ebook img

Graph States for Quantum Secret Sharing PDF

0.57 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Graph States for Quantum Secret Sharing

Graph States forQuantum Secret Sharing Damian Markham1,2,∗ and Barry C. Sanders3 1Universite´ Denis Diderot, 175 Rue du Chevaleret, 75013 Paris, France 2Department ofPhysics, GraduateSchool ofScience, UniversityofTokyo, Tokyo 113-0033, Japan 3InstituteforQuantum InformationScience, Universityof Calgary, AlbertaT2N 1N4, Canada Weconsider threebroadclassesofquantum secretsharingwithandwithouteavesdropping andshow how agraphstateformalismunifiesotherwisedisparatequantumsecretsharingmodels. Inadditiontotheelegant unificationprovidedbygraphstates,ourapproachprovidesageneralizationofthresholdclassicalsecretsharing viainsecurequantumchannelsbeyondthecurrentrequirementof100%collaborationbyplayerstojustasimple majorityinthecaseoffiveplayers.Anotherinnovationhereistheintroductionofembeddedprotocolswithina largergraphstatethatservesasaone-wayquantuminformationprocessingsystem. 8 0 0 I. INTRODUCTION (ii) tointroducethreesubproblemsthatshowhowtheorig- 2 inal classical secret sharing and the two versions of ct Secret sharing is one of the most important information- quantumsecretsharingfitintothegeneralproblemand O theoretically secure cryptographic protocols and is germane highlightthedifferencesbetweenthesesubproblems, to onlineauctions, electronicvoting, sharedelectronicbank- 1 (iii) develop a graph state formalism [6] that unites these ing, andcooperativeactivationofbombs. Althoughfirstfor- 1 subproblemsintooneelegantframework, mulatedandsolvedinclassicalinformationterms[1],twodi- ] rectionshavebeenfollowedinthequantumcase:classicalse- h cretsharingwithquantumenhancementofchannelstoprotect (iv) extend one class of subproblems concerning classical p secret sharing in insecure public channels beyond the against eavesdropping [2] (and experimentally realized [3]) - existingsecurityproofsthatrequire100%collaboration t andprotectingquantuminformationasanapplicationofquan- n bytheplayers,and tum error correction [4] (and experimentally realized in the a u ‘continuousvariable’Gaussianstatecase[5]). (v) introduceembeddedsecretsharingprotocolsforgraph q Insecretsharing,adealerwishestotransmitasecret,which stateswithinone-wayquantumcomputing,whichcould [ canbeabitstringoraqubitstringanddealsanencodedver- serveasafirststeptowardsimplementingintegratedse- sionofthissecrettonplayerssuchthatsomesubsetsofplay- 2 cret sharing protocolswithin quantumcomputing,e.g. erscancollaboratetoreconstructthesecretandallothersub- v distributed measurement-based quantum computation 2 sets are denied any informationwhatsoeveraboutthe secret. (MBQC)[7]. 3 Theaccessstructureisthesetofallsubsetsofplayersthatcan 5 obtainthe secret, andthe adversarystructureis the set of all 1 subsetsofplayersthatarecompletelydeniedthesecret. 