),...,λn−1(S). We establish an explicit formula, expressing λn(S) as a linear combination of classes of G-sets. This formula is derived in two ways: First we give a proof that uses the theory of representation rings in an essential way. We then give an alternative, more intrinsic, proof. This second proof is joint work with Serge Bouc. In Part II we establish a formula for the classes of certain tori in the Grothendieck ring of varieties K (Var ). More explicitly, K (Var ) has 0 k 0 k a natural structure of a λ-ring, and we will see that if L∗ is the torus of invertible elements in the n-dimensional separable k-algebra L then [L∗] = Pn (−1)iλi(cid:0)[SpecL](cid:1)Ln−i, where L is the class of the a(cid:30)ne i=0 line. This formula is suggested by the computation of the cohomology of the torus. To prove it requires some rather explicit calculations in K (Var ).Tobeabletomakethese,weintroduceahomomorphismfrom 0 k the Burnside ring of the absolute Galois group of k, to K (Var ). In the 0 k process we obtain some information about the structure of the subring of K (Var ) generated by zero-dimensional varieties. 0 k In Part III we give a version of geometric motivic integration that specializes to p-adic integration via point counting. This has been done before for stable sets, cf. [LS03]; we extend this to more general sets. The main problem in doing this is that it requires to take limits, hence the measure will have to take values in a completion of K (Var )[L−1]. 0 k The standard choice is to complete with respect to the dimension (cid:28)ltra- tion.However,sincethepointcountinghomomorphismisnotcontinuous with respect to this topology we have to use a stronger one. We thus be- gin by de(cid:28)ning this stronger topology; we will then see that many of the standard constructions of geometric motivic integration work also in this setting. Using this theory, we are then able to give a geometric explanation of the behavior of certain p-adic integrals, by computing the corresponding motivic integrals. 5 Contents 0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 0.1.1 Overviewofthethesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 0.1.2 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 0.2 Backgroundmaterial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 0.2.1 λ-rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 0.2.2 Representationrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 0.2.3 TheGrothendieckringofvarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 0.2.4 Burnsiderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Part I: The Burnside ring 1 The λ-structure on the Burnside ring . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.1 Introductionandstatementofthemaintheorem. . . . . . . . . . . . . . . . . . . . . . 21 1.2 ThemapfromtheBurnsideringtotherepresentationring . . . . . . . . . . . . . . . 23 1.3 TheSchursubringofB(Σn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4 Theλ-operationsonB(Σn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 Intrinsic proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1 BackgroundMaterial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 ProofofTheorem1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Part II: The Grothendieck ring of varieties 3 The Grothendieck ring of varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 BackgroundMaterial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 ThesubringofArtinclassesinK0(Vark) . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Heuristicconsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5 ComputationoftheclassofL∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.6 Theclassofthetorusintermsoftheλ-operations . . . . . . . . . . . . . . . . . . . . 61 Part III: Motivic Integration 4 Motivic integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 ThecompletionofMk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3 AppendixtoSection4.2:Resultsfrom[Eke09] . . . . . . . . . . . . . . . . . . . . . . . 76 4.4 De(cid:28)nitionofthemotivicmeasure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5 Computing motivic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2 BackgroundmaterialabouttheWittvectors . . . . . . . . . . . . . . . . . . . . . . . . 86 5.3 Assumptionsandgeneralresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.4 Changeofvariables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.5 Theintegraloftheabsolutevalueofaproductofspeciallinearforms . . . . . . . . 98 5.6 Theintegraloftheabsolutevalueofaproductofarbitrarylinearforms. . . . . . . 