ebook img

Graph Theory with Algorithms and its Applications: In Applied Science and Technology PDF

222 Pages·2013·4.024 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Graph Theory with Algorithms and its Applications: In Applied Science and Technology

Graph Theory with Algorithms and its Applications Santanu Saha Ray Graph Theory with Algorithms and its Applications In Applied Science and Technology 123 SantanuSaha Ray Department of Mathematics National InstituteofTechnology Rourkela, Orissa India ISBN 978-81-322-0749-8 ISBN 978-81-322-0750-4 (eBook) DOI 10.1007/978-81-322-0750-4 SpringerNewDelhiHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012943969 (cid:2)SpringerIndia2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Thisworkisdedicatedtomygrandfatherlate Sri Chandra Kumar Saha Ray, my father late Sri Santosh Kumar Saha Ray, my beloved wife Lopamudra and my son Sayantan Preface Graph Theory has become an important discipline in its own right because of its applications to Computer Science, Communication Networks, and Combinatorial optimization through the design of efficient algorithms. It has seen increasing interactionswithotherareasofMathematics.Althoughthisbookcanablyserveas a reference for many of the most important topics in Graph Theory, it even preciselyfulfillsthepromiseofbeinganeffectivetextbook.Themainattentionlies to serve the students of Computer Science, Applied Mathematics, and Operations Research ensuring fulfillment of their necessity for Algorithms. In the selection and presentation of material, it has been attempted to accommodate elementary concepts on essential basis so as to offer guidance to those new to the field. Moreover, due to its emphasis on both proofs of theorems and applications, the subject should be absorbed followed by gaining an impression of the depth and methods of the subject. This book is a comprehensive text on Graph Theory and the subject matter is presented in an organized and systematic manner. This book has been balanced between theories and applications. This book has been orga- nizedinsuchawaythattopicsappearinperfectorder,sothatitiscomfortablefor studentstounderstandthesubjectthoroughly.Thetheorieshavebeendescribedin simple and clear Mathematical language. This book is complete in all respects. It willgiveaperfectbeginningtothetopic,perfectunderstandingofthesubject,and properpresentationofthesolutions.Theunderlyingcharacteristicsofthisbookare thattheconceptshavebeenpresentedinsimpletermsandthesolutionprocedures have been explained in details. This book has 10 chapters. Each chapter consists of compact but thorough fundamental discussion of the theories, principles, and methods followed by applications through illustrative examples. All the theories and algorithms presented in this book are illustrated by numerous worked out examples. This book draws a balance between theory and application. Chapter1presentsanIntroductiontoGraphs.Chapter1describesessentialand elementary definitions on isomorphism, complete graphs, bipartite graphs, and regular graphs. vii viii Preface Chapter2introducesdifferenttypesofsubgraphsandsupergraphs.Thischapter includes operations on graphs. Chapter 2 also presents fundamental definitions of walks, trails, paths, cycles, and connected or disconnected graphs. Some essential theorems are discussed in this chapter. Chapter3containsdetaileddiscussiononEulerandHamiltoniangraphs.Many important theorems concerning these two graphs have been presented in this chapter. It also includes elementary ideas about complement and self-comple- mentary graphs. Chapter 4 deals with trees, binary trees, and spanning trees. This chapter explores thorough discussion of the Fundamental Circuits and Fundamental Cut Sets. Chapter5involvesinpresentingvariousimportantalgorithmswhichareuseful in mathematics and computer science. Many are particularly interested on good algorithms for shortest path problems and minimal spanning trees. To get rid of lackofgoodalgorithms,theemphasisislaidondetaileddescriptionofalgorithms with its applications through examples which yield the biggest chapter in this book. ThemathematicalprerequisiteforChapter6involvesafirstgroundinginlinear algebra is assumed. The matrices incidence, adjacency, and circuit have many applications in applied science and engineering. Chapter7isparticularlyimportantforthediscussionofcutset,cutvertices,and connectivity of graphs. Chapter 8 describes the coloring of graphs and the related theorems. Chapter 9 focuses specially to emphasize the ideas of planar graphs and the concernedtheorems.Themostimportantfeatureofthischapterincludestheproof ofKuratowski’stheorembyThomassen’sapproach.Thischapteralsoincludesthe detailed discussion of coloring of planar graphs. The Heawood’s Five color the- orem as well as in particular Four color theorem are very much essential for the concept of map coloring which are included in this chapter elegantly. Finally,Chapter10containsfundamentaldefinitionsandtheoremsonnetworks flows. This chapter explores in depth the Ford–Fulkerson algorithms with neces- sarymodificationbyEdmonds–Karpandalsopresentstheapplicationofmaximal flows which includes Maximum Bipartite Matching. Bibliography provided at the end of this book serves as helpful sources for further study and research by interested readers. Acknowledgments I take this opportunity to express my sincere gratitude to Dr. R. K. Bera, former Professor and Head, Department of Science, National Institute of Technical Teacher’s Training and Research, Kolkata and Dr. K. S. Chaudhuri, Professor, Department of Mathematics, Jadavpur University, for their encouragement in the preparation of this book. I acknowledge with thanks the valuable suggestion rendered by Scientist Shantanu Das, Senior Scientist B. B. Biswas, Head Reactor Control Division, Bhaba Atomic Research Centre, Mumbai and my former colleague Dr. Subir Das, Department of Mathematics, Institute of Technology, BanarasHinduUniversity.Thisisnotoutofplacetoacknowledgetheeffortofmy Ph.D. Scholar student and M.Sc. students for their help to write this book. I, also, express my sincere gratitude to the Director of National Institute of Technology, Rourkela for his kind cooperation in this regard. I received consid- erableassistancefrommycolleaguesintheDepartmentofMathematics,National Institute of Technology, Rourkela. I wish to express my sincere thanks to several people involved in the prepa- ration of this book. Moreover, I am especially grateful to the Springer Publishing Company for their cooperation in all aspects of the production of this book. Last, but not the least, special mention should be made of my parents and my beloved wife, Lopamudra for their patience, unequivocal support, and encour- agement throughout the period of my work. Ilookforwardtoreceivecommentsandsuggestionsontheworkfromstudents, teachers, and researchers. Santanu Saha Ray ix Contents 1 Introduction to Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Definitions of Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Some Applications of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Incidence and Degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Isomorphism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Complete Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 Bipartite Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6.1 Complete Bipartite Graph . . . . . . . . . . . . . . . . . . . . . . 