8. In threshold secret sharing, each player receives precisely II. SECRETSHARINGPROBLEMANDSUBPROBLEMS 0 one equalshare of the encodedsecret, and a thresholdnum- 8 berofanyplayersk cancollaboratetoreconstructthe secret Tobeginweformulatethegeneralproblem. Thebasicunit 0 whereas every subset of fewer than k players is denied any ofclassicalinformationisthebit,correspondingto 0,1 ,and : { } v informationatall: thisschemeisreferredtoas(k,n)thresh- thebasicunitofquantuminformationisthequbit,correspond- i old secret sharing and is a primitive protocol by which any ingto = span 0 , 1 . Anymessagecanbeencodedin X H2 {| i | i} information-theoreticsecretsharingprotocolcanbeachieved. a finite string of bitsif the informationis classicalor in a fi- r In each case the channel can be classical or quantum de- nitestringofqubits(perhapsentangledandcouldbe pureor a pending on context. A private channel is an authenticated mixed)ifthe‘information’isquantum. channelthatis imperviousto eavesdropping. A publicchan- nelisanauthenticatedchannelthatisopentoeavesdropping. Secret Sharing Problem: A dealer holds a se- Mathematicallychannelsaredescribedbycompletelypositive cretS, whichiseithera bitora qubit,andmust trace-preservingmappings,evenforclassicalchannelsasclas- send thissecretto n playerssuchanyk ormore sicalinformationprocessingcanbeembeddedintoaquantum playerscanreconstructthesecret,andallsetsof framework. fewerthankplayersaswellaseavesdroppersare Ourgoalshereare deniedanyaccesswhatsoevertothesecret. (i) to formulatea secret sharingproblemthat allows both Remark. Asecretthatislongerthanonebitoronequbitcan classicalandquantumchannels,whichcanbeprivateor besharedbyadistributedprotocolthatsharesthestringone public, bitorqubitatatime. Our new andgeneralformulationof the secretsharingprob- lemismeanttobehelpfulinthatitincorporatesvarioussce- ∗Electronicaddress:[email protected] narios of secret sharing with quantum or classical channels 2 thatcanbepublicorprivate,andthethreemajorsecretshar- arethemainstateresourceinalmostallmultipartitequantum ingareasofstudy[1,2,4]aresubproblemsofthisoverarching information processing tasks, including measurement based problem. quantumcomputationanderrorcorrection(hencethelargeef- forttomakethem).Third,theyallowforanelegantgraphical CC Classical secret sharingwith privatechannelsbetween representationwhichoffersanintuitivepictureofinformation the dealer and each player and private Classical chan- flow,andalsoallowthepossibleuseofgraphtheoreticresults nelssharedbetweeneachpairofplayers; toaidproofsandunderstanding. CQ Classical secret sharing with public channels between Inthisworkweemploygraphstatesinthestandardform[6] thedealerandeachplayerandeitherQuantumorclas- plustwoextensions. Theseextensionsareactuallyquitesim- sicalchannelssharedbetweeneachpairofplayers ple (modification via local unitaries) and are intended to al- low intuitive graphical understanding of how information is QQ Quantumsecretsharingwhereinthedealersharesquan- encodedandspreadoverthe graphs. The ideais thatthe se- tum channels with each player, and these channels cretwillbeencodedontoclassicallabelsplacedonverticesof can be private or public, and the players share either the graph representinglocal operations. The inherententan- Quantum or classical private channels between each