NanoScience and Technology Gadi Eisenstein Dieter Bimberg Editors Green Photonics and Electronics NanoScience and Technology Series editors Phaedon Avouris, Yorktown Heights, USA Bharat Bhushan, Columbus, USA Dieter Bimberg, Berlin, Germany Cun-Zheng Ning, Tempe, USA Klaus von Klitzing, Stuttgart, Germany Roland Wiesendanger, Hamburg, Germany Theseries NanoScienceandTechnologyisfocusedonthefascinatingnano-world, mesoscopic physics, analysis with atomic resolution, nano and quantum-effect devices, nanomechanics and atomic-scale processes. All the basic aspects and technology-oriented developments in this emerging discipline are covered by comprehensive and timely books. The series constitutes a survey of the relevant specialtopics,whicharepresentedbyleadingexpertsinthefield.Thesebookswill appeal to researchers, engineers, and advanced students. More information about this series at http://www.springer.com/series/3705 ⋅ Gadi Eisenstein Dieter Bimberg Editors Green Photonics and Electronics 123 Editors GadiEisenstein DieterBimberg Departmenmt ofElectriocal Engineeering Centerof NanoPhotonics andRussellBerrie Nanotechnology Technical University of Berlin Institute Berlin Technion –Israel Institute of Technology Germany Haifa Israel ISSN 1434-4904 ISSN 2197-7127 (electronic) NanoScience andTechnology ISBN978-3-319-67001-0 ISBN978-3-319-67002-7 (eBook) DOI 10.1007/978-3-319-67002-7 LibraryofCongressControlNumber:2017951174 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The energy consumption associated with the Internet has become a major concern of the scientific and technological communities, the economic and political estab- lishment as well as the media and the public at large. The vast increase in the Internetusage,drivenbyacontinuousintroductionofnewapplications,integration and reliance of public services and an increase in the number of users worldwide broughtuponasituationwheretheabilityofmodernsocietytosupplytherequired energy for the predicted consumption associated with future computing and com- munication came into question. While several apocalyptic predictions published in theearlyyearsofthethirdmillenniumwilldefinitelynotmaterialize,theproblemis real and requires a solutions to which the technological community must dedicate itself. Achieving an energy-efficient Internet requires a multi-facet solution that addressesallaspectsofthecomplexdatanetwork.Animportantpartofthesolution will involve photonic devices and systems. The photonics technologies have tra- ditionally not emphasized sufficiently energy issues but once it became clear that efficiency is paramount, large efforts aiming at reducing the power required by photonic devices, mainly lasers, have started. A new field called Green Photonics has emerged and quickly became popular. However,photonicdevicesaredrivenbyandfeedelectroniccircuits,whichare often energy inefficient and hence have to also be improved. Above and beyond this, the energy consumption is affected by the complete computing and commu- nication systems. It is obvious, therefore, that what is needed are not photonic devicesandsystemsthatareGreenbutrather,thetechnologicalcommunityshould seektodevelopaGreenInternetwhereeachpartisasenergy efficientaspossible. The development of a Green Internet requires a dialog and collaborations betweenexpertsofmanyfieldsincludingphotonics,VLSIcircuitdesign,computer architecture, networks, switching and information sciences. An additional aspect of the Green Internet is the use of renewable energy sources whenever possible. The significance of holding this multidisciplinary dialog was recognized by the directors of the Russell Berrie Nanotechnology Institute at Technion – Israel Institute of Technology and the Center for Nano Photonics at the Technical v vi Preface University of Berlin who joined forces and established a series of three annual GreenPhotonicssymposiaheldalternativelyinHaifaandBerlinbetween2014and 2016. These symposia which were funded by the Reinhart Frank Foundation brought together world famous experts in all fields related to the Green Internet. This book summarizes the three Green Photonics symposia highlighting the most important topics that were covered. Optoelectronic semiconductor devices are addressed extensively. Energy- efficient VCSELs for the common 850 nm range as well as for 1550 nm are covered in two separate Chaps. 