Grothendieck duality: lecture 3 Derived categories and Grothendieck duality Pieter Belmans January 22, 2014 Abstract These are the notes for my third lecture on Grothendieck duality in the ANAGRAMSseminar.We(finally)cometoastatementofGrothendieckduality. In order to do so we first review derived categories, from the viewpoint of someonewhohasalreadytouchedhomologicalalgebraintheusualsense[9]. Afterthisquickremindersomemotivationforconsideringapossiblegen- eralisation of Serre duality is discussed, after which the full statement of Grothendieck duality (in various incarnations) is given. To conclude some applicationsofGrothendieckdualityarediscussed,frommypointofviewon thesubject.IhopetheseservebothasamotivationforGrothendieckduality andasamotivationtostudytheseinterestingsubjects,regardlessfromtheir relationshipwithGrothendieckduality. Contents 0 Reminderonderivedcategories 2 0.1 Derivedfunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Derivedcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 Grothendieckduality 3 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Theidealtheorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Whataboutdualisingcomplexes? . . . . . . . . . . . . . . . . . . . . . . 8 2 ApplicationsofGrothendieckduality 10 2.1 Theyogaofsixfunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Fourier–Mukaitransforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Themoduliofcurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Otherapplications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1 0 Reminder on derived categories 0.1 Derived functors Themainideabehindderivedcategoriesistomakeworkingwithderivedfunctors more natural. Recall that given a left (or right) exact functor between abelian categoriesonecandetermineitsderivedfunctors,whichformafamilyoffunctors. Thesefunctorsmeasuretheextenttowhichtheoriginalfunctorisnotexact,and they can give interesting algebraic or geometric information (depending on the originalchoiceoffunctor). Example 1.So far we have used just one derived functor, which was sheaf co- homology.Theleft-exactfunctorunderconsiderationisΓ(X,−),itsderivedfunc- torsHi(X,−). Thereareotherexamples. Example2.Globalsectionsareaspecialcaseofpushforward:if f :X →Speckis thestructuralmorphismthen f∗(−)=Γ(X,−).WeobtainasheafonSpeck,which is nothing but a vectorspace, the only non-empty open set has Γ(f−1(Speck),−) asitssections.Wecanconcludethat f∗ willnotberight-exactingeneralasitisa generalisationofglobalsections. Example3.Anotherwell-knownleftexactfunctorisHom (M,−),whichisanend- A ofunctorontheabeliancategoryA-ModforAacommutativeringand M anA-mod- ule),whoseright-derivedfunctorsaretheExt-functors.Thesehaveadown-to-earth interpretationasextensions,bytheYonedaExt-construction. Example4.AdjointtoHom (M,−)wehave−⊗ M,whoseleft-derivedfunctors A A aretheTor-functors. 0.2 Derived categories Thegoalistocapturealloftheseinonesingletotalderivedfunctor.Soinsteadof workingwiththefamily(RnF)n∈(cid:78) onewantstoconstructafunctorRF replacing thewholefamily. Tocalculate(co)homologyoneusesinjective(orprojective,orflat,orflabby,or... depending on the context) resolutions. So instead of using a single object, it is naturaltoconsiderawhole(co)chaincomplexofobjects.Thatiswhy,insteadof usinganabeliancategoryA(takeforexampleA=Coh/X theabeliancategoryof coherentsheavesonascheme),oneusesCh(A):theabeliancategoryof(co)chain complexesoverA. Becausethecalculationof(co)homologyisinvariantuptohomotopyequivalence, we construct the category K(A) by identifying morphisms in Ch(A) which are homotopyequivalent.Thisisanintermediatestepwhichcanbeskipped,butithelps inprovingthemainpropertiesoftheresultingobject. The final step in the construction is the most technical one, and