glement of the graph states allows these labels to be shifted other. around, allowing us to see graphically which sets of players canaccessthesecretsandwhichcannot(explicitlywrittenas As secret sharing is information-theoretically secure, the propertiesP1-P4,seee.g. Fig.2). Wewillgiveseveralexam- distribution of a classical secret message is completely se- plesalongthewaytomakeitclear. cure without the need for quantum information, in contrast We will begin by defining these extended ‘labeled’ graph to quantum key distribution [8], which catapults key distri- states in Subsec. IIIA, followed by describing the graphical butionoverpublicchannelsto information-theoreticsecurity rules of how they are used to spread information and how from the classical limited computational-security guarantee. it can be accessed in Subsec. IIIB, finishing with how they Thus case CC [1] is resolved fully by classical information changeundermeasurementsinSubsec.IIIC. processing,butweembedCCintoagraphstatedescription. Case CQ considers quantum-enhanced protection from eavesdroppingoverpublicchannelsand was firststudied for A. Labeledgraphstates (2,2)thresholdsecretsharing[2,9,10]andextendedto(n,n) threshold secret sharing [11]. The quantum enhancement is ApuregraphstateisastateintheHilbertspace ⊗n,i.e.a achievedbyrandomkeydistributionenabledviaquantumpu- H2 rification. stringofnqubits.For =(0 1 )/√2andanundirected ThethirdcaseQQdealswiththesharingofquantuminfor- graphG=(V,E)com|p±riisingn| iv±er|ticies,with mation[4],asopposedtoclassicalinformationinthefirsttwo V= v , E= e =(v ,v ) (3.1) subproblemsidentified above. To distinguish this case from { i} { ij i j } thefirsttwocases, theterm‘quantumstatesharing’issome- thesetofnverticesandthesetofedges,respectively. times used [5]. In contrast to CQ, which is only solved for the (n,n) threshold secret sharing case, this quantum infor- Definition 1. Two players i and j are ‘neighbours’iff there mationversioninprivatechannelsisfullygeneralinthesense exists an edge e that connects their respective vertices v ij i thatthegeneral(k,n)casehasbeensolvedasanapplication andv . j ofquantumerrorcorrection. In summary our graph state formalism unifies known re- Thesetofi’sneighboursisdenotedNi. sults concerning(n,n) CQ plus QQ for higher-dimensional Agraphstateiscreatedfromaninitialstate stabilizer states, and adds new results, including (3,5) CQ. Weexpectthatournewapproachtoallformsofquantumse- + ⊗n =H⊗n 0 ⊗n, H = + 0 + 1 , (3.2) | i | i | ih | |−ih | cretsharingin the literaturewill enablefurtheradvancesbe- with H the Hadamard transformation, by applying the two- cause ofthe eleganceandunifyingpropertiesofthisformal- qubitcontrolled-phasegate ism. CZǫǫ′ =( 1)ǫǫ′ ǫǫ′ , ǫ,ǫ′ 0,1 , ǫǫ′ ⊗2 (3.3) | i − | i ∈{ } | i∈H2 III. GRAPHSTATES to all pairs of qubits whose corresponding vertices on the grapharejoinedbyanedgeandnottoanypairnotconnected Graph states provide a superb resource for secret sharing, byan edge. The commutativityofall CZ operationsimplies asweshow.Theadvantagesofusinggraphstatesinthiswork thattheorderofapplyingCZgatesisunimportant: arethreefold. First,theyarethemostreadilyavailablemulti- partiteresourcestatesinthelaboratoryatpresent,withgraph G = CZe + ⊗n. (3.4) states of up to 6 qubits already built and used for informa- | i | i eY∈E tionprocessingexperimentally[12, 13], andmanyproposals fortheirimplementationinvarioussystems. Second,theyare We now modifythe graphlabeling. Theusualgraphstate naturalcandidatesforintegrationofdifferenttasks,sincethey haseachnodelabeledbyitsvertexindex;inotherwordsthe 3 labelofvertexv istheindexi,whichhasabitstringlength i of O(logn). We append to this label three more bits so the labelofvertexv is(i,ℓ ,ℓ ,ℓ )foreachℓ 0,1 . i i1 i2 i3 ij ∈{ } Thefirsttwolabelsareusedtodescribeclassicalinforma- tionspreadoverthestate. Overallvertices,wedefinethevec- tors~ℓ =(ℓ ,ℓ )fortheithvertex,~ℓ =(ℓ ,ℓ ,...,ℓ ) i⋆ i1 i2 ⋆j 1j 2j nj forthejthbitoverallnvertices,and ~ℓ=(~ℓ ,~ℓ ,...,~ℓ ). (3.5) 1⋆ 2⋆ n⋆ Graphicallytheselabelswillbeattachedtotheirverticesand usedto representthe spreadingofclassical information. Ifa vertexv hasnolabel,thisisequivalenttosetting~ℓ =(0,0). i i⋆ Thethirdadditionalbitℓ occursinthesecurityofproto- cols,andisnotrelevanttotih3eclassicalinformationtransmit- FIG. 1: (Color online) Labeled graph with vertex v1, depicted as 1 inside a (cid:3), which indicates that S has been applied to this ted. For the ease of graphical manipulation of the encoded vertex, and vertices v2 and v3, depicted as the numerals 2 and 3 information,we absorbthisbitinto thegraphitself. Graphi- callythethirdbitℓi3 isdepictedasthevertexvi beingeither iXnsℓiid1eZℓ#i2. haTvheebleaebnelsap~ℓpil⋆ied=to(eℓaic1h,ℓiq2u)biitndji,carteesptehcattiveolpye.ratFioonr a#(thesetofwhichisdenotedV#),forℓ =0,ora(cid:3)(the tsheutsoaf wunhiiocnhoifstdweonotytepdesVo(cid:3)f)v,efrotirceℓis3, = 1.i3The vertex set is ~sℓtia⋆te≡|G(0~ℓ⋆,2ℓii2)=∀i,Zth1ℓi1s2la⊗belZed2ℓ2g2ra⊗phZst3ℓa3t2e(c|o0rr+es+poin+dsit|o1t−he−eni)co/d√ed2 (Eqn.(3.13)). V=V# V(cid:3). (3.6) ∪ Wethushavetheextendedgraphs =(V#,V(cid:3),E). Encodedgraph states can be elegantlyexpressed in G |G~ℓ⋆2i Theseextralabelsimplythe actionoflocalunitaryopera- thestabilizerformalism. ForY = iXZ andstabilizeropera- tions(hencemaintainingentanglementproperties)viathefol- torsforanyithvertexdenotedby lowingdefinition. Definition2. The‘labeledgraphstate’,isobtainedfromthe Ki# =Xi⊗ei,j∈EZj, Ki(cid:3) =Yi⊗ei,j∈EZj, (3.11) graphstate G by | i (for circular and square vertices respectively) the encoded state iscompletelyspecifiedbyeigenequations (cid:12)(cid:12)G~ℓ(cid:11)=Oi (cid:16)Xiℓi1Ziℓi2(cid:17)|Gi |G~ℓ⋆2i K#,(cid:3) =( 1)ℓi2 i V. (3.12) = Sj G (3.7) i |G~ℓ⋆2i − |G~ℓ⋆2i∀ ∈ |Gi | i j|vOj∈V(cid:3) Thefollowingtwoexamples,forthreeandforfourqubits, respectively, explain how the stabilizers define the encoded for graphstates. X =0 1 + 1 0, | ih | | ih | Example1. Thethree-qubitlabeledgraphstatepresentedin Z =0 0 1 1, (3.8) | ih |−| ih | Fig.1istheencodedgraphstate S =0 0 i1 1. | ih |− | ih | 0++ +i1 Remark. The partial phase shift gate S is used to perform G =Zℓ12 Zℓ22 Zℓ32 | i | −−i , anX Y basistransformationforprotectionagainsteaves- | ~ℓ⋆2i 1 ⊗ 2 ⊗ 3 (cid:18) √2 (cid:19) droppi↔ng,analogoustotheBB84strategy[8]. (3.13) andistheuniquecommoneigenstateof Forencodingpurposes,onlylocalZ gatesarerequired,so weintroduceanotherkindofgraphstate. (cid:3) K =Y Z Z 1 1⊗ 2⊗ 3 Definition3. The‘encodedgraphstate’is K# =Z X 11 2 1⊗ 2⊗ 3 |G~ℓ⋆2i= Ziℓi2|Gi. (3.9) K3# =Z1⊗112⊗X3, (3.14) Oi witheigenvalues~ℓ =(l ,l ,l ). Thus the encodedgraph state is also a labeled graph state ⋆2 12 22 32 with ℓ = 0 for all i, = . 