1 and 2, respectively. The advantages of quantum dots are highlighted in two chapters one, Chap. 3 dealing with optical amplifiers and the second, Chap. 4 with mode-locked lasers. Low-energy fast switching is described in Chap. 5 which addresses nonlinear photonic crystal waveguides. The electronic aspects of a Green Internet is covered in a few chapters. Low-energy logic design is presented in Chap. 6, while power management in the so-called Network on Chip devices is presented in Chap. 7. The higher level system aspects cover the topics of optimization of large interconnect networks is addressed in Chap.8.Finally,weincludetwochaptersthatdealwithrenewableenergysources; Chap. 9 is an extensive survey of the global impact of photovoltaics and Chap. 10 deals with futuristic solar cells based on thin film organic semiconductors. Thediverseissuescoveredbythe10chaptersofthebookhighlighttheneedfor an extensive multidisciplinary dialog and for collaborations between experts from different fields. This joint effort is needed to ensure a future Green Internet, which willenablealltheapplicationsneededbythemodernsocietyatanenergycostthat is affordable. Haifa, Israel Gadi Eisenstein Berlin, Germany Dieter Bimberg Contents 1 Energy-Efficient Vertical-Cavity Surface-Emitting Lasers for Optical Interconnects ..... .... .... .... .... .... ..... .... 1 Philip Moser, James A. Lott and Dieter Bimberg 1.1 VCSEL Energy Efficiency . .... .... .... .... .... ..... .... 1 1.2 Energy Efficiency Figures of Merit... .... .... .... ..... .... 2 1.3 Resonance Frequency and Modulation Bandwidth... ..... .... 4 1.4 Energy Efficiency Analysis. .... .... .... .... .... ..... .... 7 1.5 Energy Efficient Data Transmission Results.... .... ..... .... 10 1.6 Summary . .... .... ..... .... .... .... .... .... ..... .... 13 References. .... .... .... ..... .... .... .... .... .... ..... .... 14 2 High-Speed InP-Based Long-Wavelength VCSELs. .... ..... .... 17 Silvia Spiga and Markus C. Amann 2.1 InP-Based VCSELs . ..... .... .... .... .... .... ..... .... 18 2.1.1 Active Region..... .... .... .... .... .... ..... .... 18 2.1.2 Hybrid-Cavity Concepts . .... .... .... .... ..... .... 19 2.1.3 Tunnel-Junction Laser... .... .... .... .... ..... .... 22 2.2 Single-Mode 1.55-µm Short-Cavity VCSELs... .... ..... .... 23 2.2.1 Hybrid Dielectric-Semiconductor VCSELs ... ..... .... 24 2.2.2 Stationary Characteristics .... .... .... .... ..... .... 25 2.2.3 Dynamic Characteristics . .... .... .... .... ..... .... 28 2.3 VCSEL Arrays and Advanced Modulation Formats.. ..... .... 29 2.3.1 Data Communication.... .... .... .... .... ..... .... 29 2.3.2 Telecommunication. .... .... .... .... .... ..... .... 31 2.4 Conclusion .... .... ..... .... .... .... .... .... ..... .... 32 References. .... .... .... ..... .... .... .... .... .... ..... .... 33 vii viii Contents 3 Quantum-Dot Semiconductor Optical Amplifiers for Energy-Efficient Optical Communication. .... .... .... ..... .... 37 Holger Schmeckebier and Dieter Bimberg 3.1 Introduction ... .... ..... .... .... .... .... .... ..... .... 38 3.2 Basics of Quantum-Dot Semiconductor Optical Amplifiers . .... 40 3.2.1 Parameters of SOAs .... .... .... .... .... ..... .... 40 3.2.2 Dynamics of Conventional and QD SOAs ... ..... .... 42 3.2.3 Design and Static Characteristics of QD SOAs..... .... 44 3.2.4 QD SOA Sample Series . .... .... .... .... ..... .... 45 3.3 Phase Modulation of QD SOAs . .... .... .... .... ..... .... 46 3.3.1 Introduction of the Concept... .... .... .... ..... .... 46 3.3.2 Prove of the Concept ... .... .... .... .... ..... .... 47 3.4 Concept of Dual-Communication-Band Amplifiers... ..... .... 51 3.4.1 Introduction of the Concept... .... .... .... ..... .... 51 3.4.2 Proof of Concept... .... .... .... .... .... ..... .... 52 3.5 Signal Processing—Wavelength Conversion.... .... ..... .... 56 3.5.1 Non-linearities of SOA Gain Media .... .... ..... .... 57 3.5.2 Four-Wave Mixing in QD SOAs .. .... .... ..... .... 58 3.5.3 Optimization of Static Four-Wave Mixing in QD SOAs.... 61 3.5.4 FWM of D(Q)PSK Signals... .... .... .... ..... .... 