Graph States forQuantum Secret Sharing Damian Markham1,2,∗ and Barry C. Sanders3 1Universite´ Denis Diderot, 175 Rue du Chevaleret, 75013 Paris, France 2Department ofPhysics, GraduateSchool ofScience, UniversityofTokyo, Tokyo 113-0033, Japan 3InstituteforQuantum InformationScience, Universityof Calgary, AlbertaT2N 1N4, Canada Weconsider threebroadclassesofquantum secretsharingwithandwithouteavesdropping andshow how agraphstateformalismunifiesotherwisedisparatequantumsecretsharingmodels. Inadditiontotheelegant unificationprovidedbygraphstates,ourapproachprovidesageneralizationofthresholdclassicalsecretsharing viainsecurequantumchannelsbeyondthecurrentrequirementof100%collaborationbyplayerstojustasimple majorityinthecaseoffiveplayers.Anotherinnovationhereistheintroductionofembeddedprotocolswithina largergraphstatethatservesasaone-wayquantuminformationprocessingsystem. 8 0 0 I. INTRODUCTION (ii) tointroducethreesubproblemsthatshowhowtheorig- 2 inal classical secret sharing and the two versions of ct Secret sharing is one of the most important information- quantumsecretsharingfitintothegeneralproblemand O theoretically secure cryptographic protocols and is germane highlightthedifferencesbetweenthesesubproblems, to onlineauctions, electronicvoting, sharedelectronicbank- 1 (iii) develop a graph state formalism [6] that unites these ing, andcooperativeactivationofbombs. Althoughfirstfor- 1 subproblemsintooneelegantframework, mulatedandsolvedinclassicalinformationterms[1],twodi- ] rectionshavebeenfollowedinthequantumcase:classicalse- h cretsharingwithquantumenhancementofchannelstoprotect (iv) extend one class of subproblems concerning classical p secret sharing in insecure public channels beyond the against eavesdropping [2] (and experimentally realized [3]) - existingsecurityproofsthatrequire100%collaboration t andprotectingquantuminformationasanapplicationofquan- n bytheplayers,and tum error correction [4] (and experimentally realized in the a u ‘continuousvariable’Gaussianstatecase[5]). (v) introduceembeddedsecretsharingprotocolsforgraph q Insecretsharing,adealerwishestotransmitasecret,which stateswithinone-wayquantumcomputing,whichcould [ canbeabitstringoraqubitstringanddealsanencodedver- serveasafirststeptowardsimplementingintegratedse- sionofthissecrettonplayerssuchthatsomesubsetsofplay- 2 cret sharing protocolswithin quantumcomputing,e.g. erscancollaboratetoreconstructthesecretandallothersub- v distributed measurement-based quantum computation 2 sets are denied any informationwhatsoeveraboutthe secret. (MBQC)[7]. 3 Theaccessstructureisthesetofallsubsetsofplayersthatcan 5 obtainthe secret, andthe adversarystructureis the set of all 1 subsetsofplayersthatarecompletelydeniedthesecret. 8. In threshold secret sharing, each player receives precisely II. SECRETSHARINGPROBLEMANDSUBPROBLEMS 0 one equalshare of the encodedsecret, and a thresholdnum- 8 berofanyplayersk cancollaboratetoreconstructthe secret Tobeginweformulatethegeneralproblem. Thebasicunit 0 whereas every subset of fewer than k players is denied any ofclassicalinformationisthebit,correspondingto 0,1 ,and : { } v informationatall: thisschemeisreferredtoas(k,n)thresh- thebasicunitofquantuminformationisthequbit,correspond- i old secret sharing and is a primitive protocol by which any ingto = span 0 , 1 . Anymessagecanbeencodedin X H2 {| i | i} information-theoreticsecretsharingprotocolcanbeachieved. a finite string of bitsif the informationis classicalor in a fi- r In each case the channel can be classical or quantum de- nitestringofqubits(perhapsentangledandcouldbe pureor a pending on context. A private channel is an authenticated mixed)ifthe‘information’isquantum. channelthatis imperviousto eavesdropping. A publicchan- nelisanauthenticatedchannelthatisopentoeavesdropping. Secret Sharing Problem: A dealer holds a se- Mathematicallychannelsaredescribedbycompletelypositive cretS, whichiseithera bitora qubit,andmust trace-preservingmappings,evenforclassicalchannelsasclas- send thissecretto n playerssuchanyk ormore sicalinformationprocessingcanbeembeddedintoaquantum playerscanreconstructthesecret,andallsetsof framework. fewerthankplayersaswellaseavesdroppersare Ourgoalshereare deniedanyaccesswhatsoevertothesecret. (i) to formulatea secret sharingproblemthat allows both Remark. Asecretthatislongerthanonebitoronequbitcan classicalandquantumchannels,whichcanbeprivateor besharedbyadistributedprotocolthatsharesthestringone public, bitorqubitatatime. Our new andgeneralformulationof the secretsharingprob- lemismeanttobehelpfulinthatitincorporatesvarioussce- ∗Electronicaddress:[email protected] narios of secret sharing with quantum or classical channels 2 thatcanbepublicorprivate,andthethreemajorsecretshar- arethemainstateresourceinalmostallmultipartitequantum ingareasofstudy[1,2,4]aresubproblemsofthisoverarching information processing tasks, including measurement based problem. quantumcomputationanderrorcorrection(hencethelargeef- forttomakethem).Third,theyallowforanelegantgraphical CC Classical secret sharingwith privatechannelsbetween representationwhichoffersanintuitivepictureofinformation the dealer and each player and private Classical chan- flow,andalsoallowthepossibleuseofgraphtheoreticresults nelssharedbetweeneachpairofplayers; toaidproofsandunderstanding. CQ Classical secret sharing with public channels between Inthisworkweemploygraphstatesinthestandardform[6] thedealerandeachplayerandeitherQuantumorclas- plustwoextensions. Theseextensionsareactuallyquitesim- sicalchannelssharedbetweeneachpairofplayers ple (modification via local unitaries) and are intended to al- low intuitive graphical understanding of how information is QQ Quantumsecretsharingwhereinthedealersharesquan- encodedandspreadoverthe graphs. The ideais thatthe se- tum channels with each player, and these channels cretwillbeencodedontoclassicallabelsplacedonverticesof can be private or public, and the players share either the graph representinglocal operations. The inherententan- Quantum or classical private channels between each glement of the graph states allows these labels to be shifted other. around, allowing us to see graphically which sets of players canaccessthesecretsandwhichcannot(explicitlywrittenas As secret sharing is information-theoretically secure, the propertiesP1-P4,seee.g. Fig.2). Wewillgiveseveralexam- distribution of a classical secret message is completely se- plesalongthewaytomakeitclear. cure without the need for quantum information, in contrast We will begin by defining these extended ‘labeled’ graph to quantum key distribution [8], which catapults key distri- states in Subsec. IIIA, followed by describing the graphical butionoverpublicchannelsto information-theoreticsecurity rules of how they are used to spread information and how from the classical limited computational-security guarantee. it can be accessed in Subsec. IIIB, finishing with how they Thus case CC [1] is resolved fully by classical information changeundermeasurementsinSubsec.IIIC. processing,butweembedCCintoagraphstatedescription. Case CQ considers quantum-enhanced protection from eavesdroppingoverpublicchannelsand was firststudied for A. Labeledgraphstates (2,2)thresholdsecretsharing[2,9,10]andextendedto(n,n) threshold secret sharing [11]. The quantum enhancement is ApuregraphstateisastateintheHilbertspace ⊗n,i.e.a achievedbyrandomkeydistributionenabledviaquantumpu- H2 rification. stringofnqubits.For =(0 1 )/√2andanundirected ThethirdcaseQQdealswiththesharingofquantuminfor- graphG=(V,E)com|p±riisingn| iv±er|ticies,with mation[4],asopposedtoclassicalinformationinthefirsttwo V= v , E= e =(v ,v ) (3.1) subproblemsidentified above. To distinguish this case from { i} { ij i j } thefirsttwocases, theterm‘quantumstatesharing’issome- thesetofnverticesandthesetofedges,respectively. times used [5]. In contrast to CQ, which is only solved for the (n,n) threshold secret sharing case, this quantum infor- Definition 1. Two players i and j are ‘neighbours’iff there mationversioninprivatechannelsisfullygeneralinthesense exists an edge e that connects their respective vertices v ij i thatthegeneral(k,n)casehasbeensolvedasanapplication andv . j ofquantumerrorcorrection. In summary our graph state formalism unifies known re- Thesetofi’sneighboursisdenotedNi. sults concerning(n,n) CQ plus QQ for higher-dimensional Agraphstateiscreatedfromaninitialstate stabilizer states, and adds new results, including (3,5) CQ. Weexpectthatournewapproachtoallformsofquantumse- + ⊗n =H⊗n 0 ⊗n, H = + 0 + 1 , (3.2) | i | i | ih | |−ih | cretsharingin the literaturewill enablefurtheradvancesbe- with H the Hadamard transformation, by applying the two- cause ofthe eleganceandunifyingpropertiesofthisformal- qubitcontrolled-phasegate ism. CZǫǫ′ =( 1)ǫǫ′ ǫǫ′ , ǫ,ǫ′ 0,1 , ǫǫ′ ⊗2 (3.3) | i − | i ∈{ } | i∈H2 III. GRAPHSTATES to all pairs of qubits whose corresponding vertices on the grapharejoinedbyanedgeandnottoanypairnotconnected Graph states provide a superb resource for secret sharing, byan edge. The commutativityofall CZ operationsimplies asweshow.Theadvantagesofusinggraphstatesinthiswork thattheorderofapplyingCZgatesisunimportant: arethreefold. First,theyarethemostreadilyavailablemulti- partiteresourcestatesinthelaboratoryatpresent,withgraph G = CZe + ⊗n. (3.4) states of up to 6 qubits already built and used for informa- | i | i eY∈E tionprocessingexperimentally[12, 13], andmanyproposals fortheirimplementationinvarioussystems. Second,theyare We now modifythe graphlabeling. Theusualgraphstate naturalcandidatesforintegrationofdifferenttasks,sincethey haseachnodelabeledbyitsvertexindex;inotherwordsthe 3 labelofvertexv istheindexi,whichhasabitstringlength i of O(logn). We append to this label three more bits so the labelofvertexv is(i,ℓ ,ℓ ,ℓ )foreachℓ 0,1 . i i1 i2 i3 ij ∈{ } Thefirsttwolabelsareusedtodescribeclassicalinforma- tionspreadoverthestate. Overallvertices,wedefinethevec- tors~ℓ =(ℓ ,ℓ )fortheithvertex,~ℓ =(ℓ ,ℓ ,...,ℓ ) i⋆ i1 i2 ⋆j 1j 2j nj forthejthbitoverallnvertices,and ~ℓ=(~ℓ ,~ℓ ,...,~ℓ ). (3.5) 1⋆ 2⋆ n⋆ Graphicallytheselabelswillbeattachedtotheirverticesand usedto representthe spreadingofclassical information. Ifa vertexv hasnolabel,thisisequivalenttosetting~ℓ =(0,0). i i⋆ Thethirdadditionalbitℓ occursinthesecurityofproto- cols,andisnotrelevanttotih3eclassicalinformationtransmit- FIG. 1: (Color online) Labeled graph with vertex v1, depicted as 1 inside a (cid:3), which indicates that S has been applied to this ted. For the ease of graphical manipulation of the encoded vertex, and vertices v2 and v3, depicted as the numerals 2 and 3 information,we absorbthisbitinto thegraphitself. Graphi- callythethirdbitℓi3 isdepictedasthevertexvi beingeither iXnsℓiid1eZℓ#i2. haTvheebleaebnelsap~ℓpil⋆ied=to(eℓaic1h,ℓiq2u)biitndji,carteesptehcattiveolpye.ratFioonr a#(thesetofwhichisdenotedV#),forℓ =0,ora(cid:3)(the tsheutsoaf wunhiiocnhoifstdweonotytepdesVo(cid:3)f)v,efrotirceℓis3, = 1.i3The vertex set is ~sℓtia⋆te≡|G(0~ℓ⋆,2ℓii2)=∀i,Zth1ℓi1s2la⊗belZed2ℓ2g2ra⊗phZst3ℓa3t2e(c|o0rr+es+poin+dsit|o1t−he−eni)co/d√ed2 (Eqn.