ebook img

GreenEdge: New Perspectives to Energy Management and Supply in Mobile Edge Computing PDF

119 Pages·2022·6.275 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview GreenEdge: New Perspectives to Energy Management and Supply in Mobile Edge Computing

SPRINGER BRIEFS IN COMPUTER SCIENCE Guoming Tang Deke Guo Kui Wu GreenEdge: New Perspectives to Energy Management and Supply in Mobile Edge Computing 12 3 SpringerBriefs in Computer Science SeriesEditors StanZdonik,BrownUniversity,Providence,RI,USA ShashiShekhar,UniversityofMinnesota,Minneapolis,MN,USA XindongWu,UniversityofVermont,Burlington,VT,USA LakhmiC.Jain,UniversityofSouthAustralia,Adelaide,SA,Australia DavidPadua,UniversityofIllinoisUrbana-Champaign,Urbana,IL,USA XueminShermanShen,UniversityofWaterloo,Waterloo,ON,Canada BorkoFurht,FloridaAtlanticUniversity,BocaRaton,FL,USA V.S.Subrahmanian,UniversityofMaryland,CollegePark,MD,USA MartialHebert,CarnegieMellonUniversity,Pittsburgh,PA,USA KatsushiIkeuchi,UniversityofTokyo,Tokyo,Japan BrunoSiciliano,UniversitàdiNapoliFedericoII,Napoli,Italy SushilJajodia,GeorgeMasonUniversity,Fairfax,VA,USA NewtonLee,InstituteforEducation,ResearchandScholarships,LosAngeles,CA, USA SpringerBriefs present concise summaries of cutting-edge research and practical applicationsacrossawidespectrumoffields.Featuringcompactvolumesof50to 125pages,theseriescoversarangeofcontentfromprofessionaltoacademic. Typicaltopicsmightinclude: (cid:129) Atimelyreportofstate-of-theartanalyticaltechniques (cid:129) A bridge between new research results, as published in journal articles, and a contextualliteraturereview (cid:129) Asnapshotofahotoremergingtopic (cid:129) Anin-depthcasestudyorclinicalexample (cid:129) A presentationofcoreconceptsthatstudentsmustunderstandinordertomake independentcontributions Briefsallowauthorstopresenttheirideasandreaderstoabsorbthemwithminimal time investment. Briefs will be published as part of Springer’s eBook collection, withmillionsofusersworldwide.Inaddition,Briefswillbeavailableforindividual print and electronic purchase. Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, easy-to-use manuscript preparation and formatting guidelines, and expedited production schedules. We aim for pub- lication 8–12 weeks after acceptance. Both solicited and unsolicited manuscripts areconsideredforpublicationinthisseries. **Indexing:ThisseriesisindexedinScopus,Ei-Compendex,andzbMATH** Guoming Tang (cid:129) Deke Guo (cid:129) Kui Wu GreenEdge: New Perspectives to Energy Management and Supply in Mobile Edge Computing The First Book on Green Edge Computing GuomingTang DekeGuo DepartmentofBroadbandCommunication CollegeofSystemsEngineering PengChengLaboratory NationalUniversityofDefenseTechnology Shenzhen,China Changsha,Hunan,China KuiWu DepartmentofComputerScience UniversityofVictoria Victoria,BC,Canada ISSN2191-5768 ISSN2191-5776 (electronic) SpringerBriefsinComputerScience ISBN978-981-16-9689-3 ISBN978-981-16-9690-9 (eBook) https://doi.org/10.1007/978-981-16-9690-9 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewhole orpart ofthematerial isconcerned, specifically therights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface The5Gtechnologyhasbeencommercializedworldwideandisexpectedtoprovide superiorperformancewithenhancedmobilebroadband,ultra-lowlatencytransmis- sion,andmassiveIoTconnections.Meanwhile,theedgecomputingparadigmgets populartoprovidedistributedcomputingandstorageresourcesinproximitytothe users(atthenetworkedge).Comparedwithcloudcomputing,edgecomputinghas theadvantageofconductinglatency-criticaltasksbyhavingthemexecutedcloserto endusers.Asedgeservicesandapplicationsprosper,5Gandedgecomputingwillbe tightlycoupledandcontinuouslypromoteeachotherforward.Embracingthistrend, however,mobileusers,infrastructureproviders,andserviceprovidersareallfaced with the energydilemma.From the user side, battery-poweredmobile devicesare muchconstrainedbybatterylife,whereasmobileplatformsandappsnowadaysare usuallypower-hungry.Fromtheinfrastructureandserviceproviderside,theenergy costofedgefacilities,particularly5Gbasestationsandedgedatacenters,accounts foralargeproportionofoperatingexpensesandhasbecomeahugeburden. Inthisbook,weintroduceourrecentworktacklingtheenergyissuesinmobile edgecomputing.WenametheconstellationofworkGreenEdge.Unliketraditional approaches, solutions, and frameworks, we deal with energy management and supplyproblemsfromtotallynewperspectives.Formobileusers,(i)weinvestigate their