ebook img

Gravitational Bending of Light Near Compact Objects PDF

4 Pages·0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gravitational Bending of Light Near Compact Objects

DRAFTVERSIONFEBRUARY5,2008 PreprinttypesetusingLATEXstyleemulateapjv.04/03/99 GRAVITATIONALBENDINGOFLIGHTNEARCOMPACTOBJECTS ANDREIM.BELOBORODOV1 CanadianInstituteforTheoreticalAstrophysics,UniversityofToronto,60St.GeorgeStreet,Toronto,ONM5S3H8,Canada DraftversionFebruary5,2008 ABSTRACT A photonemitted near a compactobjectat an angle α with respect to the radial direction escapes to infinity at a differentangle ψ > α. This bending of light is caused by a strong gravitationalfield. We show that, in a Schwarzschildmetric,theeffectisdescribedby1 cosα=(1 cosψ)(1 r /R)whereR/r istheemission 2 − − − g g radiusinSchwarzschildunits. TheformulaisapproximateanditappliesatR 2r only,howeverattheseradii 0 ≥ g ithasamazingaccuracy,fullysufficientinmanyapplications. Asoneapplicationwedevelopanewformulation 0 forthelightbendingeffectsinpulsars. Itrevealsthesimplecharacteroftheseeffectsandgivestheirquantitative 2 description with practically no losses of accuracy (for the typicalradius of a neutronstar R = 3rg the error is n 1%). ThevisiblefractionofastarsurfaceisshowntobeS /4πR2 =[2(1 r /R)]−1whichis3/4forR=3r . a v − g g Theinstantaneousfluxofapulsarcomesfromoneortwoantipodalpolarcapsthatrotateinthevisiblezone.The J pulseproducedbyoneblackbodycapisfoundtobesinusoidal(lightbendingimpactsthepulseamplitudebutnot 8 its shape). When bothcapsare visible, the pulse showsa plateau: the variablepartsof the antipodalemissions precisely cancel each other. The pulsed fraction of blackbodyemission with antipodalsymmetry has an upper 1 v limitAmax =(R 2rg)/(R+2rg). PulsarswithA>Amax mustbeasymmetric. − 7 Subjectheadings: gravitation—radiationmechanisms:general—relativity—stars: neutron—(stars:) 1 pulsars:general—X-rays:binaries 1 1 0 2 0 1. INTRODUCTION 2. THECOSINERELATION / h Lightbendingbygravityisaclassicaleffectofgeneralrela- Let an emitter be located at point E at a radius R (Fig. 1). p tivity(e.g. Misner,Thorne,&Wheeler1973). Inaspherically A photon emitted along the radial direction escapes radially. - o symmetricgravitationalfield, theexactbendingangleisgiven A photon emitted at some angle α with respect to radius (α r byanellipticintegral(seeAppendix). Theeffectplaysimpor- is measured by the local observer at E) escapes along a bent t s tant role in astrophysics; e.g. weak bending gives rise to the trajectory. We willdescribethetrajectoryinpolarcoordinates a gravitationallensingphenomenon.Strongbendingoccursnear (r,ψ)whereψ =0fortheescapedirection. Thestandardway : v compact objects (black holes and neutron stars) and crucially ofcomputingα(ψ)isgiveninAppendix. Insteadonecanuse i affectstheiremission. theapproximaterelation X In this Letter we give a simple formula for the bendingan- r glethatreplacestheellipticintegralwithhighaccuracyatradii a Rthe≥gr2arvgit.atHinegresprhge=rica2lGoMbje/cct2oifsmthaessScMhw.aWrzescahpipldlyrathdiisusfoor-f 1 cosα=(1 cosψ) 1 rg . (1) − − − R mulatoneutronstarsanddevelopanewsimpleformalismfor (cid:16) (cid:17) the lightbendingeffectsin pulsars. We illustrate with pulsars thathavetwopoint-likeantipodalspotsemittingthermalradia- The accuracy of relation (1) is remarkably high. It gives the tion,andcomparetheresultswiththeexacttheory(Pechenick, bendingangleβ =ψ αwithasmallfractionalerrore=δβ/β Ftaclas, & Cohen 