(3.13)). V=V# V(cid:3). (3.6) ∪ Wethushavetheextendedgraphs =(V#,V(cid:3),E). Encodedgraph states can be elegantlyexpressed in G |G~ℓ⋆2i Theseextralabelsimplythe actionoflocalunitaryopera- thestabilizerformalism. ForY = iXZ andstabilizeropera- tions(hencemaintainingentanglementproperties)viathefol- torsforanyithvertexdenotedby lowingdefinition. Definition2. The‘labeledgraphstate’,isobtainedfromthe Ki# =Xi⊗ei,j∈EZj, Ki(cid:3) =Yi⊗ei,j∈EZj, (3.11) graphstate G by | i (for circular and square vertices respectively) the encoded state iscompletelyspecifiedbyeigenequations (cid:12)(cid:12)G~ℓ(cid:11)=Oi (cid:16)Xiℓi1Ziℓi2(cid:17)|Gi |G~ℓ⋆2i K#,(cid:3) =( 1)ℓi2 i V. (3.12) = Sj G (3.7) i |G~ℓ⋆2i − |G~ℓ⋆2i∀ ∈ |Gi | i j|vOj∈V(cid:3) Thefollowingtwoexamples,forthreeandforfourqubits, respectively, explain how the stabilizers define the encoded for graphstates. X =0 1 + 1 0, | ih | | ih | Example1. Thethree-qubitlabeledgraphstatepresentedin Z =0 0 1 1, (3.8) | ih |−| ih | Fig.1istheencodedgraphstate S =0 0 i1 1. | ih |− | ih | 0++ +i1 Remark. The partial phase shift gate S is used to perform G =Zℓ12 Zℓ22 Zℓ32 | i | −−i , anX Y basistransformationforprotectionagainsteaves- | ~ℓ⋆2i 1 ⊗ 2 ⊗ 3 (cid:18) √2 (cid:19) droppi↔ng,analogoustotheBB84strategy[8]. (3.13) andistheuniquecommoneigenstateof Forencodingpurposes,onlylocalZ gatesarerequired,so weintroduceanotherkindofgraphstate. (cid:3) K =Y Z Z 1 1⊗ 2⊗ 3 Definition3. The‘encodedgraphstate’is K# =Z X 11 2 1⊗ 2⊗ 3 |G~ℓ⋆2i= Ziℓi2|Gi. (3.9) K3# =Z1⊗112⊗X3, (3.14) Oi witheigenvalues~ℓ =(l ,l ,l ). Thus the encodedgraph state is also a labeled graph state ⋆2 12 22 32 with ℓ = 0 for all i, = . 1i |G~ℓ⋆2i |G~ℓ=(0,ℓ12,0,ℓ22,...,0,ℓn2)i A four-qubit encoded graph state is given in the fol- Encodedgraphstatesexhibittheorthonormalityproperty lowing example. First we define the n-qubit Greenberger- Horne-Zeilinger-Mermin(nGHZM)graphandcorresponding DG~ℓ⋆2(cid:12)G~ℓ′⋆2E=δ~ℓ⋆2~ℓ′⋆2. (3.10) nGHZMgraphstate. (cid:12) 4 Definition4. ThenGHZMgraphforvertexv isthedegreen i graph =(V= v ,E= (v ,v ) ), (3.15) nGHZM j 1 j6=i G { } { } and the nGHZM graph state is the state corresponding to . nGHZM |G i Example2. The4GHZMgraphisdepictedinFig.2(a),and thecorrespondingencoded4GHZMgraphstateis =Zℓ12 Zℓ22 Zℓ32 Zℓ42 , (3.16) |G~ℓ⋆2i ⊗ ⊗ ⊗ |Gi 1 = (0+++ + 1 ), |Gi √2 | i | −−−i andisfullydefinedbythefourstabilizers FIG. 2: (Color online) Equivalence of labeled graph states depict- K# =X Z Z Z, K# =Z X 11 11, ing bit dependence for four players. (a) The initial four party en- K1# =Z ⊗11 ⊗X ⊗11, K#2 =Z ⊗11 ⊗11 ⊗X, (3.17) coded graph state corresponds to ~ℓi⋆ = (0,li2). (b) Equivalent 3 ⊗ ⊗ ⊗ 4 ⊗ ⊗ ⊗ statewith~ℓ1⋆ = (0,0), ~ℓ2⋆ = (0,l22),~ℓ3⋆ = (0,l32), and~ℓ4⋆ = witheigenvalues~ℓ =(l ,l ,l ,l ). (l12,l42)(seeEqn.(3.19)): bitℓ12 hasbeenshuffledfromvertex1 ⋆2 12 22 32 42 tovertex4,whichisindicatedbythearrowinthefigure. (c)Equiv- alentstatewithbitℓ22shuffledtotheotherparties:~ℓ1⋆ =(ℓ22,l12), ~ℓ2⋆ = (0,0), ~ℓ3⋆ = (0,ℓ22 l32), and ~ℓ4⋆ = (0,l22 l42) as B. DependenceandAccess indicatedby arrowsand labels⊕(seeEqn.(3.20)). NOTE:⊕vertexvi withoutlabelisequivalenttosetting~ℓi⋆ =(0,0). We first consider sharing a classical secret; sharing quan- tumsecretsfollowsfromthisaswewillseelater. Eachqubit representedbyavertexinthegraphisheldbyoneplayer,and labeled graph states where labels can be shuffled outside V′ theclassicalsecretisencodedintothelabel~ℓ⋆2. Asubsetof as much as possible. Of course different ~ℓ⋆2-labeled graph playersisrepresentedbyavertexsubsetV′ V. states,equivalentlyencodedgraphstates,mustbeinequivalent Forgenerallabeledgraphstates,allacces⊂sibleinformation because of the orthonormality relation (3.10); indeed this is for V′ resides in the reducedstate obtained from the labeled whyweneedthe~ℓ labels. ⋆1 graphstate(3.7): Then the next step is to ascertain if the desired informa- tion can be accessed by V′, which is effected by a measure- ρV′~ℓ =TrV/V′|G~ℓihG~ℓ|. (3.18) ment protocol correspondingto appropriate combinationsof K (3.11),thenexploitingtheeigenequationrelations(3.12). i Inthecontextofsecretsharing,itisimportanttoknowwhat Fortunately the graph readily reveals the appropriate way information about ~ℓ is contained in ρV′~ℓ. The information to do this. Before giving the general rules, we begin with a sharedbetweenρ and~ℓexhibitstwoimportantproperties: four-qubitexample. V′~ℓ Example 3. A dealer distributes the encoded graph A1 Bit dependence:–ρ is dependent on bit k if ρ is V′~ℓ V′~ℓ state (3.16) to all four players V = v ,v ,v ,v depicted notinvariantunderaflipofthekthbit. { 1 2 3 4} inFig.2(a).Inthisexampleweshowthat,ifthethreeplayers A2 Bit access:– Bit k is accessible if there exists a mea- inV′ = v1,v2,v3 collaborate,theylearntwobits(ℓ22,ℓ32) { } surement protocol such that one copy of ρ reveals of the four-bit encoding and are entirely denied knowledge V′~ℓ thevalueofbitkwithcertainty. of two other bits (ℓ12,ℓ42), whether they use shared quan- tumchannelsoronlyLOCC.Wealsoseethatjusttwoplayers A2 A1,butA1;A2. Givendependencyonabit,itisespe- V′′ = v ,v can(andcanonly)acquireℓ ℓ viaLOCC, cial⇒lyusefultoknowwhatinformationcanbeobtainedbyV′ where{ 2iss3u}mmation mod 2. 