ebook img

Gravitational Lensing of Rays through the Levitating Atmospheres of Compact Objects PDF

1.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gravitational Lensing of Rays through the Levitating Atmospheres of Compact Objects

universe Article Gravitational Lensing of Rays through the Levitating Atmospheres of Compact Objects AdamRogers DepartmentofPhysicsandAstronomy,UniversityofManitoba,Winnipeg,MBR3T2N2,Canada; [email protected] AcademicEditors:ValerioBozza,FrancescoDePaolisandAchilleA.Nucita Received:24November2016;Accepted:22December2016;Published:date Abstract: Electromagnetic rays travel on curved paths under the influence of gravity. 7 1 Whena dispersiveopticalmediumisincluded, these trajectoriesarefrequency-dependent. Inthis 0 work we consider the behaviour of rays when a spherically symmetric, luminous compact 2 object described by the Schwarzschild metric is surrounded by an optically thin shell of plasma n supported by radiation pressure. Such levitating atmospheres occupy a position of stable radial a J equilibrium, where radiative flux and gravitational effects are balanced. Using general relativity 0 andaninhomogeneousplasmawefindtheexistenceofastablecircularorbitwithintheatmospheric 2 shellforlow-frequencyrays.Weexplorefamiliesofboundorbitsthatexistbetweentheshellandthe ] compactobject,andidentifysetsofnovelperiodicorbits. Finally,weexamineconditionsnecessary c forthetrappingandescapeoflow-frequencyradiation. q - r g Keywords: gravitation-plasmas-pulsars;general-stars;neutron [ 1 v 3 1. Introduction 9 6 Novelbehavioursforelectromagneticraysresultfromthecombinationofgravitationallensing 5 and the optical effects from a dispersive plasma medium [1,2]. The joint effects of gravitation, 0 . refraction and dispersion have been studied using homogenous [3,4] and inhomogenous plasma 1 distributions [5] on a variety of scales [6,7] and geometries [8–10]. Bound orbits of rays under the 0 7 effectof gravityandplasma havealsobeendiscussed [5,11]. The effectof apower-lawdistribution 1 of transparent plasma on the pulse profiles of a compact object (CO) have been shown to produce : v frequency-dependentshifts[12],andtrappingofrays[13]. i X Intheenvironmentofahighlyluminousneutronstar(NS),adistributionofplasmaisstrongly r affectedbybothradiationpressureandgravity[14–16]. IntheNewtonianpicture,theradiativeforce a decreases as r 2, and therefore if radiation overpowers gravity at a particular radius it is true for − all space. However, the situation described by general relativity is more subtle. In Schwarzschild space-timetheradiativeforcechangesatafasterratethangravitationaleffects[17,18]. Thus,thereis only a single radius at which the effects of gravity and radiation on a test particle are balanced. ThispositionofradialequilibriumdefinesasurfacecalledtheEddingtoncapturesphere(ECS[17,19]). Atthisradius,astableshellofplasmacancollect,detachedfromtheNSsurface[20].Theselevitating atmosphericshellshavebeenstudiedinopticallythinandopticallythickconditions[21,22]. Inthiswork,weassumethattheopticallythinlevitatingatmospherearoundaCOcanbetreated asatransparentplasmashellandthatradiationisfreetopropagatebetweenthestellarsurfaceandthe shell. Wecalculatetheresultingfrequency-dependentraytrajectoriesundertheeffectsofgravitation fromtheCOaswellasrefractionanddispersionfromtheplasmashell. InSection2we discussthe theoreticalaspectsoflevitatingatmospheresandtheray-tracingprocedure. InSection3we present ournumericalresults.Section4providesdiscussionofourcalculationsandthegeneralresultsthatwe haveobtained,aswellasexampledensityfunctions. Finally,wesummarizeourfindingsinSection5. Universe2017,3,x;doi:10.3390/—— www.mdpi.com/journal/universe