1983). The advantage of our formalism is − showninFigure2. ForexampleforR=3r themaximumer- that it gives a clear understanding of the bending effects and g describes them analytically with almost no losses of accuracy rorisemax =3%(atα=90o)ande<1%forα<75o. High accuracyismaintainedforR > 2r . ForR < 2r theapprox- aslongasstarswithR>2r areconsidered.Theexacttheory g g g imationisnotapplicable: thencosα = 0wouldcorrespondto welldescribesstarswithanyR,includingR < 2r wherethe bendingangleβ canexceed90o,howeveritrequiregsacompli- ceoscsaψpin<g−fro1m. WRe>the2rrefowrehelirmeβito<ur90coo.nsiderationtoradiation cated numerical treatment. Standard models of neutron stars g Thehighaccuracyofequation(1)isastrikingpropertyofthe predict R > 2r with a typical R 3r (e.g. Shapiro & g ≈ g Schwarzschildspacetime. Thisfunctionalshapecannotbeun- Teukolsky 1983). Our formalism then works with 1% ac- curacyandshouldbesufficientinmanypracticalpro∼blems. It derstoodasalinearexpansioninrg/R(thatexpansionisgiven inAppendixanditsaccuracyismuchworse). Equation(1)can shouldalso be goodforaccretiondisksaroundSchwarzschild be understood as follows. Let us consider x = 1 cosα as blackholes:thediskinneredgeisat3rgandthebulkofemitted a small parameter and expandy = 1 cosψ in te−rms of xk. radiationdoesnotentertheregionR<2rg. Aftersomealgebrawefind − 1AlsoatStockholmObservatory,SE-10691Stockholm,Sweden andAstro-SpaceCenterofLPI,Profsojuznaja84/32,Moscow117810,Russia 1 2 BENDINGOFLIGHTNEARCOMPACTOBJECTS 3 x 1 x 2 y = u 1−u − "112(cid:18)1−u(cid:19) 4 1 5 x 5 + u +O(x ) , (2) 224(cid:18)3 − (cid:19)(cid:18)1−u(cid:19) # where u = r /R. The linear term is just equation (1); it de- g scribesthestandardsolidangletransformationdΩ0 =2πdx → dΩ = 2πdy along the radial ray. The interesting property of equation (2) is that the x2-term vanishesand the higher order termshavesmallcoefficients.Itexplainstheextremelyhighac- curacyofequation(1)atsmalluand/orx(Fig.1). Onlywhen FIG.1.—Examplephotontrajectory.TheemissionpointEisatR=2.5rg and the emission angle is cosα = 0.1; the corresponding impact param- both x 1 and u 0.5 there is a sizable correction to the linearte→rmandhere→epeakssharply.Thelinearexpansioninu βete=r bψ−=α3≈.213r5go..TIhnetahpisprcoaxsiemactoestψraje=ctor−y0(.e4q8.23)ainsdalsthoeplboetnteddinhgeraenagnlde (alsoderivedinAppendix)readsy =x(1+u)+O(u2). itisnotdistinguishablefromtheexacttrajectory. Thoughthecosinerelation(1)issufficientforoursubsequent discussion, note that it also gives a simple description for the shape of a photon trajectory with a given impact parameter b (Fig. 1). Equation(1)canbewrittenatanypoint(r,ψ)along the trajectory if α measures the angle betweenthe photonve- locity and the local radial direction. Combining (1) with (10) wefindr2 =b2[sin2ψ+(1 cosψ)2r /r]−1and g − r2(1 cosψ)2 b2 1/2 r (1 cosψ) r(ψ)= g − + g − .(3) " 4(1+cosψ)2 sin2ψ# − 2(1+cosψ) Trajectories(3)areveryclosetotheexactones. Thefractional errorofratagivenψisδr/r <4 10−3aslongasr >2r . g × 3. THEVISIBLESURFACEOFASTARANDTHEOBSERVEDFLUX Considera sphericalcompactstar viewedby anobserverat distanceD R. Choosesphericalcoordinates(R,ψ,φ)with ≫ thepolaraxisψ = 0directedtowardtheobserver. Whatisthe observedfluxdF fromasurfaceelementdS ofthestar? First ofalloneshoulddecidewhetherdS isvisible. Inaflatspace- time the visibility conditionwould be simply µ = cosψ > 0 whereψ isthepolarangleofdS. Thestargravitycreatescur- vature that allows the observer to see regions with negative µ downtoacriticalµ thatdefinesthedarksideofthestar. The v observedlightfromthecircleµ=µ isemittedtangentiallyto v thestar (α = 90o). Exactcalculationsofα(ψ) viatheelliptic FIG.2.—Accuracyofthecosinerelation(1).Thisrelationgivesthebendig integralyieldtabulatedµv,e.g.µv = 0.886, 0.633, 0.484 angleβ = ψ−αwithanerrore = δβ/β whichdependsontheemission − − − forR/rg = 2,2.5,3. Fromequation(1)wefindimmediately radiusR/rgandtheemissionangleα.Herethecontoursofe=const(with the approximateµ = r /(R r ). Thevisiblefractionof logarithmicstep0.5)areplottedontherg/R−αplane. v g g thesurfaceisS /4πR2−=(1 µ−)/2=[2(1 r /R)]−1,e.g. v v g − − weget0.75forR=3r whiletheexactvalueis0.742. g Appendix gives the standard formula for the observed flux When the local intensity of radiation I0(α) is known for froma visibledS (eq.11). Itrequiresthe knowledgeofα(ψ) all dS, equation (4) can be integrated over the visible surface andtheexacttheoryleadstoacomplicatednumericaltreatment µ > µ togetthetotalobservedflux. Forexample,supposea v oftheproblem(Pechenicketal. 1983). Insteadweusetheap- starhasahomogeneoushotspotofarbitrarysizeandshapethat proximateequation(1);thenequation(11)reads emitsthermalradiation[I0(α) = const]. Denotethespotarea r 2 dS by s = dS and the corresponding projected area by s⊥ = dF = 1− Rg I0(α)cosαD2, (4) theµdinSte(girRfaolsnalyreatapkaertnoofvtehrethsipsoptairst)i.nTthheenvitshiebloebzseornveedµfl>uxµivs winhgelyrescimospαle.=Aµp(a1rt−(cid:16)frrogm/Rth)e(cid:17)+rerdgs/hRift. fEaqctuoarti(o1n(4)ris/Rsu)r2prtihse- FsR⊥=<(0I0w/Dhe2n)(th1e−sprogt/iRs)in2[tsh⊥e(r1eg−iorng/µRv)<+µsr<g/0R. ]. Notethat g − elementdS emitsasiftheproblemwereNewtonianwithψre- placedbyα. BELOBORODOV 3 4. PULSARS Consideraneutronstarwithtwoantipodalhotspotsassoci- ated with polar caps of the star magnetic field. Assume here that the spot size is small comparedto the star radiusR. The starisspinninganditsmagneticaxisisinclinedtothespinaxis byanangleθ 90o. Thereforethespotsperiodicallychange ≤ theirpositionandinclinationwithrespecttoadistantobserver andtheobservedradiationpulsates. Thespotwhosecircleofrotationisclosertotheobserverwill becalled“primary”andtheothersymmetricspot“antipodal”. Denote the unit vector pointing toward the observer by d and theanglebetweendandthespinaxisbyi. Tocomputethera- diationfluxesfromthe primaryandantipodalspotsoneneeds toknowtheirinclinations: µ = n dandµ¯ = n¯ d,wheren andn¯ = narethe spotnormals.· Whenthestar·executesits − rotation,µvariesperiodicallybetweenµmin = cos(i+θ)and µmax =cos(i θ), − µ(t)=sinθsinicosΩt+cosθcosi. (5) FIG. 3.— Location of classes I–IV on the i−θ plane. The angle ξ is definedsothatcosξ = rg/(R−rg), e.g. ξ = 60o forR = 3rg. The Here Ω is the angular velocity of the pulsar; t = 0 is chosen classes are determined by the relative positions of µmin = cos(i + θ), whenµ=µmax. µmax = cos(i−θ), κ ≡ rg/(R−rg), and −κ. ClassI:µmin > κ. Theantipodalspotisneverseeninsuchapulsar(andtheprimaryspotisvisi- Considertheblackbodycomponentofthepulsaremission;it bleallthetime).Theobservedblackbodypulsehasaperfectsinusoidalshape. has isotropic intensity I0(α) = const. Using (4) we find the ClassII:−κ<µmin<κ<µmax.Theprimaryspotisseenallthetimeand observedfluxesF andF¯ fromtheprimaryandantipodalspots theantipodalspotalsoappearsforsometime.Thepulsehasasinusoidalpro- (whentheyarevisible) fileF(t)interruptedbytheplateau(7).ClassIII:µmin <−κ.Theprimary