22⊕ 32 vialocaloperationsandclassicalcommunication(LOCC)or ⊕ Acting upon the encoded graph state (3.16) by the fourth viaquantumchannels. stabilizerofEq.(3.17)yields Graphicallyweascertainthedependancyofasetofplayers V′ on the information by shuffling bits between neighbours: K#ℓ12 =11 Zℓ22 Zℓ32 Xℓ12Zℓ42 that is, exploitingequivalencesbetween labeled graph states 4 |Gℓ~⋆2i 1⊗ 2 ⊗ 3 ⊗ 4 4 |Gi withdifferentlabels~ℓ. Ifalabeldoesnotoccurononeofthe =(cid:12)G~ℓ=(0,0,0,ℓ22,0,ℓ32,ℓ12,ℓ42)E ovebrvtiioceussibnecthaeusseetthVe′,lathbaetlsweotuhladstnhoendreeppernedseennctyaolonciatl.uTnhiitsariys =((cid:12)(cid:12)−1)ℓ12ℓ42|Gℓ~⋆2i. (3.19) operationoutsidethesetV′, whichcannotaffectthereduced TheplayersubsetV′ = v ,v ,v isthusindependentofℓ 1 2 3 12 { } density matrix ρ . We thus look for equivalencesbetween becauselocalunitarydependenceonℓ hasbeenshuffledto V′~ℓ 12 5 player v ’s two-bit label ~ℓ . In Fig. 2(b), this ℓ bit shuf- Example4. ForExamples2and3letthe#representationof 4 4⋆ 12 fle is depicted as a green arrow from vertex v to vertex v . vertexv bechangedtoa(cid:3)inFig.2(a).Thus,inFig.2(c),the 1 4 1 Vertexv1 is unlabeledbecause its bit valueis now zero, and resultantbitpaironvertexv1is~ℓ1⋆ =(ℓ22,ℓ12 ℓ22)instead vertexv4 nowhasatwo-bitlabel~ℓ4⋆ = (ℓ12,ℓ42). Thegraph of ~ℓ = (ℓ ,ℓ ) because modifying X ⊕Y = iXZ in 1⋆ 22 12 statesinFigs.2(a)and2(b)arethusequivalentupto(anirrel- therevisedstabilizerK# K(cid:3) yieldsane7→xtraZ operation evant)globalphase. 1 7→ 1 leadingto 1 on the second bit(via the appropriatechange Players in V′ share a reduced state that is dependent on toEq,(3.20⊕)).Theothersremainthesame~ℓ =(0,ℓ ℓ ), bits ℓ ,ℓ . In fact they can perform measurements corre- 3⋆ 2⊕ 3 spond2i2ng3to2 K# and K# to learn these two bits according ~ℓ4⋆ =(0,ℓ2⊕ℓ4). 2 3 to (3.12). With shared quantum channels, there is no prob- Theseexamplesforfourqubitsaregeneralizabletonqubits leminperformingsuchajointmeasurementasK2# andK3# with # or (cid:3) vertices. Here are the general principles for commute and have supportonly on operationsby players in accessibility and dependence of information in an encoded V′. Howeverquantumchannelsarenotrequired: theplayers graphstate. canlearn(ℓ ,ℓ )byLOCCbecausethestabilizerscommute 22 32 locally. In contradistinction a failure of local commutation Proposition 1. The following principles hold for encoded wouldimplythatthesebitscouldnotbelearnedbyLOCC. graphsstates . Infactasmallersetofplayerscanaccessinformation.Con- |G~ℓ⋆2i tsoidreKrt#hℓe22seytieolfdpslayersV′′ = {v2,v3}. Applyingeigenopera- P1 oTnheveenrtceoxdvedigsraepqhuivstaalteent|Gto~ℓ⋆2tihewliathbeolnede-bgirtalpahbesltalit2e 1 i where vertex v is relabeled 0 and a neighbour- K1#ℓ22(cid:12)(cid:12)(cid:12)G~ℓ⋆2E=X⊗ℓZ22ℓZ22ℓ+12ℓ3⊗2 ⊗11Zℓ22+ℓ42|Gi |o~ℓinGjfg⋆~ℓtih=veet(ryℓtepi2xe,#vℓjj2oi⊕rs(cid:3)ℓrie2,l)ari,ebdsepelpeecedtniedvieitnlhyge.roTn~ℓhjwe⋆hree=tmhae(rinℓviie2nr,gtℓenjx2e)vigiohisr- = boursofv ,v N arerelabeled(0,ℓ ℓ ). Inthis (cid:12)G~ℓ=(ℓ22,ℓ12,0,0,0,ℓ22⊕ℓ32,0,ℓ22⊕ℓ42)E wayanynjeigkhb∈ouriofv canshufflethek2d⊕epein2dencyof (cid:12) i =((cid:12)−1)ℓ12ℓ22(cid:12)G~ℓ⋆2E (3.20) ℓflii2ngtoisitdseeplficatneddatosgitrseerenmaarrinoiwnsgannedigshhboowusrhs.owBidtespheunf-- (cid:12) Thisimpliesthatthereducedde(cid:12)nsitymatrixonlydependson dence of the reduced state on bit labels can be trans- ℓ ℓ . Thisinformationcanbeaccessedbymeasuring ferredfromoneplayertoanother. 22 32 ⊕ K#K# =11 X X 11. (3.21) P2 Thebitvalueℓ isaccessiblebyplayersinsetV′ifand 2 3 ⊗ ⊗ ⊗ onlyifv andail2litsneighboursN areinthesetV′. i i This can be done by LOCC. This shuffling is illustrated in Fig.2(c);henceallgraphstatesinFigs.2(a)to2(c)areequiv- P3 IfthesetV′ comprisesanevennumberofplayers,and alent. all their external neighbours (outside the set V′) are neighboursofeachandeveryplayerinV′,thenthesum Remark. StabilizeroperatorsK#(andproductsthereof)are i (mod 2) of all their one-bit labels ℓ is accessible, not directly measured by the players under LOCC; rather { i2} i.e.theycancollaboratetofind playerslocallymeasureintheX ,Y =iX Z ,orZ basesto i i i i i obtainone-bitoutcomessXi ,sYi ,andsZi ,respectively, where ℓ ℓ ... ℓ , v ,v ,...,v V′. sα is assigned the value 0 if the measurement outcome is 1, i2⊕ j2 ⊕ m2 i j m ∈ i and1ifthemeasurementoutcomeis 1. Then the bit value outcome for th−e measurement of K# P4 IfP2holds,andplayersinthesetsharequantumchan- 2 andK# inExample3is nels,allinformationencodedinone-bitlabelsisacces- 3 sible. Ifthesetsharesonlyclassicalchannels,andP2 ℓ =sZ sX, ℓ =sZ sX, (3.22) holds,theninformationaccessibilityislimitedbecause 22 1 ⊕ 2 32 1 ⊕ 3 neighboursv andv inthesetcanonlylearneitherℓ i j i2 respectively. Henceforth when we say players can locally or ℓ but not both, but v and v in the set can learn j2 i j measureanoperator,wemeanmeasurementinthesensethat bothℓ andℓ iftheyarenotimmediateneighbours. i2 j2 