7 1.7 Directed Graph or Digraph. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Subgraphs, Paths and Connected Graphs . . . . . . . . . . . . . . . . . . . 11 2.1 Subgraphs and Spanning Subgraphs (Supergraphs) . . . . . . . . . . 11 2.2 Operations on Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Walks, Trails and Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Connected Graphs, Disconnected Graphs, and Components . . . . 15 2.5 Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Euler Graphs and Hamiltonian Graphs . . . . . . . . . . . . . . . . . . . . 25 3.1 Euler Tour and Euler Graph. . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Hamiltonian Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 Maximal Non-Hamiltonian Graph. . . . . . . . . . . . . . . . . 27 3.3 Complement and Self-Complementary Graph . . . . . . . . . . . . . . 31 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 Trees and Fundamental Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Some Properties of Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 xi xii Contents 4.3 Spanning Tree and Co-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.1 Some Theorems on Spanning Tree . . . . . . . . . . . . . . . . 40 4.4 Fundamental Circuits and Fundamental Cut Sets. . . . . . . . . . . . 41 4.4.1 Fundamental Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4.2 Fundamental Cut Set. . . . . . . . . . . . . . . . . . . . . . . . . . 42 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Algorithms on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1 Shortest Path Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1.1 Dijkstra’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1.2 Floyd–Warshall’s Algorithm. . . . . . . . . . . . . . . . . . . . . 57 5.2 Minimum Spanning Tree Problem. . . . . . . . . . . . . . . . . . . . . . 66 5.2.1 Objective of Minimum Spanning Tree Problem . . . . . . . 67 5.2.2 Minimum Spanning Tree. . . . . . . . . . . . . . . . . . . . . . . 68 5.3 Breadth First Search Algorithm to Find the Shortest Path. . . . . . 78 5.3.1 BFS Algorithm for Construction of a Spanning Tree. . . . 79 5.4 Depth First Search Algorithm for Construction of a Spanning Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6 Matrix Representation on Graphs . . . . . . . . . . . . . . . . . . . . . . . . 95 6.1 Vector Space Associated with a Graph. . . . . . . . . . . . . . . . . . . 95 6.2 Matrix Representation of Graphs. . . . . . . . . . . . . . . . . . . . . . . 96 6.2.1 Incidence Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.2.2 Adjacency Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2.3 Circuit Matrix/Cycle Matrix. . . . . . . . . . . . . . . . . . . . . 105 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7 Cut Sets and Cut Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.1 Cut Sets and Fundamental Cut Sets. . . . . . . . . . . . . . . . . . . . . 115 7.1.1 Cut Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.1.2 Fundamental Cut Set (or Basic Cut Set) . . . . . . . . . . . . 116 7.2 Cut Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.2.1 Cut Set with respect to a Pair of Vertices . . . . . . . . . . . 117 7.3 Separable Graph and its Block . . . . . . . . . . . . . . . . . . . . . . . . 118 7.3.1 Separable Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.3.2 Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.4 Edge Connectivity and Vertex Connectivity . . . . . . . . . . . . . . . 119 7.4.1 Edge Connectivity of a Graph . . . . . . . . . . . . . . . . . . . 119 7.4.2 Vertex Connectivity of a Graph . . . . . . . . . . . . . . . . . . 119 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Contents xiii 8 Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.1 Properly Colored Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.2 Chromatic Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.3 Chromatic Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3.1 Chromatic Number Obtained by Chromatic Polynomial. . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3.2 Chromatic Polynomial of a Graph G. . . . . . . . . . . . . . . 128 8.4 Edge Contraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9 Planar and Dual Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.1 Plane and Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.1.1 Plane Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.1.2 Planar Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.2 Nonplanar Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 9.3 Embedding and Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 9.3.1 Embedding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 9.3.2 Plane Representation. . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.4 Regions or Faces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.5 Kuratowski’s Two Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.5.1 Kuratowski’s First Graph. . . . . . . . . . . . . . . . . . . . . . . 138 9.5.2 Kuratowski’s Second Graph. . . . . . . . . . . . . . . . . . . . . 138 9.6 Euler’s Formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.7 Edge Contractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.8 Subdivision, Branch Vertex, and Topological Minors. . . . . . . . . 143 9.9 Kuratowi’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9.10 Dual of a Planar Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 9.10.1 To Find the Dual of the Given Graph . . . . . . . . . . . . . . 149 9.10.2 Relationship Between a Graph and its Dual Graph . . . . . 151 9.11 Edge Coloring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.11.1 k-Edge Colorable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.11.2 Edge-Chromatic Number . . . . . . . . . . . . . . . . . . . . . . . 153 9.12 Coloring Planar Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.12.1 The Four Color Theorem. . . . . . . . . . . . . . . . . . . . . . . 154 9.12.2 The Five Color Theorem . . . . . . . . . . . . . . . . . . . . . . . 155 9.13 Map Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 10 Network Flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.1 Transport Networks and Cuts . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.1.1 Transport Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.1.2 Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.