ebook img

Greedy Approximation PDF

434 Pages·2011·3.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Greedy Approximation

CAMBRIDGEMONOGRAPHSON APPLIEDANDCOMPUTATIONAL MATHEMATICS SeriesEditors M.ABLOWITZ,S.DAVIS,J.HINCH, A.ISERLES,J.OCKENDON,P.OLVER 20 Greedy Approximation The Cambridge Monographs on Applied and Computational Mathematics series reflectsthecrucialroleofmathematicalandcomputationaltechniquesincontemporary science. The series publishes expositions on all aspects of applicable and numeri- cal mathematics, with an emphasis on new developments in this fast-moving area of research. State-of-the-art methods and algorithms as well as modern mathematical descrip- tions of physical and mechanical ideas are presented in a manner suited to graduate researchstudentsandprofessionalsalike.Soundpedagogicalpresentationisaprereq- uisite.Itisintendedthatbooksintheserieswillservetoinformanewgenerationof researchers. Acompletelistofbooksintheseriescanbefoundat www.cambridge.org/mathematics Recenttitlesincludethefollowing: 8. Schwarz–Christoffelmapping,TobinA.Driscoll&LloydN.Trefethen 9. High-ordermethodsforincompressiblefluidflow,M.O.Deville,P.F.Fischer &E.H.Mund 10. Practicalextrapolationmethods,AvramSidi 11. Generalized Riemann problems in computational fluid dynamics, Matania Ben-Artzi&JosephFalcovitz 12. Radialbasisfunctions,MartinD.Buhmann 13. IterativeKrylovmethodsforlargelinearsystems,HenkvanderVorst 14. SimulatingHamiltoniandynamics,BenedictLeimkuhler&SebastianReich 15. Collocation methods for Volterra integral and related functional differential equations,HermannBrunner 16. Topologyforcomputing,AfraJ.Zomorodian 17. Scattereddataapproximation,HolgerWendland 18. Moderncomputerarithmetic,RichardBrent&PaulZimmermann 19. Matrixpreconditioningtechniquesandapplications,KeChen 20. Greedyapproximation,VladimirTemlyakov 21. Spectralmethodsfortime-dependentproblems,JanHesthaven,SigalGottlieb &DavidGottlieb 22. The mathematical foundations of mixing, Rob Sturman, Julio M. Ottino & StephenWiggins 23. Curveandsurfacereconstruction,TamalK.Dey 24. Learningtheory,FelipeCucker&DingXuanZhou 25. Algebraicgeometryandstatisticallearningtheory,SumioWatanabe 26. Apracticalguidetotheinvariantcalculus,ElizabethLouiseMansfield Greedy Approximation VLADIMIR TEMLYAKOV UniversityofSouthCarolina CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107003378 (cid:2)c CambridgeUniversityPress2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2011 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationdata Temlyakov,Vladimir,1953– Greedyapproximation/VladimirTemlyakov. p. cm.–(Cambridgemonographsonappliedandcomputationalmathematics;20) ISBN978-1-107-00337-8(hardback) 1. Approximationtheory. I. Title. II. Series. QA221.T455 2011 (cid:3) 518.5–dc23 2011025053 ISBN978-1-107-00337-8Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredtoin thispublication,anddoesnotguaranteethatanycontentonsuchwebsitesis, orwillremain,accurateorappropriate. Contents Preface pageix 1 Greedyapproximationwithregardtobases 1 1.1 Introduction 1 1.2 SchauderbasesinBanachspaces 6 1.3 Greedybases 15 1.4 Quasi-greedyandalmostgreedybases 33 1.5 WeakGreedyAlgorithmswithrespecttobases 39 1.6 Thresholdingandminimalsystems 43 1.7 Greedy approximation with respect to the trigonometric system 47 1.8 Greedy-typebases;directandinversetheorems 58 1.9 Somefurtherresults 63 1.10 Systems L -equivalenttotheHaarbasis 68 p 1.11 Openproblems 76 2 Greedyapproximationwithrespecttodictionaries: Hilbertspaces 77 2.1 Introduction 77 2.2 Convergence 84 2.3 Rateofconvergence 89 2.4 Greedyalgorithmsforsystemsthatarenotdictionaries 97 2.5 Greedy approximation with respect to λ-quasi-orthogonal dictionaries 101 2.6 Lebesgue-typeinequalitiesforgreedyapproximation 111 2.7 Saturationpropertyofgreedy-typealgorithms 122 2.8 Somefurtherremarks 135 2.9 Openproblems 141 3 Entropy 143 3.1 Introduction:definitionsandsomesimpleproperties 143 v vi Contents 3.2 Finitedimensionalspaces 144 3.3 Trigonometricpolynomialsandvolumeestimates 151 3.4 Thefunctionclasses 165 3.5 Generalinequalities 168 3.6 Somefurtherremarks 175 3.7 Openproblems 182 4 Approximationinlearningtheory 183 4.1 Introduction 183 4.2 Somebasicconceptsofprobabilitytheory 189 4.3 Improperfunctionlearning;upperestimates 206 4.4 Properfunctionlearning;upperestimates 235 4.5 Thelowerestimates 253 4.6 Applicationofgreedyalgorithmsinlearningtheory 270 5 Approximationincompressedsensing 277 5.1 Introduction 277 5.2 Equivalenceofthreeapproximationpropertiesofthe compressedsensingmatrix 283 5.3 Constructionofagoodmatrix 287 5.4 Dealingwithnoisydata 294 5.5 First results on exact recovery of sparse signals; theOrthogonalGreedyAlgorithm 298 5.6 Exact recovery of sparse signals; the Subspace Pursuit Algorithm 305 5.7 Onthesizeofincoherentsystems 314 5.8 RestrictedIsometryPropertyforrandommatrices 327 5.9 Somefurtherremarks 330 5.10 Openproblems 332 6 Greedyapproximationwithrespecttodictionaries: Banachspaces 334 6.1 Introduction 334 6.2 TheWeakChebyshevGreedyAlgorithm 340 6.3 Relaxation;co-convexapproximation 347 6.4 Freerelaxation 350 6.5 Fixedrelaxation 354 6.6 Thresholdingalgorithms 359 6.7 Greedyexpansions 363 6.8 Relaxation; X-greedyalgorithms 378 6.9 Incoherentdictionariesandexactrecovery 381 6.10 Greedy algorithms with approximate evaluations andrestrictedsearch 385 Contents vii 6.11 An application of greedy algorithms for the discrepancy estimates 390 6.12 Openproblems 404 References 405 Index 415

Description:
This first book on greedy approximation gives a systematic presentation of the fundamental results. It also contains an introduction to two hot topics in numerical mathematics: learning theory and compressed sensing. Nonlinear approximation is becoming increasingly important, especially since two ty
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.