64 3.6 Summary . .... .... ..... .... .... .... .... .... ..... .... 68 References. .... .... .... ..... .... .... .... .... .... ..... .... 68 4 Quantum-DotMode-LockedLasers:SourcesforTunableOptical and Electrical Pulse Combs ... .... .... .... .... .... ..... .... 75 Dejan Arsenijević and Dieter Bimberg 4.1 Quantum-Dot Mode-Locked Lasers .. .... .... .... ..... .... 75 4.1.1 Device Structures .. .... .... .... .... .... ..... .... 76 4.1.2 Passive Mode-Locking .. .... .... .... .... ..... .... 77 4.2 Jitter Reduction and Frequency Tuning ... .... .... ..... .... 79 4.2.1 Hybrid Mode-Locking... .... .... .... .... ..... .... 81 4.2.2 Optical Injection ... .... .... .... .... .... ..... .... 84 4.2.3 Optical Self-Feedback... .... .... .... .... ..... .... 86 4.3 Applications... .... ..... .... .... .... .... .... ..... .... 91 4.3.1 Millimeter-Wave-Signal Generation .... .... ..... .... 91 4.3.2 Optical Communication.. .... .... .... .... ..... .... 96 4.4 Conclusion .... .... ..... .... .... .... .... .... ..... .... 101 References. .... .... .... ..... .... .... .... .... .... ..... .... 101 5 Nanophotonic Approach to Energy-Efficient Ultra-Fast All-Optical Gates... .... ..... .... .... .... .... .... ..... .... 107 Grégory Moille, Sylvain Combrié and Alfredo De Rossi 5.1 Introduction: A Case for All-Optical Signal Processing .... .... 107 5.2 Integrated All-Optical Gate. .... .... .... .... .... ..... .... 109 Contents ix 5.2.1 Technologies for Integrated On-Chip All-Optical Processing... ..... .... .... .... .... .... ..... .... 109 5.2.2 Energy-Efficient All-Optical Gates . .... .... ..... .... 111 5.2.3 III–V Photonic Crystals Resonators. .... .... ..... .... 113 5.3 Nonlinear Dynamics in PhC Resonators... .... .... ..... .... 115 5.3.1 Microwatt Nonlinear Response.... .... .... ..... .... 115 5.3.2 Fast Optical Nonlinearities in Semiconductors ..... .... 116 5.3.3 Nonlocal Nonlinear Response of PhC Cavities..... .... 118 5.4 PhC All-Optical Gate..... .... .... .... .... .... ..... .... 118 5.4.1 Photon Molecule... .... .... .... .... .... ..... .... 121 5.4.2 The Role of the Carrier Lifetime... .... .... ..... .... 121 5.4.3 InP .... .... ..... .... .... .... .... .... ..... .... 123 5.4.4 P-Doped InP. ..... .... .... .... .... .... ..... .... 124 5.4.5 Passivated GaAs... .... .... .... .... .... ..... .... 126 5.4.6 Integration with Silicon Photonics.. .... .... ..... .... 128 5.5 Application Example: All-Optical Signal Sampling .. ..... .... 129 5.5.1 All-Optical Sampling.... .... .... .... .... ..... .... 130 5.6 Conclusions ... .... ..... .... .... .... .... .... ..... .... 133 References. .... .... .... ..... .... .... .... .... .... ..... .... 133 6 Alternative Logic Families for Energy-Efficient and High Performance Chip Design..... .... .... .... .... .... ..... .... 139 Itamar Levi and Alexander Fish 6.1 Introduction ... .... ..... .... .... .... .... .... ..... .... 139 6.2 Background ... .... ..... .... .... .... .... .... ..... .... 141 6.3 DML Basics... .... ..... .... .... .... .... .... ..... .... 155 6.4 DML Utilization for Increased E-D Flexibility.. .... ..... .... 158 6.5 Summary . .... .... ..... .... .... .... .... .... ..... .... 167 References. .... .... .... ..... .... .... .... .... .... ..... .... 167 7 Secure Power Management and Delivery Within Intelligent Power Networks on-Chip ..... .... .... .... .... .... ..... .... 173 Inna Partin-Vaisband and Eby G. Friedman 7.1 Power Network on-Chip for Distributed Power Delivery and Management ... ..... .... .... .... .... .... ..... .... 176 7.1.1 Concept of Power Network-on-Chip.... .... ..... .... 177 7.1.2 Power Network-on-Chip Architecture... .... ..... .... 177 7.1.3 Challenges in Distributed Power Delivery.... ..... .... 180 7.2 Power Routing in SoCs ... .... .... .... .... .... ..... .... 181 7.2.1 Power Routers..... .... .... .... .... .... ..... .... 181 7.2.2 Locally Powered Loads.. .... .... .... .... ..... .... 182 7.2.3 Power Grid.. ..... .... .... .... .... .... ..... .... 182 7.2.4 Case Study .. ..... .... .... .... .... .... ..... .... 183 7.3 Stable Distributed Power Delivery Systems .... .... ..... .... 185
Description: