ebook img

Green electronics manufacturing: creating environmental sensible products PDF

350 Pages·2013·3.065 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Green electronics manufacturing: creating environmental sensible products

K11301_cover.fhmx 6/19/12 10:31 AM Page 1 C M Y CM MY CY CMY K MANUFACTURING AND INDUSTRIAL ENGINEERING Wang GGRREEEENN EELLEECCTTRROONNIICCSS MMAANNUUFFAACCTTUURRIINNGG GG Creating Environmental Sensible Products RR EE “… a very useful addition to currently available literature. … written in language that is very clear … practical as well as thorough in its approach.” EE NN —Marvin Roush, Professor Emeritus, Reliability Engineering, University of Maryland EE “… clearly the result of high quality work done by a very competent person. Dr. Wang LL manages to make available a very complex subject for both the experienced reader EE as well as for the inexperienced reader. … The book gives a very comprehensive CC description of the multidisciplinary approach to reduce the energy- and material- intensiveness of manufacturing electronic components.” TT —Dr. Rune Reinertsen, Eni Norge AS, Norway RR OO “… very thorough and knowledgeable. I have copies of his previous books and use them as reference material often. I have no doubt that this book will be as valuable NN as his others.” II CC —Vincent S. Lyons, Leggett & Platt, Incorporated SS Features MM • Includes a systems engineering approach to help implement green electronics manufacturing systematically AA • Addresses thermal and vibration analysis of green electronic products NN • Covers proactive reliability engineering and risk management of UU green electronic products • Presents advanced modeling analysis of green electronic systems FF AA • Discusses methods for green electronic circuit analysis CC Going “green” is becoming a major component of the mission for electronics TT manufacturers worldwide. Although this goal seems simplistic, it poses daunting UU dilemmas. Yet, to compete effectively in the global economy, manufacturers must take the initiative to drive this crucial movement. Green Electronics Manufacturing: RR Creating Environmental Sensible Products provides you with a complete reference II to design, develop, build, and install an electronic product with special consideration NN for the product’s environmental impacts during its whole life cycle. GG John X. Wang 6000 Broken Sound Parkway, NW K11301 Suite 300, Boca Raton, FL 33487 711 Third Avenue an informa business New York, NY 10017 www.crcpress.com 2 Park Square, Milton Park Abingdon, Oxon OX14 4RN, UK www.crcpress.com Composite GREEN ELECTRONICS MANUFACTURING Creating Environmental Sensible Products John X. Wang Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120518 International Standard Book Number-13: 978-1-4398-2669-0 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To my home by the green woods of Michigan TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Contents Preface ...................................................................................................................xiii About the Author ..................................................................................................xv 1. Green Electronic Assembly: Strategic Industry Interconnection Direction ...........................................................................................................1 1.1 Starting from Your Personal Electronic Lab: Review the Soldering Process ...........................................................................1 1.1.1 Flux in Soldering ......................................................................2 1.1.2 Solder Melting Temperature ..................................................2 1.1.3 Tip Temperature .......................................................................2 1.1.4 Soldering Iron ...........................................................................3 1.1.5 Soldering Guns .........................................................................3 1.1.6 Ensure Proper Cleanliness .....................................................3 1.1.7 Resoldering ...............................................................................3 1.2 Lead-Free Solder Tip .............................................................................4 1.3 Lead-Free Solder Bumps ......................................................................5 1.4 Flip-Chip Technology ...........................................................................6 1.5 Flip-Chip Assembly Process ...............................................................7 1.5.1 Significant Impacts on Reliability .........................................7 1.5.2 Placement Stage ........................................................................8 1.5.3 Protection against Deformation .............................................8 1.5.4 Yield of the Placement Process...............................................9 1.5.5 Underfill Stage ..........................................................................9 1.5.6 Need for Process Optimization .............................................9 1.5.7 Prevention of Contamination and Moisture ........................9 1.5.8 Inspection and Testing ..........................................................10 1.5.9 Process Capability..................................................................10 1.5.10 Quality Control ......................................................................10 1.5.11 Testability ................................................................................11 1.5.12 Integrate Flip Chip into Standard Surface-Mount Technology Process ...............................................................11 1.6 Mechanical Stress and Electromigration .........................................12 1.6.1 Coupling of Two Trends ........................................................12 1.6.2 Electromigration ....................................................................12 1.6.3 Wind Force Equation .............................................................12 1.7 Residual Mechanical Stress ...............................................................15 1.8 Mitigate Deterioration of Lead-Free Tin Solder at Low Temperatures .......................................................................................16 1.8.1 Tin Plague ...............................................................................16 1.8.2 How to Mitigate Tin Plague .................................................16 v vi Contents 1.9 Able to “Take the Heat?”: Capability to Withstand High Temperature ...............................................................................17 1.10 Solder Joint Fatigue .............................................................................20 1.11 Finite Element Analysis .....................................................................21 Bibliography ...................................................................................................22 2. Tin Whiskers: New Challenge for Long-Term RoHS Reliability .......25 2.1 Tin Whisker Growth in Lead-Free Electronics ...............................25 2.1.1 Nomenclature .........................................................................27 2.2 Variability with Tin Whisker Mechanisms .....................................28 2.3 Tin Whisker Risk: Lesson from the Nuclear Industry ..................29 2.4 What Are Tin Whiskers? ....................................................................30 2.5 What Factors Influence Whisker Growth? ......................................31 2.5.1 Residual Stresses within the Tin Plating ............................31 2.5.2 Intermetallic Formation ........................................................31 2.5.3 Diffusion of Substrate Material into Tin Plating ...............32 2.5.4 Coefficient of Thermal Expansion Mismatches .................33 2.5.5 External Factors Induce Residual Stresses .........................33 2.6 Why Whiskers Are a Serious Reliability Risk to Electronic Assemblies ....................................................................33 2.6.1 Stable Short-Circuits in Low-Voltage, High-Impedance Circuits .....................................................34 2.6.2 Transient Short-Circuits ........................................................34 2.6.3 Metal Vapor Arc .....................................................................35 2.6.4 Debris/Contamination ..........................................................35 2.7 How to Mitigate Tin Whisker Risk ...................................................36 2.8 Use Finite Element Modeling to Assess Tin Whisker Risk ...........39 2.8.1 Allotropic Transformation of Tin ........................................39 2.8.2 Diffusion and the Formation of Copper–Tin Intermetallics ..........................................................................39 2.8.3 Oxidation of Tin .....................................................................40 2.8.4 Excessive Energy Theory ......................................................40 2.8.5 Cracked Oxide Theory ..........................................................41 2.9 How to Evaluate Tin Whisker Impact on High-Reliability Applications .........................................................................................43 Bibliography ...................................................................................................44 3. Fatigue Characterization of Lead-Free Solders ......................................45 3.1 Surface-Mount Technology................................................................45 3.2 Fatigue and Thermal Fatigue of Solder Joints.................................46 3.2.1 Solder Joint Fatigue ................................................................46 3.2.2 Thermal Fatigue of Solder Joint ...........................................47 3.2.3 Shear Strain .............................................................................49 3.2.4 Coffin–Manson Relationship for Thermal Fatigue ...........50 3.2.4.1 Example 3.1 ..............................................................51 Contents vii 3.3 Fatigue, Microstructure, and Microstructural Aging ....................53 3.3.1 Microstructure and Microstructural Aging ......................53 3.3.2 Mechanical Characterization ...............................................54 3.3.3 Stress Relaxation Testing ......................................................56 3.3.4 Finite Element Modeling ......................................................57 3.3.5 Fatigue Criteria .......................................................................58 3.3.5.1 Polymer PCBs: FR4, FR5 ........................................59 3.3.6 Ceramic PCBs .........................................................................60 3.3.7 Soldering .................................................................................63 3.3.8 Issues with Lead-Free Solder ...............................................65 Bibliography ...................................................................................................65 4. Lead-Free Electronic Reliability: Finite Element Modeling ................67 4.1 Finite Element Modeling and Inelastic Strain Energy Density ............................................................................68 4.2 FEM Model Description .....................................................................70 4.2.1 FEM Variables .........................................................................70 4.2.1.1 Geometry .................................................................70 4.2.1.2 Material ....................................................................70 4.2.1.3 Elements Used ........................................................71 4.2.1.4 PCB Material Layers ..............................................72 4.2.2 Material Properties for FEM .................................................73 4.2.2.1 Linear Material Properties ....................................73 4.2.2.2 Nonlinear Solder Properties .................................73 4.3 Inelastic Strain Energy Density ........................................................76 4.4 Material Characterizaton of Underfill Materials ............................77 4.4.1 FP 4526 as an Underfill Material ..........................................77 4.4.2 FP 4549 as an Underfill Material ..........................................78 4.4.3 3M UF3667 as an Underfill Material ...................................80 4.4.4 Kester 9110S as an Underfill Material .................................80 4.4.5 Kester 9110 SBB as an Underfill Material ............................81 4.4.6 Effect of Measured Properties on the Simulation Results ..................................................................................81 4.5 Solder Joint Integrity in Accelerated Thermal Cycling .................82 4.6 Life Prediction and Field Life Correlation with ATC Life ............84 4.6.1 Theory of Life Prediction ......................................................84 4.6.2 Energy Partitioning Methodology ......................................85 4.6.3 Time-Dependent Creep Model ............................................87 Bibliography ...................................................................................................88 5. Lead-Free Electronic Reliability: Fatigue Life Model ...........................91 5.1 Time-Independent Plasticity Model .................................................92 5.2 Fatigue Life Prediction Models .........................................................93 5.2.1 Eutectic (Sn–Pb–Ag) Solder ..................................................93 