ebook img

Grothendieck groups of categories of abelian varieties PDF

0.13 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Grothendieck groups of categories of abelian varieties

GROTHENDIECKGROUPSOF CATEGORIESOF ABELIANVARIETIES ARISHNIDMAN ABSTRACT. We compute the Grothendieck group of the category of abelianvarietiesoveranalgebraicallyclosedfieldk.Wealsocompute 7 theGrothendieckgroupofthecategoryofA-isotypicabelianvarieties, 1 0 foranysimpleabelianvarietyA,assumingkhascharacteristic0,and 2 foranyellipticcurveAinanycharacteristic. n a J 3 1. INTRODUCTION 1 The purpose of this note is to determine the Grothendieck groups of ] G variouscategoriesofabelianvarieties. IfC isanexactcategory,thenthe A GrothendieckgroupK (C)isthequotientofthefreeabeliangroupgen- 0 . eratedbyisomorphismclassesinC modulotherelations[X] [Y] [Z], h − + t foranyexactsequence0 X Y Z 0inC. a → → → → m LetA bethecategoryofabelianvarietiesoveranalgebraicallyclosed field k. The morphisms in A are homomorphismsof abelian varieties. [ KernelsdonotnecessarilyexistinA,butcokernelsdoexist,andA isan 1 v exactcategory. 4 TocomputetheGrothendieckgroupK (A),itishelpfultoconsiderthe 0 4 simplercategoryA˜ofabelianvarietiesuptoisogeny. Thiscategoryhas 7 3 thesameobjectsasA,and 0 1. HomA˜(A,B)=Hom(A,B)⊗ZQ, 0 for A,B Ob(A˜). ThecategoryA˜issemisimplebyPoincaré’sreducibili- 7 ∈ 1 itytheorem,sothat v: K0(A˜)∼ Z[A], = i A X M where the direct sum is over representatives of simple isogeny classes r a of abelian varieties. We have a surjectivemap ι: K (A) K (A˜) which 0 0 → sendsanabelianvarietytoitsisogenyclass. Infact: Theorem1.1. The map ι is an isomorphism. In particular, any additive functionOb(A) G toanabeliangroupG isanisogenyinvariant. → TheproofofTheorem1.1,whichwassuggestedtousbyJulianRosen, usesatrickinvolvingnon-isotypicabelianvarietiestoreducetoshowing thefollowingfact: foreveryfinitegroupschemeG overk ofprimeorder, thereisanabelianvariety Aoverk withanendomorphismwhosekernel 2010MathematicsSubjectClassification. 11G10,14K99,19A99. Keywordsandphrases. Abelianvarieties,Grothendieckgroups,ellipticcurves. 1 2 ARISHNIDMAN is isomorphictoG. This fact is easily proved using the arithmeticof el- lipticcurves.Thus,theproofofTheorem1.1exploitsthefactthatcertain ellipticcurveshaveextraendomorphisms,anddoesnotshedmuchlight onthestructureofthecategoryA. Forexample,oneconsequenceofTheorem1.1isthatanabelianvari- ety Aanditsdual Aˆ determinethesameclassinK (A). Itisthennatural 0 toaskwhetherwecanwitnesstherelation[A] [Aˆ]inK (A),usingonly 0 = shortexact sequences thatareintrinsicto A. In otherwords, we askfor short exact sequences involving only abelian varieties that can be con- structedfrom Aor Aˆinsomenaturalway,andthatdon’tinvolveauxiliary abelian varieties such as CM elliptic curves. One way to formalize this questionisasfollows. Let A be a simple abelian variety of dimension g. Write C for the A categoryofabelianvarietiesB isogenousto An forsomen 0,withmor- ≥ phismsasusual.WewillwriteK (A)forK (C ),butnoticethatthisgroup 0 0 A depends only on the isogeny class of A. One can then ask whether it is truethat[A] [Aˆ]inK (A). Itwillfollowfromourmainresultbelowthat 0 = theansweristypicallyno. WriteG(A) for the kernel of the map dim: K (A) Z sending [A] to 0 → dimA. The group G(A) measures the difference between the category C and its isogeny category C˜ . We will describe G(A) in terms of the A A endomorphismalgebraD End(A) Q,assumingk hascharacteristic0. = ⊗ Soletusassumechark 0untilfurthernotice. LetF bethecenterofD, = andwritee [F :Q] andd2 [D :F]. Also letF betheset ofnon-zero + = = elementsofF whicharepositiveatalltheramifiedrealplacesofD.Then ourmainresultis: Theorem 1.2. Let Q be the group of positive rational numbers under + multiplication. Thenthereisacanonicalisomorphism 2g/de deg: G(A) Q NmF/Q F+ , ≃ + which,foranytwosimple A1,A2 O±b(CA),s¡end¢stheclassof[A1] [A2]to ∈ − theclassofthedegreeofanyisogeny A A . 1 2 → This shows that even though ι: K (A) K (A˜) is an isomorphism, 0 0 → there is still a big difference between the A-isotypic part of A and the A-isotypicpartofA˜. Indeed: Corollary1.3. ThegroupG(A)isaninfinitetorsiongroup. 2g/de Proof. ThegroupQ Nm F istorsionsinceeveryintegerhas F/Q + + 2g/de apowerwhichisanormfromF. IfQ Nm F isfinite,thenwe ± ¡ ¢ F/Q + + must have 2g de. By the classification of endomorphism algebras of = ± ¡ ¢ abelianvarietiesincharacteristic0,thisimpliesthatF isaCMfield. But thenNm (F )hasinfiniteindexinQ ,whichcontradictstheassump- F/Q × × (cid:3) tionthatQ Nm F isfinite. F/Q + + Dualityfit±snicelyi¡nto¢thispictureaswell: GROTHENDIECKGROUPSOFCATEGORIESOFABELIANVARIETIES 3 Theorem1.4. Theautomorphism[B] [Bˆ]ofK (A)isinversiononG(A). 0 7→ Remark 1.5. NotethatdualitydoesnotinduceinversiononallofK (A), 0 as[A] [A]doesnotpreservedimension. 7→− Thisletsusexhibitmanycaseswhere[A] [Aˆ]inK (A). 0 6= Example1.6. If A is an abeliansurface with End(A) Z, then Theorem = 1.2gives G(A) Q /Q4 Z/4Z, ≃ + +≃ ℓ M withthedirectsumoverallprimesℓ.SupposeAadmitsanisogeny A 0 → A ofdegreeℓfroma principallypolarizedsurface A ; inparticular A 0 0 ≃ Aˆ . Then [A] [Aˆ] inK (A)if and onlyif[A ] [A] [A ] [Aˆ] inG(A). 0 0 0 0 = − = − ByTheorem1.4,thiswouldmeanthattheclassof[A ] [A]inG(A)isits 0 − owninverse.Buttheinverseofdeg([A ] [A]) ℓinQ Q4 isℓ3andnot 0 ℓ,sowemusthave[A] [Aˆ]inK (A). − = + + 6= 0 ± Ontheotherhand,Theorem1.4immediatelyyieldsthefollowingpos- itiveresult,givingacanonicalclassindegreetwoinK (A): 0 Theorem1.7. If A ,A Ob(C )aresimple,then[A ] [Aˆ ] [A ] [Aˆ ] 1 2 A 1 1 2 2 ∈ + = + inK (A). Inotherwords,theclass[A] [Aˆ]isindependentofthechoiceof 0 + Ainitsisogenyclass. Theorem 1.2 and Corollary 1.3 can fail quite dramatically in charac- teristic p. The next two results show thatG(A) need not be infinitenor torsioninpositivecharacteristic. Theorem1.8. Supposechark p 0andlet Abeasupersingularelliptic = > curve.ThenG(A) 0. Inparticular,K (A) Z. 0 = ≃ Theorem1.9. Suppose chark p 0 and