Universe2017,3,x 2of16 2. Theory LetususethesetofunitsinwhichG =c = h¯ =1. Weassumesphericalsymmetry,andwithout lossofgeneralityworkintheequatorialplaneθ =π/2. TheSchwarzschildlineelementis dr2 ds2 = A(r)dt2+ +r2dφ2 (1) − A(r) with 2M A(r) =1 . (2) − r As a first approach, let us treat the plasma shell as a non-magnetized, inhomogenous optically-thinmediumwithindexofrefractionoftheform ω (r)2 n2(r) =1 p (3) − ω2 withrayfrequencyωandlocalplasmafrequency 4πq2N ω2 = 0N(r)= kN(r) (4) p m where the plasma particles have charge q and mass m, and N(r) describes the number density distributionoftheplasma,scaledbythemaximumN . Ontherighthandsidewehaveconsolidated 0 the coefficients into the constant k. For the remainder of our numerical work we use a simple exponentialfunctiontodescribetheshelldensity (r r )2 N(r)=exp − 0 . (5) − σ2 (cid:20) (cid:21) with the maximum located at a distance r > R, where R is the radius of the CO. Despite these 0 assumptions,ourconclusionswillbegeneral,andwillnotdependontheexactdetailsofthedensity function. The numerical examples in the body of the text use Equation (5), however we consider otherdensityfunctionsinSection4. Infact,anyshell-like densityprofilewillgeneratequalitatively similarresults. ThroughoutthetextwewillrefertotheplasmadensityasN,andsuppresstheradial dependenceforsimplicity. TheHamiltonian foranelectromagneticrayunderthe effectof gravityandanopticalmedium was first considered by Synge [23]. This result was subsequently specialized to non-homogenous plasma[2,3],whichwestateusingEquations(3)–(5), 1 H = gijp p +kN . (6) i j 2 (cid:16) (cid:17) Theequationsofmotionare dxi ∂H = = gijp (7) j dλ ∂p i and dpi = ∂H = 1gjkp p k (N) . (8) dλ −∂xi −2 ,i j k− 2 ,i Thederivativesofthetandφmomentavanish,providingtheconstantsofmotion pt = E = ω∞ (9) − − whereω∞ istherayfrequencyanobserveratinfinitywoulddetectprovidedtherayescapes,and Universe2017,3,x 3of16 p = L (10) φ where L is the angular momentum. Since we restrict the trajectories to the equatorial plane, themomentum p vanishes. Withthisrestrictiontheindicesi, jandkeachtakethevaluest,randφ. θ Forastaticmediumtheeffectiveredshiftrelationshipisgivenby ω∞ ω(r)= . (11) 1 A(r)2 Thecorrespondingcoordinatederivativesare dt E = (12) dλ A(r) dφ L = . (13) dλ r2 For spherical symmetry, there is no orbital motion out of the θ = π/2 plane. The radial momentumisgivenbyEquation(6)vanishing, 1 L E2 1 kN 2 p = A(r) + (14) r ±A(r) L2 − r2 L2 (cid:20) (cid:18) (cid:19)(cid:21) with the sign of p denoting a radially infalling ray as p < 0 and an outgoing ray with p > 0. r r r Thederivativeoftheradialmomentumis dp M M L2 kdN r = E2 p2+ , (15) dλ −r2A2(r) − r2 r r3 − 2 dr givingtheradialcoordinatederivative dr = A(r)p . (16) r dλ Finally,wefindthechangeinangleasafunctionofradiususingEquations(13),(14)and(16), dφ 1 = . (17) dr ± 1 r2 E2n(r)2 A(r) 2 L2 − r2 (cid:16) (cid:17) Theeffectivepotentialthatincludestheeffectoftheplasmais 2M L2 V(r) = 1 +kN , (18) − r r2 (cid:18) (cid:19)(cid:18) (cid:19) withfirstandsecondderivatives dV = 2L2 1 3M dr − r3 − r (19) +k (cid:16)1 2M (cid:17)dN + 2MN − r dr r2 h(cid:16) (cid:17) i d2V(r) = 6L2 1 4M dr2 r4 − r (20) +k (cid:16) 1 2M(cid:17) d2N + 4MdN 4MN . − r dr2 r2 dr − r3 h(cid:16) (cid:17) i Thesegeneralexpressionswithpower-lawdensityreproducethecorrespondingequationsfrom[12]. Circularorbits arefound atradialdistances where the derivative of the effectivepotentialvanishes [24,25].Wecalltheseextremalradiir ,whereetakesthelabelssforastableorbitanduforanunstable e orbit. Stableminimafurtherrequire Universe2017,3,x 4of16 d2V(r) >0. (21) dr2 (cid:12) (cid:12)rs (cid:12) Solvingforthecorresponding LwithdV/dr = 0g(cid:12)ivestheangularmomentumrequiredtoproduce (cid:12) acircularorbit 1 L2 = re4k21 1 2M dN + 2MN 2 (22) e 2(re−3M) "(cid:18) − re (cid:19) dr (cid:12)re re2 e# (cid:12) (cid:12) with Ne = N(re). (cid:12) Levitating spherical shell-type atmospheres around COs are physically motivated and have anestablishedtheoreticalfoundationintheliterature[14,22]. Toexplorethebasicsofthesesolutions, let us follow the approach in [21] and write the observed stellar luminosity as ℓ∞. Then the local stellarluminosityasafunctionofradialdistancerfromtheCOisgivenby ℓ ℓ(r)= ∞ . (23) A(r) TheobservedEddingtonluminosityis 4πMm ℓ = (24) Edd σ T where m is the plasma particle mass and σ is the cross-section for Thomson scattering. However, T the Eddington luminosity can also be used to define a local critical luminosity required to produce aradiativeforcewhichbalancesgravityatadistancer[15]. Thelocalcriticalluminosityis ℓ ℓ (r) = Edd . (25) c 1 A2(r) The radius atwhich the stellar luminosity ℓ is equal to the critical luminosity ℓ defines a spherical c surfacearoundtheCOcalledtheEddingtoncapturesphere[15,21]withradius 2M r = , (26) ECS 1 λ2 − wheretheratiooftheobservedluminosityandtheEddingtonluminosityis ℓ ∞ λ = . (27) ℓ Edd PlasmaparticlesneartheCOaresubjecttoradiationdragandhavetheirangularmomentumreduced [26]. TheseparticlesgatherontheECSsinceitisanequilibriumpositionintheradialdirection[17,19] andisstableagainstradialoscillations[20]. The stability of the ECS allows for the formation of a levitating shell of plasma. For larger values of the luminosity ratio, 0 < λ < 1, these levitating atmospheres are separated from the NS surface with no significant density between. Analytical density profiles have been constructed for isothermal and polytropic levitating atmospheres in the optically thin case [21]. The polytropic atmospheres have thickness that depends on the temperature T, with higher T producing more distended atmospheres. The optically thick case has also been investigated numerically [22]. The radiativeequilibriumconditionhasbeenusedintheanalysisofphotosphericexpansionX-raybursts fromNSs[27–30],andtheeffectofalevitatingatmospheremayalsocontributetothenatureofthese bursts[21,26]. Our assumed density N (Equation (5)) approximatesthe rapid drop-off from the peak density r = r ofthelevitatingpolytropicfluidshells[21]whileremaininganalyticallysimple. However, 0 ECS Universe2017,3,x 5of16 our conclusions are qualitatively insensitive to the particulars of N, provided a maximum external to the stellar surface. Thus, we are not concerned with the exact details that lead to the levitating atmosphere solution and rather seek to capture the general character of these plasma shells in our numericalexamples. We will examine the trajectories of electromagnetic rays by ray-tracing. We assume a ray of energyEandangularmomentum Lbeginsataninitialposition(t,r,φ),directedinwardoroutward depending on the choice of sign for p . We then solve Equations (9)–(16) numerically to find the r pathoftherayundertheinfluenceofgravityandtheeffectoftheplasmagivenbythedensity N in Equation(5). Theintegrationoftheequationsofmotion isceasedwhenthetrajectoryintersectsthe stellarsurfaceorescapestoasignificantdistance(r 100R).Forboundrays,wefollowtheorbitsfor ≥ anarbitrarynumberoftime-steps,chosentogiveafewperiastron-apastronpairs. 