104 5.7 Varyingtheprime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Part IV: Bibliography 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 8 0.1 Introduction This thesis is concerned with two main topics. Firstly, the investigation of two Grothendieck rings: the Burnside ring, and the Grothendieck ring of varieties. Secondly, the theory of motivic integration. These topics are related by the fact that the motivic measure takes values in a certain completed localization of the Grothendieck ring of varieties. Let us (cid:28)rst say some words about that ring: Let k be a (cid:28)eld and let Var be the category of k-varieties, by k which we mean the category of separated k-schemes of (cid:28)nite type. The Grothendieck ring of k-varieties1, K (Var ), is by de(cid:28)nition the 0 k free abelian group on the set of isomorphism classes of k-varieties [X], modulo the relations [X] = [Z]+[X \Z] if Z ⊂ X is closed (the scissor relations), and with a multiplication given by [X][Y] = [X × Y]. k The class of the a(cid:30)ne line is of particular importance, and is given a special symbol: L := [A1] ∈ K (Var ) (L is for Lefschetz). It follows k 0 k immediately from the de(cid:28)nition of the multiplication that [An] = Ln. k For an example of how the scissor relations work, note that since we may choose a closed subscheme of Pn which is isomorphic to Pn−1, and k k has complement An, we have [Pn] = Ln+Ln−1+···+L+1 ∈ K (Var ). k k 0 k We want to use the theory of motivic integration in order to give a geometric explanation of the behavior of certain p-adic integrals. As an introduction to these ideas, let us illustrate how K0(VarFp) gives a geometric way of counting solutions to polynomial equations modulo p. Wedothiswithanexample:ForLaseparablek-algebra,de(cid:28)neL∗ tobe the algebraic group of invertible elements of L, i.e., for every k-algebra R,L∗(R) = (L⊗ R)×.IncaseL/k = F /F wehave|L∗(F )| = |F×| = k p2 p p p2 p2 −1 and |L∗(F )| = |(F2 )×| = (p2 −1)2 = (p2)2 −2p2 +1. On the p2 p2 other hand, computing in K0(VarFp), one may show that [L∗] = L2−[SpecL]L+[SpecL]−1 ∈ K0(VarFp). (0.1) Bydoingthis,wehavesimultaneouslycomputed|L∗(F )|foreverypower q q ofp.Becauseforeverysuchq wehaveapointcountinghomomorphism Cq: K0(VarFp) → Z, induced by [X] 7→ |X(Fq)|. So by applying Cq to [L∗] we obtain the number of F -points on L∗. In particular, using (0.1) q we again get |L∗(F )| = C ([L∗]) = p2 −1 and |L∗(F )| = C ([L∗]) = p p p2 p2 (p2)2−2p2+1. Beforewecontinue,letusmentionthatthisexampleisaspecialcaseof a more general theorem. Namely, for any (cid:28)eld k, K (Var ) has a natural 0 k structure of a λ-ring (a λ-ring is a ring together with a set of maps λn behavinglikeexteriorpowers,seeSection0.2.1.),andusingthisstructure 1First introduced by Grothendieck, cf. the unpublished text Motifs, available at www.grothendieckcircle.org 9 one may, for any separable n-dimensional k-algebra L, express [L∗] as n X [L∗] = (−1)iλi([SpecL])Ln−i ∈ K (Var ). (0.2) 0 k i=0 The validity of this formula will be the main result of Chapter 3. In establishing it, we will be led to consider the structure of K (Var ) in 0 k more detail, and this leads us to the subject of the Burnside ring. TheBurnsideringofapro(cid:28)nitegroupG,denotedB(G),isconstructed inmuchthesamewayasK (Var ),butinsteadofthecategoryofvarieties 0 k one uses the category of (cid:28)nite, continuous G-sets. Let G be the absolute Galois group of k. There is a natural map Art : B(G) → K (Var ), and k 0 k since the structure of the Burnside ring is much better known than that of K (Var ), Art is useful for proving structure result about K (Var ). 0 k k 0 k For an example of this, we may use Art to prove that Naumann’s con- k struction of zero divisors in K0(VarFp) actually works in K0(Vark) when k is any (cid:28)eld which is not separably closed: Let L/k be a (cid:28)nite Ga- lois extension of degree n. Then [SpecL]2 = [SpecL⊗ L] = [SpecLn] = k (cid:5) (cid:0) (cid:1) [∪ SpecL] = n[SpecL],hence[SpecL] [SpecL]−n = 0.Lookingatthe n preimage of [SpecL] under Art , it is easy to show that [SpecL] 6= 0,n; k consequently it is a zero divisor for any k (see Section 3.3). Moreover, B(G) also has a natural structure of a λ-ring, and Art k commutes with the λ-operations. This allows us to move computations of the λ-operations on K (Var ) to B(G). Actually, one of the proofs 0 k of the validity of (0.2) given in Chapter 3 relies on a theorem about Burnside rings (Theorem 1.1) which is proved in Chapter 1. We now turn to motivic integration. Motivic integration was intro- duced by Kontsevich in 1995, in order to strengthen Batyrev’s result that birational Calabi-Yau manifolds have the same Betti numbers, to also yield equality of Hodge numbers. It has since then rami(cid:28)ed in many di(cid:27)erent directions; we are interested in utilizing it to give a geometric wayofcomputingp-adicintegrals.Infact,motivicintegrationisinspired by p-adic integration: one wants to de(cid:28)ne a measure on subsets of power series rings of the type k[[t]], in much the same way as on subsets of Z . However, since k[[t]] is not locally compact (whenever k is in(cid:28)nite) p it is not possible to do this in the classical way. Kontsevich’s method of resolving this was to let the measure take values in a certain completion of M := K (Var )[L−1]. This gives the original theory of geometric k 0 k motivic integration, developed in [DL99] and [DL02]. This idea may now be used also in the p-adic case: Let W be the ring scheme of Witt vectors, constructed with respect to the prime p. (Recall that W(F ), where q = pf, is the integers in the unrami(cid:28)ed degree f q extension of Q ; in particular W(F ) = Z .) Let F be an algebraic p p p p closure of F . W(F ) then contains all the W(F ), q = pf, as subrings. p p q 10