localPaulimeasurementscanbeperformedandresultantbit outcomescombinedtolearnthesameasifnonlocalstabilizer NOTE: The bit shuffling in P1 is not active; rather it recog- measurementswereperformed. nizesequivalencebetweenlabeledgraphstates. For Example 3, each player’s qubit corresponded to a # Proof. All proofs are simply derived from eigenequa- vertex. Extending to (cid:3) vertices is straightforward by using tions (3.11) and (3.12), which shuffles bits between play- theK(cid:3) stabilizers(3.11). Specificallyifavertexismodified ers,therebyrevealingactualdependenceofreducedstateson i bychangingits graphrepresentationfroma #to a (cid:3), in the givenbitlabels ℓ . i2 stabilizersanX ischangedtoaY andwehaveacorrespond- For P1, supp{ose}vertex v has a neighbouring vertex v i j ingchangetothebittransfer. whichiseithera#ora(cid:3). Then 6 |G~ℓ⋆2i=(−1)ℓi2ℓj2Kj#ℓi2|G~ℓ⋆2i=(−1)ℓi2ℓj211i⊗Zjℓj2Xjℓi2 ⊗(vk,vj)∈EZk(ℓk2+ℓj2)⊗m6=i,j;(vm,vj)∈/EZmlm2|Gi, |G~ℓ⋆2i=(−1)ℓi2ℓj2Kj(cid:3)ℓi2|G~ℓ⋆2i=(−1)ℓi2ℓj2i11i⊗Zjli2⊕ℓj2Xjℓi2 ⊗(vk,vj)∈EZk(ℓk2+ℓj2)⊗m6=i,j;(vm,vj)∈/EZmℓm2|Gi, (3.23) respectively. Evidently dependency on ℓ is shuffled from i2 neighbourv tov ,andv ’sotherneighboursareasdescribed i j j inP1. For P2, players obtain ℓ by measuring K#,(cid:3) of (3.11) i2 i and(3.12). BecauseK#,(cid:3) isnontrivialoniandalsoonN , i i by (3.11), player i and all of N must collaborate to mea- i sureℓ ,andthiscollaborationissufficient. i2 ForP3westartbylookingatthecaseV′ containsonlytwo players. By (3.11) if all neighbours of pair v ,v V′ are i j either in the set, or shared outside the set, K#,(cid:3) ∈K#,(cid:3) is i · j nontrivialonlyinsidetheset,andthuscanbemeasuredbythe membersoftheset. ThisistruesincealltheZfromtheK#,(cid:3) i cancel with the Z from K#,(cid:3) on their commonneighbours. j ApplyingK#,(cid:3) K#,(cid:3)to(3.12),weseethatthisyieldsℓ i · j i2⊕ ℓ . Similarlythisholdsforanyevennumberofplayers. j2 For the comparison of LOCC to the fully quantum case ofP4,bytheabovelogicifpropertiesP2andP3hold,thenthe FIG.3:(Coloronline)WhenPauliZandY measurementsaremade dependencyontheassociatedobservablesarenontrivialonly on vertex v1, graphs (a) and (b) metamorphose into (a′) and (b′), within the set. As all operators K#,(cid:3) commute, all observ- respectively. Outcomes Siα = 0,1 correspond to measurement i eigenvalues 1,+1respectively,andareincorporatedintothelabels ables commute in the nontrivial set, and hence can be mea- in(a′)and(b−′). suredbyglobaloperations. ForLOCC,itisclearfrom(3.11)that,ifverticesv andv i j Paraeulnieoigphebraotuorrss,othneinaKndi#,j(cid:3)haenndceKcj#an,(cid:3)nosthbareesdimiffuelrtaennetoloucslayl vertexvi anditsedgesdeleted. ForoutcomesZi ,thelabelsof allverticesinN changeto~ℓ ⋆ (0,ℓ sZ). Wedenote measuredlocally;therefore,evenifP2holds,onemustchoose i j 7→ j2⊕ i theresultantgraphbyg. one measurement or the other. If vertices v and v are not i j If a Y measurement is made on vertex v of an encoded neighbours, they are indeed amenable to simultaneous local i graph state with circular vertices, the resultant state is a la- measurements. Similar statements can be made when P3 beled graph state obtained by applying the following four holds,butaremorecomplicatedgraphicallyandmustbetaken stepstotheoriginalgraph;thenewgraphisdenotedg′. casebycase. S1 Performlocalcomplementationonv :allexistingedges i between elements in N are removed, and where they C. LocalZandY measurementsonencodedgraphstates i didnotexist,theyareadded. In our protocols encoded graph states with both (cid:3) and # vertices arise as a result of performing either Y or Z mea- S2 Each#vertexinNi ischangedto(cid:3). surementsonqubitsidentifiedbyverticesofthelabeledgraph with only circular vertices. Local Pauli measurements on S3 For outcome sY, the labels on the neighbours of i i graphstatesaredescribedbyasimplesetofrules,whichread- changetoℓ =(0,ℓ ) (0,ℓ ℓ sY) ily yield the resultantstates [6]. These rules were originally j⋆ j2 → j2⊕ i2⊕ i statedintermsofgraphstatesuptolocalunitaryoperations. S4 Removevertexiandallitsedges. For ourpurposeswe wouldlike to incorporatealso these lo- cal unitaryoperationsinto the labeled graphstates. We now representtheserulesexactlygraphicallyfortheZandY mea- Example 5. A Z and a Y measurement on vertex v1 of a surements,usingthelabeledgraphsabove,withnolocaluni- squaregraphstatewith circularvertices changesthe graphs taryambiguity. asdepictedinFig.3. If a Z measurement is made on vertex v of an encoded i graph state with circular vertices, the resultant state corre- These rules can easily be understood by the fact that any spondstoalabeledgraphstateoftheoriginalgraphbutwith encodedgraphstate with labelsℓ = 0 i can bewritten in i2 ∀ 7 theform IV. SECRETSHARINGPROTOCOLS 1 |G(~0)i=√2(cid:18)|0i1|g(0···0)i2,...,n+|1i1|g(1···10···0)i2,...,n(cid:19) Inthissectionweintroduceourthreesecretsharingproto- cols beginningwith CC for sharing classical secrets in Sub- ∈N1 eiπ/4 | {z } sec.IVA. Usingourgraphstateapproach,weconstructsolu- = 0′ g′ ) tionsforeachof(n,n),(3,4)and(3,5)thresholdsecretshar- √2 (cid:18)| i1| (0···0 i2,...,n ing. These results provide a foundation for our subsequent protocols:CQinSubsec.IVBandQQinSubsec.IVC. i1′ g′ , (3.24) − | i1| (1 10···0)i2,...,n(cid:19) ··· ∈N1 | {z } A. CC with 0 , 1 and {| i | i} 0′ =1/√2(0 