1i |G~ℓ⋆2i |G~ℓ=(0,ℓ12,0,ℓ22,...,0,ℓn2)i A four-qubit encoded graph state is given in the fol- Encodedgraphstatesexhibittheorthonormalityproperty lowing example. First we define the n-qubit Greenberger- Horne-Zeilinger-Mermin(nGHZM)graphandcorresponding DG~ℓ⋆2(cid:12)G~ℓ′⋆2E=δ~ℓ⋆2~ℓ′⋆2. (3.10) nGHZMgraphstate. (cid:12) 4 Definition4. ThenGHZMgraphforvertexv isthedegreen i graph =(V= v ,E= (v ,v ) ), (3.15) nGHZM j 1 j6=i G { } { } and the nGHZM graph state is the state corresponding to . nGHZM |G i Example2. The4GHZMgraphisdepictedinFig.2(a),and thecorrespondingencoded4GHZMgraphstateis =Zℓ12 Zℓ22 Zℓ32 Zℓ42 , (3.16) |G~ℓ⋆2i ⊗ ⊗ ⊗ |Gi 1 = (0+++ + 1 ), |Gi √2 | i | −−−i andisfullydefinedbythefourstabilizers FIG. 2: (Color online) Equivalence of labeled graph states depict- K# =X Z Z Z, K# =Z X 11 11, ing bit dependence for four players. (a) The initial four party en- K1# =Z ⊗11 ⊗X ⊗11, K#2 =Z ⊗11 ⊗11 ⊗X, (3.17) coded graph state corresponds to ~ℓi⋆ = (0,li2). (b) Equivalent 3 ⊗ ⊗ ⊗ 4 ⊗ ⊗ ⊗ statewith~ℓ1⋆ = (0,0), ~ℓ2⋆ = (0,l22),~ℓ3⋆ = (0,l32), and~ℓ4⋆ = witheigenvalues~ℓ =(l ,l ,l ,l ). (l12,l42)(seeEqn.(3.19)): bitℓ12 hasbeenshuffledfromvertex1 ⋆2 12 22 32 42 tovertex4,whichisindicatedbythearrowinthefigure. (c)Equiv- alentstatewithbitℓ22shuffledtotheotherparties:~ℓ1⋆ =(ℓ22,l12), ~ℓ2⋆ = (0,0), ~ℓ3⋆ = (0,ℓ22 l32), and ~ℓ4⋆ = (0,l22 l42) as B. DependenceandAccess indicatedby arrowsand labels⊕(seeEqn.(3.20)). NOTE:⊕vertexvi withoutlabelisequivalenttosetting~ℓi⋆ =(0,0). We first consider sharing a classical secret; sharing quan- tumsecretsfollowsfromthisaswewillseelater. Eachqubit representedbyavertexinthegraphisheldbyoneplayer,and labeled graph states where labels can be shuffled outside V′ theclassicalsecretisencodedintothelabel~ℓ⋆2. Asubsetof as much as possible. Of course different ~ℓ⋆2-labeled graph playersisrepresentedbyavertexsubsetV′ V. states,equivalentlyencodedgraphstates,mustbeinequivalent Forgenerallabeledgraphstates,allacces⊂sibleinformation because of the orthonormality relation (3.10); indeed this is for V′ resides in the reducedstate obtained from the labeled whyweneedthe~ℓ labels. ⋆1 graphstate(3.7): Then the next step is to ascertain if the desired informa- tion can be accessed by V′, which is effected by a measure- ρV′~ℓ =TrV/V′|G~ℓihG~ℓ|. (3.18) ment protocol correspondingto appropriate combinationsof K (3.11),thenexploitingtheeigenequationrelations(3.12). i Inthecontextofsecretsharing,itisimportanttoknowwhat Fortunately the graph readily reveals the appropriate way information about ~ℓ is contained in ρV′~ℓ. The information to do this. Before giving the general rules, we begin with a