3. NumericalResults:AVarietyofNovelOrbits To initialize our numerical ray-tracingroutine, we select the physical parametersthat describe our CO and the levitating atmospheric shell. We choose the mass of the CO as M = 1.4M . To ⊙ maximizethegravitationaleffects,weuseanextremelyrelativisticcompactnessratioof R/M = 1.6, at the stiff end of the nuclear EoS [13,31]. We choose a relatively high ratio of stellar to Eddington luminosity of λ = 0.9,which givesthe centerof the shellatr = 10.5M. Finally, we estimate the ECS thicknessoftheshellusingtheapproximateformulafrom[21], 2M H 2 10−3 (28) ≈ × (1 λ)2 − whichgives H 1km for our choicesof parameters. We thenset σ = H andr = r in our test 0 ECS ≈ function,giveninEquation(5). Theequationsofmotionshowusthattheconstantk setsthefrequencyatwhichplasmaeffects become relevant to the ray trajectories, but the dynamics of the rays are unchanged provided we redefinethemomenta p = p /√k,aswellastheaffineparameterλ = √kλ. Thus,inournumerical ′i i ′ exampleswesimplysetk =1anddiscusstherelevantfrequencyscaleinSection4. 3.1.AStableCircularOrbitforElectromagneticRays Whenanopticallythinlevitatingatmospherewitharefractiveindexisconsidered,theeffective potentialissignificantlymorecomplicatedthanthevacuumcaseandallowsforavarietyofcircular orbits. Asanumericalexample,letusconsideraraythathasafrequencyω∞ = 1. Sucharaywith angular momentum L = 15.1689 has a stable circular orbit at r = 13.6468. This stable circular s s orbit is well within the radius of the ECS, r = 14.7368. The unstable circular orbit radius for ECS electromagneticraysatthepotentialmaximum,r =14.7194,isshiftedinwardslightlyfromtheECS u radiusduetothecontributionfromtheangularmomentumtermintheeffectivepotential. Generally, any shell-like plasma atmosphere with a density profile N that has a maximum at r > R and which is physically realistic (decreases as a function of r in both directions r > r 0 ECS and r < r and which vanishes at infinity) will produce a minimum in the effective potential, ECS resulting in a stable circular orbit. The existence of this stable circular orbit does not require any additionalsymmetry argumentsbe imposed on the shell density, provided the previousconditions are satisfied. For example, an asymmetrical density profile was found for an isothermal levitating atmosphere[21],thoughthisisnotaphysicallyrealisticsolutionsincethedensitydoesnotvanishat infinity. However,suchadensityprofilewouldstillproduceastablecircularorbitwithinr . ECS 3.2.PeriodicOrbits Bound raytrajectoriesadmitperiodicsolutions withthe appropriateangular momentum L for agivenenergyE. Considerthetimeelapsedbetweentheclosestdistanceoftheorbitfromthecentral Universe2017,3,x 6of16 CO,theperiastronradiusr andthefurthestdistance,theapastronradiusr . Letusdefinetheangle p a accumulatedastheintegralofEquation(17)foraboundorbit, ∆φ =2 t(ra) dφdt=2 ra dφdr. (29) r Zt(rp) dt Zrp dr UsingEquation(17)therighthandsidegives ∆φ =2 ra dr . (30) r 1 Zrp r2 E2n(r)2 A(r) 2 L2 − r2 h i Thequantity∆φ istheratiooftheradialandangularfrequenciesfoundfromtheHamiltonianusing r action-anglevariables[32], ∆φr = ωφ =Λ. (31) 2π ω r PeriodicorbitshavearationalvalueofΛ. IntheupperpanelofFigure1wecalculateΛasafunction ofL,holdingE = ω∞ =1,viaEquation(30). WethennumericallyfindthecorrespondingvaluesofL forwhichΛequals1,1/2,1/3,1/4,1/5,1/6and1/7. ThestablecircularorbithasΛ =0. ForΛ =1 (dashed line) and Λ = 1/7 (dash-dotted line) we plot the corresponding effective potentials in the lowerpanel,andshowthepotentialexperiencedbytheboundorbitasathickblackline. TheratioΛ isboundedinLsinceaboundorbitrequiresapotentialminimum. WhenListoolow,noinner(stable) potentialboundaryexistsbetweenRandr .ForLtoohigh,orbitsarenotboundbythecontribution ECS totheeffectivepotentialfromtheshell. InFigure2weplottheperiodicorbitscorrespondingtothese Λvalues. FortheperiodicorbitsthedenominatoroftherationalΛvaluesdenotethenumberofdeflections from the effective potential barrier provided by the plasma in a complete orbit. The numerator describesthecomplexityoftheorbit. Forexample,letΛ = α/β bearationalnumber. Theresulting