i1 ), 1′ =1/√2(0 +i1 ) In the CC protocol, classical information is directly en- {| i | i− | i | i | i | i } coded into the bit string ~ℓ , i.e. onto the encoded graph ⋆2 theeigenstatesoftheZ andY Paulioperators,andthecorre- state inamannerthatenablescertainsetsofcollab- spondingeigenvaluesare+1and 1,respectively.Addingla- {|G~ℓ⋆2i} oratingplayerstoaccessconcealedinformationaccordingto − bels~ℓ⋆2 indicatestheapplicationoflocalZs. Thiscommutes theprinciplesofthesecretsharingprotocol. withmeasuringPauliZ,sothelabelscarryforwardonlywith MathematicallyourprotocolissimilartoGottesman’s[14] theadditionofthecorrectionfromthemeasurementitself,e.g. whereinstabilizersareusedtoshareclassicalsecretsinquan- Fig. 3(a),(a’). However, local Z does not commute with a tumstates.AdifferencebetweenourschemeandGottesman’s Y measurement,hencethebitℓ12 carriesontothemeasured is that he uses mixed high-dimensional states whereas our graph(S3),e.g. Fig.3(b),(b’). graphstateapproachenablesuseofpurestatesonqubits.An- Thefollowingdefinitionfollowsnaturally. otherdifferencewithGottesman’sapproachisthatourmethod is notas general: ourscheme worksfor a limited numberof Definition5. Givenagraph withonlycircularvertices,and G (k,n) scenarioswhereasGottesman’smethodworks forany associatedencodedgraphstate , thegraphofthestate |G~ℓ⋆2i (k,n). Although our scheme is more restrictive, it is appli- givenbymeasuringPauliY onvertexi 1,...,n iscalled theconjugategraphdenotedg′,withcon∈ju{gategrap}hstatede- cable to a restricted set of cases and importantly provides a foundationforthe protocolsdiscussedinsubsequentsubsec- noted g′ andcanbefoundexplicitlybyfollowingthe | i1,...,n/i tions. rules TheCCprotocolstepsareasfollows: R1 Performlocalcomplementationonv . i CC1 ThedealerencodesthesecretbitstringS intotheclas- R2 Replaceallneighboursofiwith(cid:3)vertices. sicalinformation~ℓ andencodesthisontothen-qubit ⋆2 state . R3 Removev andallitsedges. {|G~ℓ⋆2i} i CC2 Thedealersendseachplayeronequbit. Itcaneasilybeshownthatencodedconjugategraphstates canbewrittenas CC3 An authorizedset of playersaccesses the secretbit by measuring appropriate stabilizer operators (prescribed e−iπ/4 (cid:12)g(′0···0)E= √2 (cid:18)|g(0···0)i+|g(1···10···0)i(cid:19) explicitlyineachcase). (cid:12)(cid:12) ∈N1 Hereweanalyzetheabilityofsetsofplayerstoaccessthisin- e−iπ/4 | {z } formationfortwocases: usingLOCCandusingfullquantum (cid:12)(cid:12)g(′1···10···0)(cid:29)= √2 (cid:18)|g(0···0)i−i|g(1···10···0)i(cid:19) caodmifmfeurennictasthioanri(nFgQsCtr)u.cWtuerew,iallnsdeethtahtattheeacrhulgersaopfharecpceressseanrtes (cid:12)(cid:12) |∈{Nz1} |∈{Nz1} (3.25) simpleingraphterms,andshowthatsomegraphscanbeused as secret sharing schemes as set out in the introduction. In soareeffectivelyconjugatetotheencodedgraphstates particularwepresentschemesfor(n,n),(3,4)and(3,5). We now proceed to give explicitexamplesof how the de- {(cid:12)g(0···0)(cid:11),|g(1···10···0)i}. pendence and access properties in Sec. IIIB can be applied (cid:12) ∈N1 to give secret sharing via the above protocol. We begin by | {z } looking at the case of nGHZM states. Using Property P1, ThefollowingdefinitionsareusefulforSec. V. i we can see in Fig. 4(a) that the player set v ,...,v de- 1 m { } Definition6. ThenGHZMgraphGnGHZMi isembeddedinG pendsonly on bits ℓ22,...,ℓm2; i.e., the dependencyon ℓ12 if andN = . hasbeenremoved. FromP2itispossibleforthesameplayer GnGHZMi ⊂G i∩G\GnGHZMi ∅ settorecoverallℓ ...,ℓ ,and,byP4,thiscanbedoneby Definition7. ThenGHZMgraphstateisembeddedintostate 22 m2 LOCC. if isembeddedin . |Gi GnGHZMi G Explicitlythiswouldbedonebyplayer1measuringZ1and Wenowhavethenecessaryformalismtodevelopthevari- the remainingplayers v ,...,v measuring X and com- 2 m i oussecretsharingprotocols. paringresultstomeasu{reK#,...,K} #,yieldingℓ ,...,ℓ 2 m 22 m2 8 obtain,andonlyobtain,ℓ ℓ . Fig.5(c)revealsthatplay- 22 42 ers v ,v ,v obtain,and o⊕nlyobtain,ℓ and/or(byusing 1 2 3 22 { } FQC/LOCC)ℓ ℓ . 12 32 Similarly, play⊕ers v ,v ,v obtain, and onlyobtain, ℓ 2 3 4 32 { } and/or (via FQC/LOCC) ℓ ℓ . The remaining triplets 22 42 ⊕ obtain, and only obtain, ℓ and/or (via FQC/LOCC) ℓ 12 22 ℓ in the case of v ,v ,v , and ℓ and/or (FQC/LOCC⊕) 42 1 2 4 42 ℓ ℓ inthecas{eof v ,v},v . 12 32 1 3 4 ⊕ { } We see that this graph gives a (3,4) threshold scheme by setting FIG. 4: (Color online) Distribution and access of information l12,...,ln2 for the n-GHZM state. The green arrows represent ℓ12 =ℓ22 =ℓ32 =ℓ42 =S. (4.2) { } uses of dependency Property P1. In (a) the dependency on l12 is takenoutoftheset,andin(b)thedependencyonl22issharedacross thewholeset.Thisencodedgraphstategivesan(n,n)secretsharing Ourfinalresultinthissubsectionconcernsthe(3,5)thresh- schemebysettingl12 =Sandtheotherbitscanbesetarbitrarily. oldscheme,givenbya5-qubitringdepictedinFig.6. Proposition4. Thefive-qubitencodedRINGgraphstateen- viaeigenequations(3.12). Hence,inthiscase,LOCCissuffi- ables(3,5)thresholdsecretsharingfortheCCprotocolpro- cientforallpossibleinformationaccess. vided that ℓ = ℓ = ℓ = ℓ = ℓ = S, with LOCC 12 22 32 42 52 Similarly Fig. 4(b) shows how P1 implies that the player betweenplayersbeingsufficientfordecoding. subset v ,...,v dependsonbits 2 m { } Proof. Fig. 6(a) shows how P1 implies that players 1 and 2 l ℓ ,ℓ ℓ ,...,ℓ ℓ cannotaccessanyinformationbecausethedependencycanbe 22 32 22 42 22 m2 ⊕ ⊕ ⊕ takenawayfromthem. Similarlyitiseasytoseethatnopair onlyand,byP3andP4,theycanbeaccessedsimultaneously of players can access any information by application of P1. byLOCCalone. Explicitlythiswouldbedonebyallplayers Ontheotherhandifthreecyclicneighbours vi,vj,vk form { } measuringXi. Theplayersinthissetthencompareresultsto a set, P1 implies the set only depends on ℓj2; this is clear measure from the case for the player set v1,v2,v3 in Fig. 6(b). P2 { } implies the bit can be accessed, and P4 says this access can K# K#,K# K#,...K# K#. (4.1) beachievedviaLOCC.Accessingwouldbeaccomplishedby 2 · 3 2 · 4 2 · m measuringK#, which is done by locally measuringZ , X , j i j Only in the case that all players collaborate would there be Z . k a difference between the LOCC and FQ cases; in this case Theremainingpossiblesetsofthreeplayersareallsimilar P4 implies that, by LOCC, the players can either access to the T shape in Fig. 6(c); in this case the set v ,v ,v i j k { } ℓ ,...,ℓ or ℓ . Obviously, for FQC, all information is dependsonlyonℓ ℓ ℓ bypropertyP1.Thisisseenfor 22 n2 12 i2 j2 k2 simultaneouslyaccessible. theexample v ,v ,⊕v ⊕inFig.6(c).BypropertiesP2andP4 1 2 4 { } Weseeabovethatbitℓ isonlyaccessiblewhenallplay- theplayerscanaccessthesecretbyLOCC.Theirprocedureis 12 ersacttogether. BychoosingthesecretbitS asS = ℓ and effectedbymeasuringK# K# K#,whichisaccomplished 12 i · j · k fixingallotherℓ arbitrarily,weobtainthefollowingpropo- locallybymeasuringY ,Y ,X . i2 i j k sition. Anysetofmorethanthreeplayerscontainsatleastoneof these possibilities, and the players can therefore access the Proposition2. AnencodednGHZMstatewithℓ12 = S and sameinformation.BychoosingtoencodethebitsecretS as allotherℓ settozeroenablesa(n,n)directsecretsharing i2 schemethatcanbeaccessedviaLOCC. ℓ12 =ℓ22 =ℓ32 =ℓ24 =ℓ52 =S, (4.3) ThiscaseisdepictedinFig.4. thepropositionisproved. Nowweseethat(3,4)thresholdsecretsharingisattainable Here we established three examples that use graph states withencodedgraphstates. forsecretsharing.Thesethreeexamplesdemonstratethesim- ple propertiesof our approach, and more examplesof graph Proposition 3. The 4-qubit ring encoded graph state with statesforsecretsharingcouldbefound. Inthenexttwosub- ℓ = ℓ = ℓ = ℓ = S enables a (3,4) direct secret 12 22 32 42 sections,weextendtheseresultsandtechniquestosecretkey sharing scheme, and LOCC between players suffices for de- distillationandtosharingaquantumsecret. coding. Proof. The4-qubitringstateisdepictedinFig.5. We seein Fig.5(a)thatP1showsthatpairs v ,v , v ,v , v ,v B. CQ 1 2 2 3 3 4 and v ,v aredeniedanyinform{ationw}ha{tsoeve}r. { } 1 4 Fi{gure5(}b)showsthattheplayerpair v ,v canobtain, InthissubsectionweaddresscaseCQ,whichcorresponds 1 3 and moreovercan onlyobtain, ℓ ℓ .{Simil}arly v ,v totheprotocolexpoundedbyHillery,Buzˇek,andBerthiaume 12 32 2 4 ⊕ { } 9 FIG. 5: (Color online) Application of P1 to the square encoded graph state. This graph gives a (3,4) secret sharing scheme setting ℓ1 = ℓ2 = ℓ3= ℓ4 = S(seeproposition3). FIG.6: (Coloronline) Application of P1tothe5-qubit ring encoded graph statetoobtain a(3,5) direct secret sharingscheme by setting ℓ12 = ℓ22 = ℓ32 = ℓ42 = ℓ52 = S. (HBB) for sending a classical secret with insecure quantum and(3,3)cases,andthishasbeenextendedtothe(n,n)case channels between the dealer and players [2]. Actually this in[11]. problemcaninsteadbesolvedbycombiningtheclassicalse- We notethat,asanextensionofHBB, ourprotocolshares cretsharingprotocolofShamir[1]viastandardquantumkey thesamedrawbacks. TheHBBprotocol,henceours,protects distribution(QKD)[8]toassuresecureclassicalchannelsbe- againstintercept-resendattacksbutisnotguaranteedtobese- tween the dealer and each of the players. In the QKD ap- cure against other attacks [9]. Second, it only works for a proach, the dealer would first establish a random key with noiseless channel: In the case of a noisy channel, the HBB each of the players individually by using QKD. This would protocol can not establish a key (as the noise will be mis- enableperfectlysecureclassicalcommunicationbetweenthe takenforaneavesdropper).Thisproblemislikelynotfatal,as dealerandeachplayer(asaonetimepad),whichcanthenbe approachesinvolvingentanglementdistillationoralternatives used to performthe Shamir protocolsafely. However, QKD couldhelptoovercometheeffectsofnoiseinthechannel[10]. maynotaffordthemostefficientapproachhencetheinterest Our protocolemploys graph states to generalize the HBB inalternativeschemes. scheme[2]. Byusinggraphstatesourschemecouldbuildon HBB [2] combinesecret sharingprotocolswith QKD: the currentexperimentalresearchfor generatinggraphstates for dealer distributes multipartite states to share a secret key, measurement-basedquantumcomputing[12].Further,encod- whichcanonlybedistilledbyorsharedwithauthorizedsets ingontographstatesallowsustousethepropertiesdeveloped of players. This key can then be used to send any classical Sec.IIItogeneralizetootheraccessstructures. messagethedealerwouldwishtosendtotheauthorizedplay- As an example we show how this approach generalizes ers,withoutanyunauthorizedpartieshavingaccesstoit. The HBB’s protocol to the (3,5) case, together with the (n,n) HBBapproachcanbemoreefficientinthenumberofusesof