low-battery anxiety through a large-scale user survey and quantify their anxiety degree and video watching behavior concerning the battery status; and (ii) by leveraging the quantified low-battery anxiety model, we further develop a low-power video streaming solution at the network edge to save mobile devices’ energyandalleviateusers’low-batteryanxiety.Foredgeinfrastructureandservice operators, (i) we devise an optimal backup power deployment framework to cut down the backup battery cost in 5G networks; (ii) we investigate the cost-saving potentialoftransformingthebackupbatteriestoadistributedbatteryenergystorage v vi Preface system;and(iii)wedesignanintegratedrenewableenergysupplyarchitectureand asoftware-definedpowersupplymechanismtopursuenet-zeroedgedatacentersin thefutureedgecomputingenvironment. Shenzhen,China GuomingTang Changsha,China DekeGuo Victoria,BC,Canada KuiWu Contents 1 Introduction .................................................................. 1 1.1 When5GMeetsEdgeComputing ..................................... 1 1.2 TheEnergyDilemma................................................... 2 1.3 KeyProblemsandContributions....................................... 3 1.4 ContentOrganization................................................... 4 2 InvestigatingLow-BatteryAnxietyofMobileUsers..................... 7 2.1 Introduction ............................................................. 7 2.2 RelatedWork............................................................ 9 2.3 ASurveyOver2000+MobileUsers................................... 10 2.4 QuantificationofLow-BatteryAnxiety................................ 11 2.4.1 ExtractionofLBACurve....................................... 11 2.4.2 ObservationsandAnalysis..................................... 12 2.4.3 LessonsLearntfromLBAQuantification ..................... 15 2.5 ImpactsofLBAonVideoWatching ................................... 15 2.5.1 ExtractionofVideoAbandoningLikelihoodCurve .......... 15 2.5.2 ObservationsandAnalysis..................................... 16 2.5.3 AdviceforVideoStreamingServices ......................... 19 2.6 Ethics.................................................................... 19 2.7 Conclusion .............................................................. 19 3 UserEnergyandLBAAwareMobileVideoStreaming ................. 21 3.1 Introduction ............................................................. 21 3.2 BackgroundandRelatedWork......................................... 24 3.2.1 BackgroundofLow-BatteryAnxiety.......................... 24 3.2.2 BackgroundofDisplayPowerSaving......................... 24 3.2.3 WorkRelatedtoThisWork .................................... 25 3.3 LBASurveyandModelling ............................................ 26 3.3.1 DataCollection ................................................. 26 3.3.2 LBACurveExtraction.......................................... 27 3.3.3 InsightsonLBAAlleviation ................................... 28 vii viii Contents 3.4 LPVS:Low-PowerVideoStreaming................................... 28 3.4.1 ScenarioOverview.............................................. 28 3.4.2 ModelsforPowerConsumptioninVideoStreaming......... 30 3.4.3 ModelsforEnergyStatusandLow-BatteryAnxiety ......... 31 3.4.4 VideoStreamingCapacityattheEdge ........................ 32 3.4.5 JointOptimizationforEnergySavingandAnxiety Reduction ....................................................... 32 3.5 SolutionMethodology.................................................. 33 3.5.1 TheDifficulties ................................................. 33 3.5.2 InformationCompacting ....................................... 33 3.5.3 ATwo-PhaseHeuristicforJointOptimization................ 35 3.5.4 Determineγ withBayesianInference........................ 36 n 3.6 LBAModelUpdating................................................... 38 3.6.1 AnalysisofLBAHeterogeneity................................ 38 3.6.2 LocalLBAModelUpdating ................................... 38 3.7 Implementations......................................................... 40 3.7.1 Real-WorldVideoStreamingTraces........................... 40 3.7.2 LPVSEmulationandSetups................................... 41 3.8 PerformanceEvaluations ............................................... 43 3.8.1 LPVSwithSufficientEdgeResource.......................... 43 3.8.2 LPVSwithLimitedEdgeResource............................ 44 3.8.3 ImpactofLPVSonLow-BatteryUsers ....................... 