orbithasβreflectionsoffoftheplasmashellandthepathintersectsitself(α 1)βtimes. Afamilyof − periodic orbits with Λ = 1/5, 2/5, 3/5 and 4/5 is plotted in Figure 3 to demonstrate. These orbits eachcontain5reflectionsfromtheplasmashellandfeature0,5,10and15intersectionsoftheorbital path. In terms of angular momentum, the periodic configurations are preceded and followed by orbits with similar morphology but which precess in the opposite sense. For example, the Λ = 1 periodicorbitisshowninthecenterpanelofFigure4. Weintegratetheequationsofmotionuntilthe coordinatetime componentreachesanarbitraryvaluesufficienttoprovideseveralorbitsoftheCO. Theinitialpositionismarkedasablackdotandthefinalpositionisasquare. Givenaperiodicorbit with Λ = q, alower angularmomentum orbitwith Λ > qprecessesinacounter-clockwisemanner (toppanel),andanorbitwithΛ <qprecessesintheoppositesense(bottompanel). Universe2017,3,x 7of16 Λ vs. Angular Momentum 1.2 1 0.8 Λ 0.6 0.4 0.2 0 8 10 12 14 16 L Effective Potential 2 1.5 V(r) 1 0.5 0 5 10 15 r Figure1. Toppanel: ΛasafunctionofangularmomentumLisplottedforE = ω∞ = 1asthethick blackline. OnthispanelweplotthevalueofΛ =1asadashedline,1/2,1/3,1/4,1/5,1/6asthin solidlinesandΛ=1/7asadash-dottedline. TheintersectionsoftheΛ=1andΛ=1/7lineswith Λ(L) are marked as white discs. The effective potential corresponding to the angular momentum specifiedbythesediscsareplottedinthelowerpanel. Theshadedregionrepresentstheinteriorof theCOandtheheavyblacklinesaretheeffectivepotentialsexperiencedbytheray. TheΛ = 1and Λ=1/7casesarerepresentedbydashedanddash-dottedlinesrespectively. Λ=1 Λ=1/2 Λ=1/3 Λ=1/4 10 10 10 10 y 0 y 0 y 0 y 0 −10 −10 −10 −10 −10 0 10 −10 0 10 −10 0 10 −10 0 10 x x x x Λ=1/5 Λ=1/6 Λ=1/7 Λ=0 (Circular) 10 10 10 10 y 0 y 0 y 0 y 0 −10 −10 −10 −10 −10 0 10 −10 0 10 −10 0 10 −10 0 10 x x x x Figure2. PeriodicorbitswithangularmomentumLfoundfromΛ =1,1/2,1/3,1/4,1/5,1/6,1/7 andthestablecircularorbit.TheCOistheshadeddisc,andtheunstablecircularorbitismarkedwith adashedline. Universe2017,3,x 8of16 Λ=1/5 Λ=2/5 Λ=3/5 Λ=4/5 10 10 10 10 y 0 y 0 y 0 y 0 −10 −10 −10 −10 −10 0 10 −10 0 10 −10 0 10 −10 0 10 x x x x Figure3.AfamilyofperiodicorbitswithLfoundfromΛ=1/5,2/5,3/5and4/5.Theorbitsreflect offoftheplasmashell5times,andtheorbitalpathintersectsitself0,5,10and15times,respectively. TheCOistheshadeddisc,andtheunstablecircularorbitismarkedwithadashedline. L=7.35000 20 10 y 0 −10 −20 −20 −10 0 10 20 x L=7.35835 20 10 y 0 −10 −20 −20 −10 0 10 20 x L=7.37000 20 10 y 0 −10 −20 −20 −10 0 10 20 x Figure4. AnexampleofprecessionasafunctionofangularmomentumforΛ = 1(middlepanel). ForΛ > 1wefindprecessioninthecounter-clockwisedirection(toppanel)andforΛ < 1theorbit precessesinthe opposite sense (bottompanel). Initial positionsare plotted as black dots and final positionsaresquares. Universe2017,3,x 9of16 3.3.FrequencyWindows We define two particularly significant frequency ranges for rays that interact with the plasma atmosphere. Theescapewindow(EW)isdefinedbythefrequencyrangeω∞0 <ω∞ ω∞+. Raysin ≤ this frequency window can escape from the CO surface to reach an observer at infinity, but the trajectoriesarestronglyinfluencedbythepresenceoftheplasmaatmosphere.BelowtheEWasecond frequencybandexists,ω∞ < ω∞ ω∞0,whichwerefertoastheanomalouspropagationwindow − ≤ (APW). In this frequency range, rays are trapped by the plasma. Rays in the APW that leave the surfaceoftheCOtraveltoamaximumaltitudeandthenturnbacktotheCOsurface. Thistrapping is analogous to the anomalous propagation of low-frequency radio wavesin the atmosphere of the Earth. Inaddition to a family of trappedraysemitted fromthe CO surface, the APW also includes asetofraysthatapproachthetheplasmaatmospherefromtheoutsideandarescatteredoffofit. The EW and APW were explored in [13] for a CO surrounded by a cloud of plasma with a power-law density. We define the asymptotic plasma frequency ω∞p in analogy with the ray frequency at infinity (Equation(9))usingtheredshiftdefinition(Equation(11)), 1 ω∞p = A(r)2ωp(r), (32) such that the propagation of radiation requires ω∞ to exceed ω∞p along the path of a ray. In fact, the quantity on the right hand side is simply the square root of the effective potential with L = 0, forwhichr =r . u ECS ThelimitingfrequencyforaradiallydirectedraytoescapeisgivenbyEquation(32)atr , ECS ω∞0 = V(ru) =λ kN(rECS)= λ√k. (33) q q The condition on radially directed rays defines the floor of the EW and the APW ceiling. We will focusoneachofthefrequencyrangesseparatelyinthefollowingsections. 3.3.1.RayTrapping Outgoing radially-directed rays with ω∞ ω∞0 cannot propagate through the plasma ≤ atmosphere. Since the effective potential contains a contribution from the angular momentum, turningpointsexistforallrayswithfiniteL, ω∞ = V(r) >ω∞p. (34) q Therefore,providedL =0,allrayswithω∞ ω∞0arescattered.Rayswithfiniteangularmomentum 6 ≤ that are emitted from the CO surface reach a maximum height and return to the CO surface. This trappingrequiresapotentialmaximumoutsidethestellarsurface,V(R) V(r ),andthuswedefine u ≤ thelowerAPWlimitas ω∞ = V(R). (35) − q For incoming rays that approach the CO atmospheric shell externally, we write the angular momentum as L = ω∞b where b is the impact parameter. For non-vanishing b, the approaching raysreachaminimumdistancebeforescatteringfromtheplamaatmosphereduetothepresenceof aturningpointandreturntoinfinity. We plot examples of rays in the APW in Figure 5 and use ω∞ = √1/2, well below the APW ceilingω∞0 = λk1/2 = 0.9forthechoiceofexampleparametersinourunits. Weplotthetrajectories oftenrayslaunchedfrom R atposition φ = π/2. Wevarytheangularmomenta ofthe raysfrom0 Universe2017,3,x 10of16 (dashedray)to0.99L (dashed-dottedray),wherethemaximumangularmomentumisfoundby max settingbyrelatingthesquareofthefrequencyandtheturningpointatthesurface, R Lmax = ω∞ 1. (36) A(R)2 AtandaboveL ,therayisinaboundorbitandonlyskimsthesurfacetangentiallyatR. TheECS max radiusisplottedasadottedcircle.Externalraysthatapproachfromthe+xdirectionarescatteredby the plasma atmosphere. For these rayswe used the same frequencyand anidenticalset of angular momenta,givingtheimpactparameters L b= . (37) ω∞ Thefiducialraydoesnotpropagateintheplasmasinceω∞ = ω∞p forthe L = 0case. Inthebottom panelweplottheeffectivepotentialforthe L =0ray(dashedcurve)andthepotentialforaraywith 0.99Lmax(solidcurve). Thehorizontallineisω∞2. TheinterioroftheCOistheshadedregionandthe ECSradiusisplottedastheverticaldottedline. Rays in the APW 20 10 y 0 −10 −20 −20 −10 0 10 20 x Potentials at the APW limits 1 0.8 V(r) 0.6 0.4 0.2 0 5 10 15 r Figure5. TrappedandscatteredraysintheAPW.Theupperpanelplotsthepathsof10raysemitted fromtheCOsurface,R,atφ=π/2.TheseraysareevenlyspacedbetweenL=0(dashed),andLmax (dashed-dotted). Alsoplottedarethepathsof10raysthatapproachtheECSexternallyfromthe+x direction, and are reflected by the potential boundary. These external rays are plotted as the solid blackcurves.TheECSradiusisthedottedcircle.Thelowerpanelshowsthecorrespondingeffective potential for the bound rays L = 0 (dashed) and 0.99Lmax (solid). The square of the asymptotic frequencyω∞2 isthehorizontalline.TheshadedregionistheCOinterior,andtheverticaldottedline istheECSradius.Bothinteriorandexteriorradiallydirectedrays(L=0)havefrequenciesω∞ =ω∞p. Theserays,andallrayswithlowerfrequency,cannotpropagatethroughtheplasma.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.