consists of in- vertingthequasi-isomorphismstoobtainthederivedcategory.Recallthataquasi- isomorphismisamorphismwhichinducesisomorphismsinthe(co)homology,i.e. if f :A• → B• is a morphism such that Hn(A•)∼=Hn(B•) for all n then we would • • likeA andB tobeisomorphicinourdesiredderivedcategory.Thisway,anobject becomes isomorphic to its resolution. The way to obtain this is analogous to the 2 localisation of a ring: we formally add inverses. That this construction works as intendedfollowsfromtheGabriel–Zismantheorem. Tosummarise,theconstructiongoesthroughthefollowingsteps 1. pickanabeliancategoryA(Coh/X,Qcoh/X orjustA-Modifyoulike); 2. considertheabeliancategoryof(co)chaincomplexesoverA; 3. constructthecategoryof(co)chaincomplexesK(A)overAbyidentifyingthe homotopyequivalencesinCh(A); 4. constructthederivedcategoryD(A)ofAbyinvertingthequasi-isomorphisms inK(A). Instead of considering all (co)chain complexes, we can also consider complexes whichsatisfyacertainboundednessassumption.Wecouldaskfor(thecohomology of)thecomplexestobe 1. boundedonbothsides(denotedDb(A)), 2. boundedbeloworabove(denotedD+(A)resp.D−(A)), 3. concentratedinpositiveornegativedegrees(denotedD≥0(A)resp.D≤0(A)). OneinterestingpropertyofthederivedcategoryisthattheHom-functorforAturns intoadevicethatknowsallExti. Example5.WehaveacanonicalinclusionofAintoD(A),byconsideringanobject asacochaincomplexindegree0.Nowwecanshiftobjects:theobjectA[i]inD(A) isthecochaincomplexsuchthatAlivesindegreei.Thenweobtaintheformula ∼ (1) HomD(A)(A,B[i])=ExtAi (A,B). To see why this is true: the object B[i] is isomorphic to a shift of an injective resolutioninD(A),hencetheHominD(A)isnothingbutawayofcomputingthe derivedfunctorsofHom. Sometimeswe’lldenoteHomD(A)(A•,B•)byRHom•(A•,B•)tosavealittleonthe notation. 1 Grothendieck duality 1.1 Motivation ThereareseveralwaysofmotivatingGrothendieckduality,andthedesiretogen- eraliseSerreduality1.Ofcourse,therestrictionontheclassicalSerredualityare rathersevere:wewantasmooth(ormildlysingular)projectivevarietyoverafield, andavectorbundle.Canwedosimilarthings: 1. formoregeneralschemes? 2. overmoregeneralbaseschemes? 3. formoregeneralsheaves? Theanswerwillbeyes,otherwisewewouldn’tbediscussingGrothendieckduality. 1IfunfamiliarwithSerreduality,oneiseitherinvitedtoreadthenotestothefirstlecture,orglanceat thesummaryofSerredualitylateron. 3 Adjointfunctors Amoredown-to-earth(orlesscategorical)motivationforthe formthatGrothendieckdualityoftentakesisgivenin[6,chapter6].Recallfrom thefirstlecturethestatementofSerreduality,precededbytherequireddefinition ofadualisingsheaf,asgivenin[4]. Definition6.LetX/kbeapropern-dimensionalvariety.Adualisingsheaf forX isa coherentsheafω◦ togetherwithatracemorphismtr: Hn(X,ω◦)→k,suchthatfor X X allF∈Coh/X thenaturalpairing (2) Hom(F,ω◦)×Hn(X,F)→Hn(X,ω◦) X X composedwithtrgivesanisomorphism (3) Hom(F,ω◦)∼=Hn(X,F)∨. X Thenthestatement,whereX admitsadualisingsheaf,reads: Theorem7(Serreduality).LetX/kbeaprojectiven-dimensionalvariety.Letω◦ X beitsdualisingsheaf.Thenforalli≥0andF∈Coh/X wehavefunctorialmaps (4) θi: Exti(F,ω◦)→Hn−i(X,F)∨ X such that θ0 corresponds to tr. Moreover, if X is Cohen–Macaulay2 the θi are isomorphismsforalli≥0andF∈Coh/X. Wealsoobtainedacorollary,whichexplainsthename“duality”:itrelatesHi toHn−i, anddoessobyusingadualityofvectorspaces. Corollary 8.Let X be projective Cohen–Macaulay of (equi-)dimension n over k. LetFbealocallyfreesheafonX.Thenwehaveisomorphisms (5) Hi(X,F)∼=Hn−i(X,F∨⊗ω◦)∨. X Thisisjustoneofthemanywaysofwritingtheisomorphism.Anotherwouldbe (6) Hom (cid:128)Hi(X,F),k(cid:138)∼=Hn−i(cid:128)X,Hom(F,ω◦)(cid:138). k X Wearealmostwherewewanttobe.Thelaststeptotakeis“gorelative”.Which of course in this case is not that spectacular. So let’s look at the structural mor- phism