45 3.8.4 LPVSwithUpdatedLBAModels ............................. 46 3.8.5 OverheadofLPVSandImpactonOtherQoEMetrics....... 47 3.9 Conclusion .............................................................. 48 4 OptimalBackupPowerAllocationfor5GBaseStations................ 51 4.1 Introduction ............................................................. 51 4.1.1 SpatialDimension .............................................. 52 4.1.2 TemporalDimension ........................................... 53 4.2 RelatedWork............................................................ 53 4.3 BSPowerMeasurementsandObservations ........................... 54 4.3.1 PowerConsumptionof4Gand5GBSs ....................... 54 4.3.2 PowerConsumptionof5GBSMajorComponents........... 55 4.3.3 MultiplexingGainwithBackupPowerSharing............... 55 4.4 SystemModel........................................................... 57 4.4.1 ScenarioOverview.............................................. 58 4.4.2 TrafficLoadandPowerDemand............................... 59 4.5 OptimalBackupPowerAllocation..................................... 59 4.5.1 AnalysisofPowerOutagesandNetworkFailure............. 59 4.5.2 ConditionofNetworkReliability.............................. 61 4.5.3 BackupPowerDeploymentConstraints....................... 62 4.5.4 BackupPowerAllocationOptimization....................... 62 Contents ix 4.6 ExperimentalEvaluations .............................................. 63 4.6.1 ExperimentSetup............................................... 63 4.6.2 ResultsandAnalysis............................................ 63 4.7 Conclusion .............................................................. 65 5 ReusingBackupBatteriesforPowerDemandReshapingin5G ....... 67 5.1 Introduction ............................................................. 67 5.2 SystemModels.......................................................... 69 5.2.1 ScenarioOverview.............................................. 69 5.2.2 BSPowerSupplyandDemand ................................ 70 5.2.3 BatterySpecification............................................ 71 5.3 PowerDemandReshapingviaBESSScheduling..................... 71 5.3.1 EnergyCostwithBESS........................................ 72 5.3.2 BatteryDegradationCost....................................... 73 5.3.3 OptimalBESSOperationScheduling ......................... 74 5.3.4 ProblemAnalysis............................................... 75 5.4 ADRL-BasedApproachtoDistributedBESSScheduling........... 77 5.4.1 DRL Based BESS Scheduling:Components andConcepts.................................................... 77 5.4.2 RewardFunctionDesign ....................................... 78 5.4.3 LearningProcessDesign....................................... 78 5.5 ExperimentalEvaluations .............................................. 81 5.5.1 ExperimentSetup............................................... 81 5.5.2 GeneralPerformanceatCostReductionwithBESS.......... 83 5.5.3 CaseStudiesofDRL-BasedBESSScheduling............... 85 5.5.4 ROIsofDifferentBESSDeployments......................... 86 5.6 RelatedWork............................................................ 87 5.6.1 GeneralSystemPeakPowerShavingwithBESS............. 87 5.6.2 DCPeakPowerShavingwithCentralizedBESS............. 88 5.6.3 DCPeakPowerShavingwithDistributedBESS ............. 88 5.7 Conclusion .............................................................. 89 6 Software-DefinedPowerSupplytoGeo-DistributedEdgeDCs ........ 91 6.1 Introduction ............................................................. 91 6.2 ArchitectureofSoftware-DefinedPowerSupply(SDPS)............. 92 6.2.1 MotivationandDesignRationales............................. 93 6.2.2 ArchitectureDesign ............................................ 93 6.3 Two-PhaseOptimizationinSoftware-DefinedPowerSupply........ 95 6.3.1 SystemModel................................................... 95 6.3.2 Phase-I:ConstructingGreenCells............................. 96 6.3.3 Phase-II:BESSDischarging/ChargingOperations ........... 97 6.4 ExperimentalEvaluations .............................................. 99 6.4.1 ExperimentsSetup.............................................. 99 6.4.2 PerformanceComparison ...................................... 99 6.5 Conclusion .............................................................. 101

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.