spotisnotvisibleforafractionofperiod(andthenonlytheantipodalspotis seen). SuchapulsarshowsaprimarysinusoidalprofileF(t)interruptedby F =µ 1 rg + rg, F¯ = µ 1 rg + rg. (6) tF¯he(tp)lafrteoamut(h7e)aanndtipthoedapllastpeoatu.iTshinetesurrbu-pptueldsebyocacuwresawkehresninounsloyidthaelsaunbti-ppoudlsael F1 − R R F1 − − R R spotisinthevisiblezone.ClassIV:−κ<µmin,µmax<κ.Bothspotsare (cid:16) (cid:17) (cid:16) (cid:17) seenatanytime. Thentheobservedblackbodyfluxisconstant(eq.7). Only anisotropicemissionwithI0(α)6=constcancontributetopulsations. HereF1 = (1 rg/R)2I0s/D2,sisthespotarea,andpoint- − like-spotapproximationis adopted. For the antipodalspotwe substitutedµ¯ = µ. Theobserverseestheprimaryspotwhen − µ > µ and the antipodal spot when µ¯ > µ ( 3). De- v v § note κ = r /(R r ) = µ . Both spots are seen when g g v − | | κ<µ<κandthentheobservedfluxis − r Fobs =F +F¯ =2 gF1 =const ! (7) R Hence the blackbody pulse must display a plateau whenever bothspotsareinthevisiblezone.Weemphasizethehighaccu- racyofequations(6)and(7),thoughtheexacttheorydoesnot givetheidealplateau.ThefractionalerrorδinFobsismaximal whenµ=µv,e.g.δmax 1.3%forR=3rg.ForR=2rgour ≈ formalismpredictsthatthewholesurfaceisvisibleandFobs is givenbyequation(7)atanyθ,i,µ;thenδmax 6%. AtanytimeFobstakesoneofthreevalues:F≈,F¯,orF +F¯. A pulsar shows the plateau (7) if cos(i + θ) < κ. A pulsar witharbitraryiandθ belongstooneoffourclassesdescribed in Figures 3 and 4. It is easy to compute the pulsed fraction A=(Fmax Fmin)/(Fmax+Fmin)foreachclass, − (µmax−µmin)/(µmax+µmin+2κ)classI FIG. 4.— Blackbody pulse profiles for classes I–IV defined in Fig. 3. A= (µmax κ)/(µmax+3κ) classII,III (8) R = 3rg ischosenandthefluxisnormalized toF1 (themaximumpossi- (0 − classIV blefluxthatisobservedwhentheprimaryspotisviewedfaceon). ClassIis exemplifiedwithθ =20oandi=30o,classIIwithθ =30oandi=60o, classIIIwithθ=60oandi=80o,andclassIVwithθ=20oandi=80o. AreachesitsmaximumAmax ifthepulsarhasµmax = 1and Theapproximatemodeldevelopedinthispaperisshownbysolidcurvesand theexactmodelisshownbydottedcurves. Theplateauhasthesamelevelin µmin <κ. ThismaximumisAmax =(R−2rg)/(R+2rg). allcases:Fp/F1=2rg/R=2/3. 4 BENDINGOFLIGHTNEARCOMPACTOBJECTS 5. CONCLUSIONS toanisotropicemissivitywithapreferentialdirectionalongthe A new formulation for the light bending effect is given in field. Inanycase,calculationsofI0(α)separatefromthelight bending effects. Radiation that propagates freely through the thisLetter. Itmakesuseofanapproximatesimpleformulathat pulsarmagnetosphereisdescribedbyequations(1)and(4)for describesphotontrajectorieswithremarkableaccuracy(eq. 1). This formulation is applied to pulsars where light bending anyI0(α). is knownto be a crucialeffect. The developedanalyticalthe- APPENDIX:LIGHTPROPAGATIONINA ory replaces the previously used complicated numerical treat- SCHWARZSCHILDMETRIC mentwithhighaccuracy,sufficientforpracticalpurposes. For example, it immediatelygivesthe observedpulseprofile fora ForagivenphotontrajectoryletuschooseSchwarzschildco- rotating neutron star with two antipodal hot spots (eqs. 6 and ordinatesxk = (t,r,θ,ψ)sothatthetrajectoryisintheplane 7). These analytical expressions highlight the effects of light θ = 90o. Let uk = dxk/dλ be the 4-velocity of the photon bending in pulsars: (i) If the antipodalspot is never seen, the (λ is an affine parameter, λ = r at r ). The trajectory blackbody pulse is perfectly sinusoidal. The bending affects has integrals u = 1 and u = b. Fro→m u∞iu = 0 one finds thepulsedfractionAonly(eq.8).