case. Although other examples are not provided here, the quantumchannelsbetweendealerandplayers,whichiscom- propertiesgiveninSec.IIIBallowfurtherexploration.Inad- parabletothegreaterefficiencyachievedbydirectdistillation dition, our graph state shows how the HBB protocol can be of multipartite entanglement rather than distillation of pairs thoughtofasanextensiontoGottesman’sresults[14],inthe of maximallyentangledstates and complicatedsequencesof sensethatHBB’sprotocolcanberegardedasapurificationof teleportations[15]). Gottesman’s. AnotherbenefitisthattheHBBapproachcanbeextended tosharingquantumsecrets(QQ)asweseeinthenextsubsec- Theunderlyingconceptfortheprotocolissimple. Weuse tion. HBB[2]createdaclassicalthresholdschemefor(2,2) anentangledstateasthechannelbetweenthedealerDandn 10 players.Thiswillbeagraphstate;hencewecanalwayswrite inthefollowingway(c.f.Sec.IIIC) 1 {|g(0···0)i1,...,n,|g(1···10···0)i1,...,n}, |G(~0)i=√2(cid:16)|0iD|g(0···0)i1,...,n |∈{NzD} ortheconjugatestates +|1iD|g(1···10···0)i1,...,n(cid:17) g′ , g′ . ∈ND {| (0···0)i1,...,n | (1···10···0)i1,...,n} =eiπ/4 0′| {gz′} ∈ND √2 (cid:16)| iD| (0···0)i1,...,n As seen in Sec. IIIC these sta|te{sza}re conjugate in the sense i1′ g′ . (4.4) thatdiscriminatingthestates − | iD| (1···10...0)i1,...,n(cid:17) |∈{NzD} {|g(0···0)i1,...,n,|g(1···10···0)i1,...,n} The dealer measures randomly in either the 0 , 1 or ∈ND D D the 0′ D, 1′ D basis. Thedealer’smeasure{m| einto|utico}mes providesnoinformationabout|w{hzeth}erwehave {| i | i } providetherandomkey. Throughthe entanglement, the playerscan access the key |g(′0···0)i1,...,n bymakingthecorrectmeasurement.Ifthedealermeasuresin or 0 , 1 ,theresultsarethencorrelatedtothestates D D {| i | i } g′ . {|g(0···0)i1,...,n,|g(1···10···0)i1,...,n} | (1···10···0)i1,...,n ∈ND ∈ND | {z } | {z } Thus, the players cannot discriminate both bases simultane- held by the players. If any set of players can discriminate ously,soevenifasetofplayersisauthorizedandcandiscrim- thesestatesperfectly,theycanfindoutwhatthemeasurement inate perfectly,50%of the time they will measurein a basis resultofthedealerwas,andtherebyobtaintherandomkey. inwhichtheygainnoinformationaboutthedealer’smeasure- The dealer may instead choose to measure in mentresult, hencewill notaccess the key. To accommodate the 0′ , 1′ basis, and then the player’s qubits {| iD | iD} thisatsome pointin the protocol,thedealeror playersmust willendupineitheroftheassociatedconjugatestates announcewhichbasistheymeasure. Resultswherethebases matcharekept,andthosethatdonotmatcharediscarded.The g′ , g′ {| (0···0)i1,...,n | (1 10···0)i1,...,n} remainingresultsshouldbeperfectlycorrelatedandprovidea ··· ∈ND randomkey,oftenreferredtoasthe‘siftedkey’. Bystandard | {z } classicalsecurityprotocols[3],thiscanbedistilledtoasecret correlatedto themeasurementresult. Theabilityto discrim- keybythedealerandauthorisedplayerssacrificingpartofthe inate (or in other words, to access the information ~ℓ⋆2 and siftedkey. hencegetthekey)isthendeterminedbytheconjugategraph Inthiswayourprotocolsareprotectedagainstalargeclass g′, which must be checked to have the correct access struc- ofattacks,namelytheso-calledintercept-resendattacks. For ture also (if we want to do secret sharing). We see that this suchattacksweimagineaneavesdropper(traditionallycalled worksfortheGHZandthe5-qubitringencodedgraphstates, Eve)whotriestogaininformationaboutthesecretkeybyin- butitdoesnotworkforthe4-qubitringencodedgraphstate. terceptingthequbitsbeforetheyreachtheplayers,andeither This is why we cannotextend the (3,4) CC protocolto key measuring them directly or entangling them to some ancilla distributioninthisway. ‘spy’-qubitsofherownandthensendingthemontotheplay- In the case of only one player, this corresponds to Ek- ers.(Infact,thiseavesdroppercouldinsteadbesomeunautho- ert’s protocol [16]. In our case there is the added struc- rizedplayers.) AtanypointintheprotocolEvemaymeasure ture given by the graph g. Discriminating these states is herentangledancillaspy-qubitstoattemptaccesstothekey. the same as accessing either the information ~ℓ⋆2 = ~0 or She will try to do this in a way that is not detectable by the ~ℓ = (1,...,1,0,...,0). Bychoosingtherightgraph,only dealerandauthorizedplayers. ⋆2 theauthorizedplayerscanaccesstheinformation,ordiscrimi- Measuringintwoconjugatebasesservestwocomplemen- natethestatesandaccessthiskey.Inthisfirstinstanceweuse tarypurposestocounterthisparticularclassofattacks. First exactlythegraphsofthelastprotocolstodothis. Inthisway the measurements in conjugate bases is decided randomly, theseentangledstates(4.4)areapurificationoftheprotocols which protects against any intercept-resend eavesdropping ofthelastsection-takinga randomchoiceofthetwograph strategy: if Eve knows which measurement the players will states(whichcanbeviewedasamixedstate)toanentangled make, she can make the same measurementherself and thus purestate byaddinganauxiliarysystem, whichisthedealer beundetected,but,ifshedoesnotknowthemeasurementba- inthiscase. sis, thenanyintrusionbyherwillaffectthestatisticsofsub- The players also measure randomly to either discriminate sequentmeasurementsandthusbe detectable. Second,mea- states surement in conjugate bases allows checking of correlations