let A be an elliptic curve with = > End(A) Z. ThenG(A)containsanelementofinfiniteorder. = Forgeneral A incharacteristicp,determiningthestructureofG(A)is somewhatsubtle,andwehopetoreturntothisquestioninfuturework. ItwouldalsobeinterestingtocomputethegroupsG(A)whenk isafinite field. The answer should be related to Milne’s computation [Mi] of the size of the Ext group of two abelian varieties over a finite field. When A is an ellipticcurve over a finitefield, one can presumablydeduce the answerfromtheresultsoftherecentpaper[JKP ]. + The plan for the rest of the note is as follows. In Section 2, we prove Theorem1.1. InSection3,weproveausefulcriterionfortwoisogenous abelianvarietiesB,B Ob(C )todeterminethesameclassinK (A). In ′ A 0 ∈ Section4,wedefinethemapdeginTheorem1.2. InSection5,weprove thatdegisanisomorphismincharacteristic0.InSection6,wedetermine G(E)foranyellipticcurveE,inanycharacteristic. 4 ARISHNIDMAN 2. THE GROTHENDIECK GROUP K0(A) Weletk beanalgebraicallyclosedfieldandA thecategoryofabelian varietiesoverk. Theorem2.1. ThereisanisomorphismK (A) Z[A],wherethesum 0 ∼ A = isoverrepresentatives Aofsimpleisogenyclassesofabelianvarieties. L Proof. By Poincaré reducibility, it is enough to show that if φ: A A is ′ → anisogenyofabelianvarieties,then[A] [A ]inK (A). Weimmediately ′ 0 = reducetothecasewhereφisanℓ-isogenyforsomeprimeℓ. Suppose AandB areabelianvarieties,eachcontaininganembedding ofagroupschemeG oforderℓ. LetC bethequotientof A B byadiag- × onalcopyofG A A . Thenthereareexactsequences ′ ⊂ ⊕ 0 A C B/G 0, → → → → 0 B C A/G 0. → → → → Wethereforehavetherelation [A] [A ] [B] [B ] G G − = − in K (A), where A (resp. B ) is any quotient of A (resp. B) by a group 0 G G isomorphic to G. So to prove the theorem, it suffices to find, for every primeℓandforeverygroupschemeG oforderℓ,asingleabelianvariety A andanendomorphism f End(A)suchthatkerf G. Infact,wewill ∈ ≃ showthatwecantake AtobeanellipticcurveE. Write p chark. If ℓ p, then G Z/ℓZ, and we may take E such = 6= ≃ thatEnd(E)containsZ[p ℓ]. Suchanellipticcurveexistsoveranyalge- − braicallyclosedfieldk,bythetheoryofcomplexmultiplication.Ifℓ p, = thentherearethreegroupschemesG toconsider,butforallthreewewill takeE with j-invariantlyinginF . Inthiscase,theFrobeniusmorphism p F: E E(p) E → ≃ isanendomorphism. If E is supersingular,thenkerF α , whileifE is p ≃ ordinary,thenkerF µ andkerFˆ Z/pZ.Thenumberofsupersingular p ≃ ≃ ellipticcurves over F is related to a certain class number by a result of p Deuring[De],andisalwaysnon-zero[C,Thm.14.18].Ontheotherhand, thenumberofsupersingular j-invariantsoverF¯ islessthanp,sothere p (cid:3) arealways j-invariantsofbothtypesinF . Thisconcludestheproof. p Corollary2.2. AnyadditivefunctionOb(A) G toanabeliangroupG is → anisogenyinvariant. Corollary2.2can beusedtoshowthatcertainfunctionsarenotaddi- tive: Example 2.3. If k Q¯, then the stable Faltings height is additive under = taking products of abelian varieties. If it were additive under short ex- act sequences, then it would be an isogeny invariant. But it is easy to GROTHENDIECKGROUPSOFCATEGORIESOFABELIANVARIETIES 5 seefromFaltings’isogenyformula[F,Lem.5]thattheheightsometimes changesunderisogeny. 3. AUSEFUL CRITERION In this section, we let k be any algebraicallyclosed field. Let A be an abelianvarietyoverk ofdimensiong,notnecessarilysimple. Lemma3.1. Supposeπ : A A andπ : A A areisogeniessuchthat 1 1 2 2 → → kerπ kerπ 0. Then 1 2 ∩ = [A] [A ] [A ] [A ] K (A), 1 2 3 0 = + − ∈ where A isthequotient A/(kerπ kerπ ). 3 1 2 + Proof. Fori 1,2,letπ˜ :A A bethenaturalprojectionmaps,sothat i i 3 = → kerπ˜ π (kerπ ) and kerπ˜ π (kerπ ). 1 1 2 2 2 1 = = Thenthereisashortexactsequence 0 Aπ1×π2 A1 A2π˜1−π˜2 A3 0. → −→ × −→ → Toseethis,weneedtocheckthatthekernelofφ: π˜ π˜ iscontained 1 2 = − intheimageofπ π . Forconcreteness,weargueonthelevelofpoints, 1 2 × leavingtothereadertheexerciseofmakingthisargumentcategorical.1 Sosuppose(P,Q) A A isinkerφ. PickP¯ A suchthatπ (P¯) P. 1 2 1 ∈ × ∈ = Thenit suffices to showthatQ π (P¯ R)for someR kerπ , because 2 1 = + ∈ then (P,Q) (π (P¯ R),π (P¯ R)). 1 2 = + + Nowwecompute π˜ (π (P¯) Q) π˜ (π (P¯)) π˜ (Q) π˜ (P) π˜ (Q) φ(P,Q) 0, 2 2 1 1 2 1 2 − = − = − = = showingthatπ (P¯) Q iscontainedinπ (kerπ ) kerπ˜ ,asdesired. (cid:3) 2 2 1 2 − = Theorem3.2. If A A and A A are isogenies of the same degree n, 1 2 → → andifn isinvertibleink,then[A ] [A ]inK (A). 1 2 0 = Proof. First consider the case where the isogenies have prime degree ℓ. Wemayassumethenthatkerπ kerπ . ByLemma3.1wehave 1 2 6= [A] [A ] [A ] [A ], 3 1 2 + = + where A A/(kerπ kerπ ). Butthesameargumentworksforanytwo 3 1 2 = + distinct order ℓ subgroup schemes of kerπ kerπ A[ℓ]. Since ℓ is 1 2 + ⊂ invertibleink,wecanfindathirdsuchsubgroupC kerπ kerπ ,and 1 2 ⊂ + wehave: [A ] [A/C] [A] [A ] [A ] [A/C], 1 3 2 + = + = + andhence[A ] [A ]. 1 2 = Thegeneralcaseproceeds byinductiononthedegree. If A A and 1 → A A havedegreen,wecanfindasubgroupC A[n]ofordern which 2 → ⊂ 1 Itisnotenoughtoargueonthelevelofpointsifchark 0andkerπ kerπ has 1 2 > + orderdivisiblebychark,butwewillnotactuallyusethiscaseofthetheorem. 6 ARISHNIDMAN intersectsnon-triviallywithkerπ andkerπ . Indeed,ifn ℓa isaprime 1 2 = power then one can take C to contain any two points P and P of or- 1 2 derℓinkerπ andkerπ ,respectively. Ifn ℓai isnotaprimepower, 1 2 = i thenonecantakeC tobegeneratedbypointsoforderℓ andℓ inkerπ 1 2 1 Q andkerπ , respectively. Thentheisogenies A A and A A/C factor 2 1 → → throughisogeniesA A and A A/C ofdegreen/ℓforsomeprimeℓ. ′ 1 ′ → → (cid:3) Byinduction,[A ] [A/C]andsimilarly[A/C] [A ],so[A ] [A ]. 1 2 1 2 = = = 4. SIMPLE ISOGENY CLASSES Inthissectionwe let A˜ beanisogenyclass ofsimpleabelianvarieties of dimension g. Choose any A A˜ and set D End(A) Q. Then D Z ∈ = ⊗ is a division algebra whose isomorphism class depends only on A˜. The degreemapEnd(A) Zextendstoamultiplicativemapdeg:D Q . × → → + Remark4.1. Theremaybeelementsofdeg(D ) Zwhicharenotofthe × ∩ formdeg(α)forsomeα End(A). ∈ Lemma4.2. If f : A A is an isogeny in A˜ of degree n, such that n is 1 2 → invertibleink andn deg(β)forsomeβ D ,then[A ] [A ]inK (A). × 1 2 0 = ∈ = Proof. Writeβ ab 1 witha,b End(A ) End(A ),andwithdeg(a)in- − 1 2 = ∈ ∩ vertible in k. Here we are thinking of End(A ) and End(A ) as abstract 1 2 ringsembeddedinD. Thenthecomposition f b A A A 1 2 2 −→ −→ (cid:3) hasthesamedegreeasa:A A . ByTheorem3.2,[A ] [A ]. 1 1 1 2 → = To computeG(A) ker(K (A) Z), it is convenient to choose A A˜ 0 = → ∈ which is principallypolarizable, so that A Aˆ. We write deg(D) for the ≃ submonoiddeg(D ) ZofthemonoidZ ofpositiveintegersundermul- × ∩ + tiplication.NotethatZ deg(D)isagroup. + Lemma4.3. Suppose f :±An An isanisogeny.Thendeg(f) deg(D). → ∈ Proof. Theisogeny f canbethoughtofasanelement M GL (D). IfD n ∈ iscommutativethenonehastheformula deg(f) deg(detM). = Inthegeneralcase,thereisnowellbehaveddeterminantmapGL (D) n → D . Instead,wehave × deg(f) (Nm Nrd (M))2g/de, F/Q n = ◦ whereF isthecenterofD,d [F :Q],e2 [D :F],andNrd :GL (D) n n = = → F isthereducednorm;see[Mu,§19]. Ontheotherhand,for g D,we × ∈ have deg(g) (Nm Nrd(g))2g/de, F/Q = ◦ whereNrd:D F isthereducednorm.Thelemmathenfollowsfrom × × → (cid:3) Dieudonné’sresult[Di]thatNrd (GL (D)) Nrd(D ). n n × = GROTHENDIECKGROUPSOFCATEGORIESOFABELIANVARIETIES 7 Lemma4.4. LetB C andlet f :An B beanisogeny.Thentheclassof A ∈ → deg(f)inZ deg(D)isindependentofthechoiceof f. + Proof. LetφL±:B Bˆ beapolarizationonB. Then → deg(φ ) deg(fˆφ f) deg(f)2deg(φ ). f L L L ∗ = = The isogeny φ : An Aˆn An has degree in deg(D) by Lemma 4.3. f L ∼ ∗ → = Hence (4.1) deg(f)2deg(φ ) 1 Z deg(D). L = ∈ + Ifg :An B isanotherisogeny,thenthecom±positemap → h:An f B φL Bˆ gˆ Aˆn ψ An −→ −→ −→ −→ alsohasdegreeindeg(D). Here,ψisanyprincipalpolarization.Somod- ulodeg(D),wehave 1 deg(f)deg(gˆ)deg(φL) deg(f)deg(g)deg(g)−2 deg(f)/deg(g), = = = (cid:3) andthereforedeg(f) deg(g)inZ deg(D). = + Definition4.5. IfB CA,thenthec±lassofdeg(f)inZ deg(D),forany isogeny f : An B,∈is denoted dist (B) and is called+the distance of B → A ± from A. Lemma4.6. IfB C ,thendist (Bˆ) dist (B) 1. A A A − ∈ = Proof. Fromthesequence An B φL Bˆ, −→ −→ we obtain dist (Bˆ) dist (B)deg(φ ), which is equal to dist (B) 1, by A A L A − = (cid:3) (4.1). Lemma4.7. LetB C and let g :B An be an isogeny. Thentheclass A ∈ → of deg(g) in Z deg(D) is independentof the choice of g and is equal to dist (B) 1. + A − ± Proof. Wehavedeg(g) deg(gˆ),with gˆ: Aˆn Bˆ thedualisogeny. Since = → Aˆn An,theclassofdeg(g)inZ deg(D)isindependentofg andequal ∼ tod=ist (Bˆ). Nowusethepreviou+slemma. (cid:3) A ± Definition4.8. IfB C ,thentheclassofdeg(f)inZ deg(D),forany A isogeny f :B An,i∈sdenoteddeg (B). + → A ± Remark 4.9. We have deg (B) dist (B) 1 in Z deg(D). Context dic- A = A − + tateswhichinvariantismostconvenienttouse. ± Remark4.10. Themapdeg :Ob(C ) Z deg(D)dependsonthechoice of A. Butnotethatif f : B A B isaAn→isog+enyinC ,then 1→ 2 ± A deg (B ) A 1 deg (B ) A 2 isequaltotheclassofdeg(f) Z deg(D)andhenceisindependentof ∈ + thechoiceof A. ± 8 ARISHNIDMAN Corollary 4.11. If B C and α End(B) is any isogeny, then deg(α) A ∈ ∈ ∈ deg(D). 5. DETERMINATION OFG(A)IN CHARACTERISTIC 0 NowweconnectthenotionofdegreewiththeGrothendieckgroup. Proposition5.1. Thefunctiondeg :Ob(C ) Z deg(D)isadditive. A A → + Proof. Let ± j π 0 B B B 0 1 2 → −→ −→ → bean exact sequence in C . Let φ :Bˆ B and φ :B Bˆ be polar- A M 1 1 L → → izationsanddefineh :B B B to bethemapφ jˆφ π. From the 1 2 M L → × × sequenceofisogenies B h B B An1 An2 An, 1 2 ∼ −→ × −→ × = weconclude deg (B) deg (B )deg (B )deg(h) Z deg(D). A = A 1 A 2 ∈ + So it suffices to show that deg(h) is in deg(D). For±this, note that kerh is isomorphic to the kernel of the isogeny φ jˆφ j End(B ). Then by M L 1 ∈ (cid:3) Corollary4.11,deg(h) deg(D). ∈ We therefore have a homomorphism deg :K (A) Z deg(D). By A 0 → + Remark4.10,therestrictionofdeg tothedimension0subgroupG(A) A ± ⊂ K (A)isindependentof A,sowewrite 0 deg:G(A) Z deg(D). → + This homomorphism is surjective, sinc±e we work over an algebraically closedfield. Infact: Theorem 5.2. Suppose chark 0. Then the degree map deg : G(A) = → Z deg(D)isanisomorphism. + Pro±of. We write A for any A A˜ such that dist (A ) n. The class n n A n ∈ = [A ] K (A) is independent of the choice of A by Theorem 3.2. By n 0 n ∈ Lemma3.1,wehave,foranym,n Z : ∈ + (5.1) [A ] [A ] [A ] [A], nm n m = + − becausewecanalwaysrepresentA andA bycyclicquotientsofAwith n m non-intersecting kernelsC and C (since chark 0), and A by the n m mn = quotient A/(C C ). m n + NotethatK (A)isgeneratedbyclasses[A ]ofsimple A Ob(C ). Thus, 0 ′ ′ A anyβ G(A),canbewrittenas ∈ r β= [Ani]−[Ami] =[A rini]+(r−1)[A]−[A rimi]−(r−1)[A]=[A′]−[A′′], i 1 X= ¡ ¢ Q Q GROTHENDIECKGROUPSOFCATEGORIESOFABELIANVARIETIES 9 forcertain A ,A A˜ . IfβisalsointhekernelofthedegreemapG(A) ′ ′′ ∈ → Z deg(D),then + deg (A )/deg (A ) deg(D). ± A ′ A ′′ ∈ Equivalently,thereisanisogeny f :A A ofdegreedeg(α)forsomeα ′ ′′ → ∈ D. ByLemma4.2,[A ] [A ]andβ 0,showingthatG(A) Z deg(D) ′ ′′ = = → + (cid:3) isinjective,andhenceanisomorphism. ± Asacorollary,weobtainTheorem1.4: Corollary5.3. TheadditivefunctionB Bˆ inducestheinversionhomo- 7→ morphismonG(A). Proof. Sincedeg (Bˆ) deg (B) 1,byLemma4.6andRemark4.9. (cid:3) A = A − ThefollowingpropositiongivesaconcretedescriptionofZ deg(D). + Proposition 5.4. Let A be a simple abelian variety of dimensi±on g and D End(A) Q its endomorphism algebra, with center Z(D) F. Write = ⊗ = e [F :Q]andd2 [D :F]. Then = = Z deg(D) Q Nm (F )2g/de, F/Q + + ≃ + whereF isthesetofn±on-zeroelem±entsofF whicharepositiveatallthe + ramifiedrealplacesofD. Proof. We have seen already that deg : D Q is given by the map × (Nm Nrd)2g/de.ButtheHasse-Schilling-M→aass+theorem[R,Thm33.15] F/Q ◦ (cid:3) statesthatthereducednormonD surjectsontoF . + Theorem1.2nowfollowsfromTheorem5.2andProposition5.4 6. THE CASE dimA 1 = InthissectionwedetermineG(E),foranyellipticcurveE overanyal- gebraicallyclosedfieldk,ofanycharacteristic.Thecharacteristic0cases canbereadofffromTheorem1.2: Theorem 6.1. Suppose k k¯ has characteristic 0 and E/k is an elliptic = curve with endomorphism algebra D. Then the degree map induces an isomorphism Q /Q2 ifD Q, G(E) + + = ≃(Q /NmK/Q(K×) ifD K isimaginaryquadratic. + = IntheCMcase,wecanmakethegroupstructureofG(E)moreexplicit: Proposition6.2. IfK isimaginaryquadraticoverQ,then Q /Nm (K ) C/C2 Z/2Z, K/Q × + ≃ ⊕ ℓinert M whereC Pic(O )istheclassgroupofK. K = 10 ARISHNIDMAN Proof. If ℓ Nm(α) for some α K , then ℓ is not inert in K and (α) × laa¯ 1 forso=meidealaofO and∈someprimelaboveℓ. Itfollowsthat[=l] − K isasquareinC.Wethereforegetawelldefinedmap Q /Nm (K ) C/C2 Z/2 K/Q × + −→ ⊕ ℓinert M bysendinganinertprimeℓtothegeneratorofZ/2Zintheℓthslot,and sending a non-inert prime ℓ to the class of [l] in C/C2, where l is any primeaboveℓ. Thismapisclearlysurjective,andtoproveinjectivity,we l l needtoshowthatif[ ]isasquareinC,thenℓisanorm.If[ ]isasquare, thenl (α)a2 (β)aa¯ 1 forsomeideala,soweseethatNm(β) ℓ. (cid:3) − = = = Nowsupposek hascharacteristicp 0. Therearethreecasestocon- > sider,dependingonthedimensionofD End(E) QoverQ. = ⊗ Theorem6.3. IfE issupersingular,thenG(E) 0. = Proof. The isogeny class of E is the set of supersingular elliptic curves. It is therefore enough to show that [E ] [E] in K (E) for any other su- ′ 0 = persingular elliptic curve E . By [Ko, Cor. 77], we may choose a prime ′ numberℓ p suchthatthereexistℓ-isogeniesE E andE E . Then ′ 6= → → (cid:3) [E ] [E]inK (E)byTheorem3.2. ′ 0 = Theorem6.4. IfD isisomorphictoanimaginaryquadraticfieldK,then thedegreemapinducesanisomorphismG(E) Q /Nm (K ). K/Q × ≃ + Proof. We mayassumethatEnd(E)is isomorphictotheringofintegers O . LetE beanellipticcurveisogenoustoE. ByaresultofDeuring[De, K ′ p.263],theringEnd(E )hasindexprimeto p inO and p issplitinO . ′ K K Thus,by[Ka,Prop.40],theranktwoquadraticformdeg: Hom(E,E ) Z, ′ → hasdiscriminantprimetop. ItfollowsthatthereisanisogenyE E of ′ → degree primeto p. Now we proceed exactly as in the proof of Theorem 5.2, but using thefact that [E ] [E ] in K (E), for some n Z primeto ′ n 0 = ∈ (cid:3) p. Theorem6.5. IfD Q,thenG(E)isisomorphictoasubgroupofindex2 = inZ Q Q2.Inparticular,G(E)isnotatorsiongroup. + + ProoLf. We±defineanadditivemapdeg : Ob(C ) Zasfollows.Forany p,E E → isogeny f : B B in C , let e(f) denote the number of Jordan-Holder ′ E → factorsofkerf isomorphictoZ/pZ,letc(f)denotethenumberoffactors isomorphictoµ ,andletdeg (f) e(f) c(f).ForB Ob(C ),wedefine p p = − ∈ E deg (B) deg (f),where f isanyisogeny f : B En.Tocheckthatthis p,E = p → iswell-definedweuse: Lemma6.6. If f : En En isanisogeny,thendeg (f) 0. → p = Proof. Thecasen 1isclearsincethen f ZandE[p] Z/pZ µ . For p = ∈ ≃ ⊕ n 1,wemaythinkof f asamatrixM Mat (Z).WemayassumeM isin n > ∈ Smithnormalform,atthecostofchoosinganewproductdecomposition

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.