f : X → Speck. We are working for a vector bundle F on X, so we could alsolookatavectorbundleonSpeck,whichisnothingbutafinite-dimensional vectorspace V.Generalisingthepreviousequation,andapplyingthetensor-Hom adjunctionweobtain (7) Hom (cid:128)Hi(X,F),V(cid:138)∼=Hn−i(cid:128)X,Hom(F,V ⊗ ω◦)(cid:138)∼=Extn−i(cid:128)F,V ⊗ ω◦(cid:138). k k X k X Withalittleimaginationthislookslikeanadjunction: 1. thecohomologygroupsHi(X,F)canbetakentogether3 toRf∗(F); 2Atechnicalconditionthatsaysthat“mildsingularities”areallowed.Itmeansthateachlocalringhas Krulldimensionequaltothedepth(wealwayshavethatdepthisboundedabovebyKrulldimension), wheredepthcorrespondstothelengthofamaximalregularsequenceforthelocalringitself.Onecan justreadnon-singular,whichisthecasewewillneedinlaterapplications. 3The functor f∗ in this case is nothing but global sections, as f∗(F) evaluated on Speck isΓ(f−1(Speck),F),seeexample2. 4 2. by the properties of the derived category we can take Ext’s together into aHominthederivedcategory,see(1). HencewecanwriteSerredualityas (8) HomDb(Speck)(cid:0)Rf∗(F),V(cid:1)∼=HomDb(X)(cid:128)F,f!(V)(cid:138) where Db(Speck) is the bounded derived category of finite-dimensional k-vector spacesandDb(X)istheboundedderivedcategoryofcoherentsheaveson X (as- sumeX issmooth). HenceSerredualityassertstheexistenceofadual (9) f!:Db(Speck)→Db(X) which in this case is explicitly given by −⊗ ω◦. But in this statement we could k X easilyreplace f :X →Speck byamoregeneral f :X →Y,andtheexistenceofa rightadjoint f! wouldstillmakesense! Awordonthenotation f!: 1. Itisoftenpronounced“f uppershriek”,andit’snamed“exceptionalinverse image”; ∗ 2. It only lives on the level of derived categories, unlike f∗ and f , which get derivedintoRf∗ andLf∗,soinlinewith[SGA43,§3.1,éxposéXVIII]which says(inaslightlydifferentcontext,butstillvalid) N.B.LanotationRf! estabusiveencequeRf! n’estengénéralpas ledérivéd’unfoncteur f!. ForthisreasonIwilljustdenoteitby f!,asisalreadydoneforinstancein [5]. Dualising complexes So we know that there is some virtue in looking at the relative context, and that we will obtain an adjoint pair encoding Grothendieck duality. Another thing we could do is look at the dualising sheaf. Then we can motivateGrothendieckdualitybyconsideringanotherrathertrivialsituation:Spec(cid:90), aswasdonein[5,§V.1]. Therearetwowaysoftakingthedualofanabeliangroup4: 1. the Pontryagin dual of a finite abelian group, which is given by the func- torHom (−,(cid:81)/(cid:90)); Ab 2. the dual of a finitely generated free group, which is given by the func- torHom (−,(cid:90)). Ab Eachappliedtwicetothecorrectsituationgivesaabeliangroupisomorphictothe one you started with. We can consider these two dualising functors at the same time5,byconsideringthecomplex (10) ...→0→(cid:81)→(cid:81)/(cid:90)→0→... 4Remarkthatthereisatypoin[5,§V.1],dualisingfinitelygeneratedfreegroupsrequires(cid:90),not(cid:81). Thismakestheexpositionlessmiraculous. 5Thisiswherethelackofamiracleoccurs. 5 inDb(Ab),thederivedcategoryofboundedcomplexesinsideD+(Ab)whosecoho- fg mology is finitely generated. This 2-term complex is an injective resolution of (cid:90), as both groups are divisible! So it is isomorphic to (cid:90) in Db(Ab), and to perform fg computationsinthederivedcategorywecaninterchangethemfreely. Thisyieldsthefollowingproposition[5,proposition:V.1-1]. Proposition9.Thefunctor (11) D:Db →Db :M•→RHom•(M•,(cid:90)) fg fg isacontravariantendofunctor,andthereisanaturalequivalence (12) η:id ⇒D◦D. Db(Ab) fg Henceonthe“small”categoryDb(Ab)sittinginsidethebiggerD+(Ab)thisduality fg functoristrulyaduality.Thesmallcategorycorrespondstotheboundedderived categoryofcoherentsheaves,asbytheusualmantra“coherent=finitelygenerated.” Proofofproposition9. Wehave (13) Hi(D(M•))=Hi(RHom•(M•,(cid:90)))=Exti(M•,(cid:90)) hence if M• has finitely generated and bounded cohomology, so has D(M•). We obtainthatDisawell-definedendofunctor. Thenaturalequivalenceisdefinedin[5,lemmaV.1.2]inanobviousway.Tocheck • thatitisanaturalequivalence:takeafreeresolutionof M .Thismeansfindinga • surjectionofafreeabeliangrouponto M andrepeatingthisprocessforthekernel ofthismap,andsoon. By[5,lemmaI.7.1]itsufficestocheckitfor M• =(cid:90)r forsome r ≥1asweonly care about finitely generated cohomology. But things are additive, hence we can take r=1.Nowitsufficestoobservethat (cid:168)(cid:90) i=0 (14) Exti((cid:90),(cid:90))= 0 i(cid:54)=0 whichgivesthedesirednaturalequivalence. 1.2 The ideal theorem The first thing we can consider as a form of Grothendieck duality is [5, Ideal theoremonpage6].Thissummariseswhatonetriestoprovetobeabletospeakof a“Grothendieckdualityresult”.Afterthestatementwewillcollectsomecontextsin whichwecanprovethis. Theorem10(Idealtheorem). 1. Foreverymorphism f :X →Y offinitetype6ofpreschemes7thereisafunctor 6Recallthatamorphismoffinitetypemeansthatthereexistsanopenaffinecoveringofthecodomain, suchthattheinverseimagesoftheseopensetsadmitafiniteopenaffinecovering,suchthateachof theseringsisfinitelygeneratedovertheopenaffineinthecodomain. 7Ihaveleftthishistoricterminologyin:whatnowadaysarecalledschemeswerecalledpreschemesin theearlydaysofschemetheory.Atfirstthephilosophywasthatwe’dbemostlyinterestedinseparated schemes,whichwerecalledschemes,andnotnecessarilyseparatedschemeswerepreschemes.Incase youdidn’tknowthislittlefactfromthehistoryofschemetheory,youknowunderstandreferencesto preschemes. 6 (15) f!:D(Y)→D(X) suchthat (a) if g:Y →Z isasecondmorphismoffinitetype,then(g◦f)!= f!◦g!; (b) if f isasmoothmorphism,then (16) f!(G)= f∗(G)⊗ω, whereω=Ωn isthesheafofhighestorderdifferentials; X/Y (c) if f isafinite8 morphism,then (17) f!(G)=HomO (f∗OX,G). Y 2. Foreveryproper9 morphism f :X →Y ofpreschemes,thereisatracemor- phism (18) Trf:Rf∗◦f!⇒id offunctorsfromD(Y)toD(Y)suchthat (a) if g:Y →Z isasecondpropermorphism,thenTrg◦f =Trg◦Trf; (b) ifX =(cid:80)n,thenTr isthemapdeducedfromthecanonicalisomorphism Rnf∗(ω)Y∼=OY; f (c) if f is a finite morphism, then Tr is obtained from the natural map f “evaluationatone” (19) HomO (f∗OX,G)→G. Y 3. If f :X →Y isapropermorphism,thenthedualitymorphism (20) Θf: RHomX(F,f!(G))→RHomY(Rf∗F,G) obtainedbycomposingthenaturalmap10 abovewithTr ,isanisomorphism f forF∈D(X)andG∈D(Y). Sotheidealtheoremhas3mainthemes: 1. theexistenceoftheadjoint f!; 2. thetracemorphismforpropermorphisms; 8Recallthatamorphismisfiniteifthereexistsanopenaffinecoveringofthecodomainsuchthatthe inverseimageofeachopenaffineisagainaffine,andmoreoverfiniteasamoduleovertheoriginalring. 9Recallthatapropermorphismbetweenschemesislikeapropermapoftopologicalspaces,where inverseimagesofcompactsetsareagaincompact.Asbeingcompactinanon-Hausdorffcontextdoesn’t makemuchsense,algebraicgeometersuseadifferentdefinitionofproper:themap f:X→Y between schemesissaidtobeproperifitisuniversallyclosed(i.e.forallY→ZisX× Z→Zclosedonthelevel Y ofunderlyingtopologicalspaces)andseparated(i.e.∆ :X→X× X isclosed,whichisananalogueof f Y beingHausdorff). 10ObtainedastheYonedapairing,see[5,page5]. 7 3. thedualityforpropermorphisms. Thefirstthemedescribesthefunctor f! inthecaseswhereweknowwhatitshould be.Thesecondthemedescribeswhatthecounitadjunctionshouldlooklike,while thethirdthemeassertsthatitactuallyisanadjunction.Remarkthat 1. Wehaven’tspecifiedD(X). 