(ii)Thevisiblesurfaceofthe t ψ i star is significantly enhanced, Sv/4πR2 = [2(1−rg/R)]−1, e(uscra)p2e=dir1e−ctio(bn2./Trh2e)(n1a−trardgi/urs)R. Ltheteupshcohtoonosheasψ = 0forthe and both spots may be seen for a fraction of period or all tFhpe =tim(e2.rgT/hRen)Ft1hewbhlearcekbFo1diyspthuelsfleusxhofwrosmaopnleatsepaoutFvoiebws e=d ψ = ∞ −uψ dr = ∞ dr 1 1 1 rg −1/2. fnaocteboens.m(iailil)erThtheaonbFser.veTdhfleulxatctearnnisotaepxucreeeldyFre1laatnivdisitticcaenf-- ZR ur ZR r2 (cid:20)b2 − r2 (cid:16) − r (cid:17)(cid:21) (9) p fect: F = 0 in the Newtonian limit r /R 0. The max- p g → imum pulsed fraction of a pulsar with antipodal symmetry is Theemissionangleα(betweentheemittedphotonandthelocal Amax =(F1−Fp)/(F1+Fp)=(R−2rg)/(R+2rg). This radialdirection)istanα= uψuψ/√urur whichyields isasevereconstraint,e.g. Amax =1/5forR=3rg insteadof NewtonianAmax =1. pb r Withinafewpercenttheresultsagreewiththepreviousnu- sinα= 1 g. (10) R − R mericalworks. Thenewformalism,however,ismuchsimpler r inuse.Itgivesacleardescriptionofthepulseprofilesforgiven Combining equations (9) and (10) one can compute numeri- i, θ, andR/r andmakesiteasierto comparethetheorywith g callytherelationbetweenψandαforagivenR. Atsmallu= observations and constrain pulsar parameters. We focused in r /Ronecanexpandequation(9)inuandkeepthelinerterm tg(hleis3s)L.δθeNtt<oerte1oh0neorp.euTtlhshaaertsethxweteitpnhlsaistomenaautlolishbopigtressdppiooctttessdiwswisthhtreanoigpbheonttfihonrgswpaaonrtds- o2gn(1ly. Ucosisnαg)thoeneeqguetasliψty=0sαin+α(usi(n1α−cozs3α)()1/−sinzα2)+−3O/2(duz2)=. a§refullyvisibleandtheupperlimitAmax willremainvalidfor C−onsider a star of radiRus R with−a surface radiation inten- blackbodyemissionwithantipodalsymmetry. sity I0(α) which can vary over the surface. The observer lo- Caps of real pulsars (both radio and X-ray) do not emit as cation is given by a radius-vector D (D R). A (visible) a blackbody and their I0(α) need not be isotropic. In partic- surfaceelementdS = R2dµdφisobserved≫atimpactparame- ular: (1) X-ray pulsars show Comptonized power-law spec- ters(b,b+db)andsubtendsasolidangledΩ=bdbdφ/D2on tra, sometimesalongwithaclearblackbodycomponent(asin theobserversky. Hereµ = cosψ andφisanazimuthalangle SAXJ1808.4-3658).Lightbendingaffectsthetwocomponents correspondingto rotationaroundD; b dependson µonly,not differently: the blackbody pulse from one spot remains sinu- onφ. TheobservedradiationfluxfromdS isdF =IdΩwhere soidalwhiletheComptonizedpulseisdistorted.Thisdistortion I =(1 rg/R)2I0[IandI0arerelatedthroughI/ν4 =I0/ν04 is describedby equation(4) andit dependson the anisotropic andthe−frequencyredshiftν/ν0 = (1 rg/R)1/2,seeMisner − intensity I0(α) of the Comptonized emission. (2) For pul- etal. 1973].Usingequation(10)onegets sarsofhighspin(withmsperiods)theDopplereffectchanges I0(α). It is easily added to the model by the corresponding Ib db dS rg dcosαdS transformationofI0 fromthespotrestframetothelocalnon- dF = R2|dµ|D2 = 1− R I0(α)cosα dµ D2. rotatingframe. (3)AstrongmagneticfieldB 1012 Gleads (cid:16) (cid:17) (11) ∼ REFERENCES Misner, C. W., Thorne, K. S., & Wheeler, J. A. 1973, Gravitation, (San Shapiro, S. L., & Teukolsky, S. L. 1983, Black Holes, White Dwarfs, and Francisco:Freeman) NeutronStars,(NewYork:Wiley-Interscience) Pechenick,K.R.,Ftaclas,C.,&Cohen,J.M.1983,ApJ,274,846

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.