5.2.2 Lead-Free (Sn–Ag–Cu) Solder ..............................................96 viii Contents 5.3 Life Prediction Calculation Using Darveaux’s Energy-Based Model ...........................................................................97 5.3.1 Motorola/Darveaux’s Constitutive Model .........................97 5.4 Solder Joint Integrity in Accelerated Thermal Cycling ...............104 5.4.1 Effect of Solder Joint Material Composition ....................105 5.4.2 Effect of Underfill Composition .........................................107 5.4.3 Effect of Bump Gap Height ................................................108 5.4.4 Effect of Bump Size ..............................................................109 5.5 Effect of T of the Underfill Material ..............................................112 g Bibliography .................................................................................................113 6. Lead-Free Electronic Reliability: Higher Temperature ......................117 6.1 Computer Coupling of Phase Diagrams and Thermochemistry and Differential Thermal Analysis ...............117 6.2 Solder Joint Integrity in Accelerated Thermal Cycling 0°C to 90°C .........................................................................................119 6.2.1 Effect of Solder Joint Material Composition ....................122 6.2.2 Effect of Underfill Composition .........................................123 6.2.3 Effect of Bump Gap Height ................................................125 6.2.4 Effect of Bump Size ..............................................................126 6.2.5 Summary of Simulation Results ........................................128 6.3 Field Profiles ......................................................................................128 6.3.1 Field Profile-1 ........................................................................131 6.3.2 Field Profile-2 ........................................................................132 6.3.3 Field Profile-3 ........................................................................133 6.4 Relative Damage Index ....................................................................134 Bibliography .................................................................................................137 7. Fatigue Design of Lead-Free Electronics and Weibull Distribution ...........................................................................................141 7.1 Fatigue Design of Lead-Free Electronics .......................................141 7.2 Weibull Distribution for Life Testing Data Analysis ...................143 7.2.1 Mathematical Model ............................................................144 7.2.2 Data Fitting Method ............................................................147 7.2.2.1 Relationship between Shape Parameters of Weibull and Lognormal Distributions .........149 7.2.2.2 Relationship between Scale Parameters of Weibull and Lognormal Distributions .......155 7.3 Fatigue Life Prediction Based on Field Profile ..............................163 7.3.1 Field Profile-1 ........................................................................164 7.3.2 Field Profile-2 ........................................................................165 7.3.3 Field Profile-3 ........................................................................167 7.4 Copper Trace Integrity .....................................................................168 7.5 Fatigue Validation of Lead-Free Circuit Card Assembly ..........169 Contents ix 7.5.1 Circuit Card Assembly and Drive-Level Tests ................170 7.5.1.1 Life Prediction Calculation Using Darveaux’s Energy-Based Model .......................170 7.5.2 CCA Component-Level Accelerated Test .........................171 Bibliography .................................................................................................172 8. Enhancing Reliability of Ball Grid Array .............................................175 8.1 Thermally Enhanced BGA ...............................................................176 8.2 Typical TEBGA Package and Finite Element Modeling ..............179 8.2.1 Fatigue Life Prediction ........................................................181 8.3 Finite-Volume-Weighted Averaging Technique ...........................182 8.4 Parametric Design of TEBGA Reliability ......................................184 8.4.1 Effect of Die Thickness........................................................185 8.4.2 Effect of Die Size ..................................................................186 8.4.3 Effect of PCB Thickness ......................................................187 8.4.4 Effect of Die Attach Adhesive Thickness .........................188 8.4.5 Effect of Heat Spreader Thickness.....................................189 8.4.6 Effect of BT Substrate Thickness .......................................189 8.4.7 Effect of BT/FR-4 CTE .........................................................189 8.4.8 Effect of FR-4 Young’s Modulus.........................................191 Bibliography .................................................................................................192 9. Finite Element Modeling under High-Vibration and High-Temperature Environments ...................................................197 9.1 Lead versus Lead-Free Solder .........................................................198 9.2 Analytical Model: PCB Normal Modes and Displacement ........200 9.3 Finite Element Model: Random Vibration .....................................203 9.4 FEM Model Optimization under High-Vibration Environment ....................................................................................206 9.5 FEM Model Validation under High-Temperature Environment ....................................................................................206 Bibliography .................................................................................................210 10. Probabilistic Modeling of the Elastic-Plastic Behavior of 63Sn-37Pb Solder Alloys ......................................................................213 10.1 Continuum Damage Mechanics .....................................................215 10.2 Probabilistic Continuum Damage Mechanics Model .....................219 10.2.1 Creep–Time-Dependent Deformation and Uncertainty ........................................................................219 10.2.2 Thermodynamic Representation of Damage ...................221 10.2.3 Mechanical Representation of Damage ............................222 10.2.4 Stochastic Creep Damage Growth Prediction .................224 10.2.5 Neural Networks .................................................................226

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.