2. TheroleofD(X)willchangedependingon (a) thetypeofschemesweareconsidering; (b) thetypeofmapsweareconsidering; (c) thethemeweareconsidering. Thequestionis:inwhichsituationscanweprovethisidealtheorem?Theanswer (asper[5],nowadaysitismoregeneral,thiswillbediscussedinthenextlecture) is: 1. noetherianschemesoffiniteKrulldimensionsandmorphismswhichfactor throughasuitableprojectivespace[5,§III.8,§III.10,§III.11]:allstatements areappliedforD+(−)exceptthelastinwhichcaseFlivesinD−(X); qc qc 2. noetherian schemes which admit dualizing complexes (see [5, §V.10], it impliesfiniteKrulldimension)andmorphismswhosefibresareofbounded dimension[5,§VII.3]:allstatementsareappliedtoD+ (−)exceptthelastin coh whichcaseFlivesinD−(X); qc 3. noetherian schemes of finite Krull dimension and smooth morphisms [5, §VII.4]:theresultsin1areappliedtoD+(−),in2toDb (−)andin3toFin qc qc D−(X)andGinDb (Y); qc qc 4. noetherianschemesandarbitrarymorphisms[5,appendix],butonlystate- ments1a,2aand3:theresultsareappliedtoD(Qcoh(−)). Intables1and2wehavefittedthisinformationinaniceoverview. Remark 11.The duality morphism (20) also has a relative version [2, p. 3.4.4], whichreads (21) Θf:Rf∗RHom•X(F•,f!(G•))→RHom•Y(Rf∗(F•),G•). Takingglobalsectionsyieldstheresultmentionedintheidealtheorem. 1.3 What about dualising complexes? The ideal theorem as stated here does not mention dualising objects. But in the case of Serre duality we really phrased things in terms of our “magic object” ω◦ X whichmadethetheorywork.IntheapproachtoGrothendieckdualityofHartshorne thesedualisingobjectsstillplayanimportantrole(inthenextlecturewewillsee approachesinwhichtheroleofthisexplicitobjectisgreatlydiminished),andtrying to get a hold on them is the main difficulty. The problem in handling dualising complexes is that they are objects in the derived category, and there is the usual 8 situation X andY f 1 noetherian,finiteKrulldimension factorthrough(cid:80)n Y 2 noetherianwithdualizingcomplex 3 noetherian,finiteKrulldimension smooth 4 noetherian Table1:Descriptionofthe4situationsforGrothendieckdualityin[5] property situation D(X) D(Y) existenceof f! 1 D+(Y) qc 2 D+ (Y) coh 3 Db (Y) qc 4 D+(Qcoh/Y) tracemorphism 1 D+(Y) qc 2 D+ (Y) coh 3 Db (Y) qc 4 D+(Qcoh/Y) duality 1 D−(X) D+(Y) qc qc 2 D−(X) D+ (Y) qc coh 3 D−(X) Db (Y) qc qc 4 D(Qcoh/X) D+(Qcoh/Y) Table2:Overviewoftheconfigurationofthederivedcategoriesforeachofthethree partsofaGrothendieckdualitycontext 9 mantrathattriangulatedcategoriesdonotallowgluing,soastraightforwardlocal approachdoesn’twork. IntheproofofGrothendieckdualityonetriestokeeptrackofwhatthedualising object looks like. Recall that in the case of Riemann–Roch this dualising object wasΩ1,andinthecontextofSerredualityweusedΩn forprojectivespace,and C (cid:80)n/k aExtconstructionforthegeneralcaseofaprojectivevkariety. In the situation of Grothendieck duality where we have used derived categories everywhereonecanaskwhatω◦ lookslike.Theanswerisgivenintable3,based X on[5,§V.9]. Weobservethatthephilosophyis“thenicerX,thenicerω◦”. X 2 Applications of Grothendieck duality Duetotimeconstraints,bothinpreparingthesenotesandactuallylecturingabout them,thefollowinglistofapplicationsisnotasworkedoutasIwantittobe. 2.1 The yoga of six functors Coherentduality ThenotionofGrothendieckdualitythatwehaveseensofaris inthefollowingsituation: 1. (quasi)coherentsheaves; 2. Zariskitopologyforschemes; Étalecohomology Butonecanconsiderothercontextstoo.Inthestudyofétale cohomologywehave: 1. torsionsheaves; 2. étaletopologyforschemes. Poincaré–Verdierduality Inthecaseofmanifoldsandlocallycompactspaceswe havePoincaré–Verdierduality: 1. sheavesofabeliangroups; 2. locallycompactspaces. Formalism Informalisingthepropertiesthataresimilarineachofthesecontexts weseethat • weareconsideringimagefunctorsofsheaves; • weareusingtheclosedmonoidalstructureofthecategoryofsheaves. Inthegeneralsituationofa“sixfunctorsformalism”wecanidentifythefollowing functors[1],for f :X →Y amorphisminsomecategory,andC(X)somecategory ofsheavesassociatedtoX. 10
Description: