Power Electronics and Power Systems Series Editors M. A. Pai Alex M. Stankovic For furthervolumes: http://www.springer.com/series/6403 Vijay Vittal Raja Ayyanar • Grid Integration and Dynamic Impact of Wind Energy 123 VijayVittal RajaAyyanar School ofElectrical, Computer School ofElectrical, Computer and EnergyEngineering and EnergyEngineering ArizonaState University ArizonaState University Tempe, AZ85287 Tempe, AZ85287 USA USA ISBN 978-1-4419-9322-9 ISBN 978-1-4419-9323-6 (eBook) DOI 10.1007/978-1-4419-9323-6 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012938477 (cid:2)SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Wind-based renewable energy generation has had a significant resurgence in the pastdecade.Thisisprimarilyduetoadvancesintechnologydrivenbytheadvent of variable speed wind turbine generators, which include doubly fed induction generator-based wind turbines as well as full converter permanent magnet syn- chronous machine based wind turbines. The versatility of these wind generators canbelargelyattributedtopowerelectronicconvertersthatenablevariablespeed operations while providing increasing grid support features. This resurgence has resultedinasignificantnumberofwindfarmsbeinginterconnectedtotheelectric grid all around the world. As a consequence, there has been renewed interest in examiningandanalyzingtheimpactofincreasedpenetrationofwindresourceson thesteady-stateanddynamicperformanceoftheinterconnectedgrid.Theneedto understand and carefully analyze this impact has led to concerted efforts in the development of models of different types of wind turbine generators, and the incorporation of these models into analysis tools. Modern wind turbine generators are complex devices, and examining their impact on system behavior requires a careful study of wind turbine generators together with their associated controls. In order to achieve this objective, there is need to develop a deeper understanding of the critical components associated with wind turbine generators, including the mechanical and dynamic character- istics of wind turbines, the electrical and dynamic characteristics of generators, and the characteristics of power electronic converters and their associated controls. The authors have been closely associated with the examination of the impact of increased penetration of wind generation on system performance with their colleagues and students. Other investigators have also made significant contri- butions to this field. Our objective in developing this book is to present to the reader an account of the salient aspects of the various wind turbine technologies, details of the associated power electronic converters and their controls, and a comprehensive discussion of the impact of wind turbine generators on system dynamic performance of the electric grid. We hope that this book will provide an understanding of the basics of wind turbine technology and their impact on v vi Preface system performance. Finally, we wish to express our gratitude to the graduate students, especially Youyuan Jiang, Siddharth Kulasekaran and Durga Gautam for their help in providing many of the figures and simulation results, and to Sunanda Vittal for her meticulous proof-reading. Tempe, AZ, USA, February 2012 Vijay Vittal Raja Ayyanar Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Overview of Wind Generation . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Wind Turbine Generator Technologies. . . . . . . . . . . . . . . . . . . 3 1.2.1 Type 1 Wind Turbine Generators . . . . . . . . . . . . . . . . . 4 1.2.2 Type 2 Wind Turbine Generators . . . . . . . . . . . . . . . . . 4 1.2.3 Type 3 Wind Turbine Generators . . . . . . . . . . . . . . . . . 5 1.2.4 Type 4 Wind Turbine Generators . . . . . . . . . . . . . . . . . 7 1.3 Detailed Representation and Modeling of Type 3 Wind Turbine Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 DFIG as a Generator at Subsynchronous Speeds. . . . . . . 9 1.3.2 DFIG as a Generator at Supersynchronous Speeds . . . . . 10 1.3.3 Wind Power Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.4 Mechanical Drive Train Model. . . . . . . . . . . . . . . . . . . 13 1.3.5 Modeling of Doubly Fed Induction Generator . . . . . . . . 14 1.4 Controls for Type 3 Wind Turbines. . . . . . . . . . . . . . . . . . . . . 17 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Power Electronic Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 Components of a Power Electronic Converter System . . . . . . . . 19 2.1.1 Feedback Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.2 Pulse-Width Modulator . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.3 Power Converter Circuit Topology . . . . . . . . . . . . . . . . 22 2.1.4 DC Link and Interface with External Power Systems and Loads . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Analysis of a Power Pole. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1 Switching Signal and Duty Ratio . . . . . . . . . . . . . . . . . 25 2.2.2 Pulse-Width Modulation of a Power Pole . . . . . . . . . . . 26 2.2.3 Pole Current and Analysis of DC Link Current . . . . . . . 29 2.2.4 Average Model of a Power Pole. . . . . . . . . . . . . . . . . . 32 2.3 Single Pole Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 vii viii Contents 2.4 Two-Pole Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4.1 Average Model of a Two-Pole Converter. . . . . . . . . . . . 40 2.4.2 Unipolar PWM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.4.3 High Frequency Ripple with Unipolar PWM . . . . . . . . . 42 2.5 Three-Pole Converters for Three-Phase Applications. . . . . . . . . 46 2.6 Other Converter Topologies and PWM Methods. . . . . . . . . . . . 52 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 Power Converter Topologies for Grid Interface of Wind Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1 Variable Speed Operation and Grid Support Requirements. . . . . 55 3.2 Power Converters in Doubly Fed Induction Generator. . . . . . . . 56 3.2.1 Control Functions of Different Stages . . . . . . . . . . . . . . 58 3.2.2 Ratings of the Power Converters. . . . . . . . . . . . . . . . . . 58 3.2.3 Protection During Grid Faults. . . . . . . . . . . . . . . . . . . . 59 3.3 Power Converters for Type 4 Wind Generators. . . . . . . . . . . . . 60 3.3.1 Performance Under Grid Faults and Other Grid Support Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4 Other Emerging Power Converter Topologies. . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 Control of Wind Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1 Overview of Control of DFIG-Based Wind Generator System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Steady-State Analysis of DFIG with Per-Phase Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2.1 Development of Per-Phase Equivalent Circuit . . . . . . . . 67 4.2.2 Speed-Torque Characteristics at Different Rotor Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.3 Steady-State Analysis at Various Wind and Rotor Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3 Dynamic Analysis of DFIG and Design of Controllers. . . . . . . . 81 4.3.1 Torque or Active Power and Reactive Power References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3.2 Grid Voltage Orientation . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.3 References for Rotor d- and q-Axes Currents. . . . . . . . . 86 4.3.4 Controller Design for Rotor Current Loops . . . . . . . . . . 88 4.3.5 Control of the Grid Side Converter. . . . . . . . . . . . . . . . 90 4.3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 Dynamic Models for Wind Generators . . . . . . . . . . . . . . . . . . . . . 99 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Modeling of Wind Turbine Generators for Power Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Contents ix 5.3 Modeling of Wind Turbine Generators for Transient Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.1 Aerodynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.2 Mechanical Control and Shaft Dynamics. . . . . . . . . . . . 104 5.3.3 Electrical Generator Characteristics. . . . . . . . . . . . . . . . 105 5.3.4 Electrical Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3.5 Generic Model for Type 3 Wind Turbine Generators . . . 107 5.4 Wind Farm Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 110 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6 Impact of Increased Penetration of DFIG Wind Generators on System Dynamic Performance. . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2 Impact on Rotor Angle Stability . . . . . . . . . . . . . . . . . . . . . . . 116 6.2.1 Impact on Small-Signal Rotor Angle Stability . . . . . . . . 116 6.2.2 Formulation of the Small-Signal Stability Problem . . . . . 117 6.2.3 Eigenvalue Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . 119 6.2.4 Example Study of Impact on Small-Signal Rotor Angle Stability. . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2.5 Impact on Transient Rotor Angle Stability. . . . . . . . . . . 125 6.2.6 Example Study of Impact on Transient Rotor Angle Stability. . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.3 Impact on Voltage Response and Stability . . . . . . . . . . . . . . . . 130 6.3.1 Operating Modes of a DFIG Wind Turbine Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.2 Voltage Ride Through. . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.3 Power Capability Curve of a DFIG Machine . . . . . . . . . 132 6.3.4 Impact of DFIG Wind Turbines on Steady-State Voltage Stability . . . . . . . . . . . . . . . . . . . 133 6.4 Impact of DFIG Wind Turbine Generators on System Frequency Response. . . . . . . . . . . . . . . . . . . . . . . . 135 6.4.1 Frequency Support from a DFIG Wind Turbine . . . . . . . 136 6.4.2 Pitch Compensation Adjustment. . . . . . . . . . . . . . . . . . 137 6.4.3 Maximum Power Order Adjustment . . . . . . . . . . . . . . . 138 6.4.4 Example of Effectiveness of Supplementary Inertia Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Chapter 1 Introduction 1.1 Overview of Wind Generation Growth of wind power in the United States and around the world continues to surpass even optimistic projections of the past years with a string of record breaking years. In 2009 alone, 10 GW of new wind power capacity was added in theUnitedStates,whichis20 %higherthantherecordsetin2008,andrepresents 39 % of all new capacity added in 2009 [1]. Figure. 1.1 [1], which superimposes the actual installed wind generation with the deployment path laid out by [2] to realizethevisionof20 %windby2030,showsdramaticallythattheactualgrowth in the last 4 years and the projected growth in 2010–2012 far exceeded the deployment plan. Thoughaslowdownwasexpectedin2010,resurgenceisprojectedfor2011and 2012.TheNorthAmericanReliabilityCorporation(NERC)projectsthat210GW of new wind capacity is planned for construction in the next 10 years [3], which againexceedsthepacerequired—atotalof300GWby2030for20 %penetration. Even at present, several states have high windpenetration; for example, Iowahas 19.7 % of its total generation derived from wind resources, and nine utilities are estimatedtohavemorethan10 %windenergyontheirsystems.Aggregateddata on interconnection queues from various ISOs and utilities also confirm the strong interest and continued growth in wind. Figure 1.2 compares the different gener- ation resources in 33 interconnection queues in 2009 with wind far exceeding the other resources [1]. Several countries are taking steps to develop large-scale wind markets. AccordingtonewsreleasedbytheGlobalWindEnergyCouncil(GWEC),thesum ofthe world’s total windinstallationsincreasedby31 %toreach over 157.9 GW by the end of 2009 [4]. The increase in capacity of over 100 % from 12.1 GW in 2008 to 25.1 GW (with new capacity additions of 13 GW) by the end of 2009 made China the number one market in terms of new wind power installations. With the addition of nearly 10 GW of wind power in 2009, the United States V.VittalandR.Ayyanar,GridIntegrationandDynamicImpactofWindEnergy, 1 PowerElectronicsandPowerSystems,DOI:10.1007/978-1-4419-9323-6_1, (cid:2)SpringerScience+BusinessMediaNewYork2013 2 1 Introduction Fig.1.1 Actual windinstallation versus deploymentpathrequired forrealizing 20%wind by 2030[1] Fig.1.2 Capacityofvariousgenerationsourcesincludingwindandsolarin2010in33different interconnectionqueues[1] remained the leading nation in wind power in the year 2009 with 22.3 % of the world’stotalinstalledwindcapacity.FollowinginrankwereChina,Germany,and Spainwithinstalledcapacitiesof25.80,25.77,and19.14GW,respectively.Given this scenario of significant wind penetration in the United States, also reflected in other countries around the world, it is important to examine the impact of this increasedwindpenetrationontheperformanceandreliabilityoftheelectricpower system.