sharedbetweenρ and~ℓexhibitstwoimportantproperties: four-qubitexample. V′~ℓ Example 3. A dealer distributes the encoded graph A1 Bit dependence:–ρ is dependent on bit k if ρ is V′~ℓ V′~ℓ state (3.16) to all four players V = v ,v ,v ,v depicted notinvariantunderaflipofthekthbit. { 1 2 3 4} inFig.2(a).Inthisexampleweshowthat,ifthethreeplayers A2 Bit access:– Bit k is accessible if there exists a mea- inV′ = v1,v2,v3 collaborate,theylearntwobits(ℓ22,ℓ32) { } surement protocol such that one copy of ρ reveals of the four-bit encoding and are entirely denied knowledge V′~ℓ thevalueofbitkwithcertainty. of two other bits (ℓ12,ℓ42), whether they use shared quan- tumchannelsoronlyLOCC.Wealsoseethatjusttwoplayers A2 A1,butA1;A2. Givendependencyonabit,itisespe- V′′ = v ,v can(andcanonly)acquireℓ ℓ viaLOCC, cial⇒lyusefultoknowwhatinformationcanbeobtainedbyV′ where{ 2iss3u}mmation mod 2. 22⊕ 32 vialocaloperationsandclassicalcommunication(LOCC)or ⊕ Acting upon the encoded graph state (3.16) by the fourth viaquantumchannels. stabilizerofEq.(3.17)yields Graphicallyweascertainthedependancyofasetofplayers V′ on the information by shuffling bits between neighbours: K#ℓ12 =11 Zℓ22 Zℓ32 Xℓ12Zℓ42 that is, exploitingequivalencesbetween labeled graph states 4 |Gℓ~⋆2i 1⊗ 2 ⊗ 3 ⊗ 4 4 |Gi withdifferentlabels~ℓ. Ifalabeldoesnotoccurononeofthe =(cid:12)G~ℓ=(0,0,0,ℓ22,0,ℓ32,ℓ12,ℓ42)E ovebrvtiioceussibnecthaeusseetthVe′,lathbaetlsweotuhladstnhoendreeppernedseennctyaolonciatl.uTnhiitsariys =((cid:12)(cid:12)−1)ℓ12ℓ42|Gℓ~⋆2i. (3.19) operationoutsidethesetV′, whichcannotaffectthereduced TheplayersubsetV′ = v ,v ,v isthusindependentofℓ 1 2 3 12 { } density matrix ρ . We thus look for equivalencesbetween becauselocalunitarydependenceonℓ hasbeenshuffledto V′~ℓ 12 5 player v ’s two-bit label ~ℓ . In Fig. 2(b), this ℓ bit shuf- Example4. ForExamples2and3letthe#representationof 4 4⋆ 12 fle is depicted as a green arrow from vertex v to vertex v . vertexv bechangedtoa(cid:3)inFig.2(a).Thus,inFig.2(c),the 1 4 1 Vertexv1 is unlabeledbecause its bit valueis now zero, and resultantbitpaironvertexv1is~ℓ1⋆ =(ℓ22,ℓ12 ℓ22)instead vertexv4 nowhasatwo-bitlabel~ℓ4⋆ = (ℓ12,ℓ42). Thegraph of ~ℓ = (ℓ ,ℓ ) because modifying X ⊕Y = iXZ in 1⋆ 22 12 statesinFigs.2(a)and2(b)arethusequivalentupto(anirrel- therevisedstabilizerK# K(cid:3) yieldsane7→xtraZ operation evant)globalphase. 1 7→ 1 leadingto 1 on the second bit(via the appropriatechange Players in V′ share a reduced state that is dependent on toEq,(3.20⊕)).Theothersremainthesame~ℓ =(0,ℓ ℓ ), bits ℓ ,ℓ . In fact they can perform measurements corre- 3⋆ 2⊕ 3 spond2i2ng3to2 K# and K# to learn these two bits according ~ℓ4⋆ =(0,ℓ2⊕ℓ4). 2 3 to (3.12). With shared quantum channels, there is no prob- Theseexamplesforfourqubitsaregeneralizabletonqubits leminperformingsuchajointmeasurementasK2# andK3# with # or (cid:3) vertices. Here are the general principles for commute and have supportonly on operationsby players in accessibility and dependence of information in an encoded V′. Howeverquantumchannelsarenotrequired: theplayers graphstate. canlearn(ℓ ,ℓ )byLOCCbecausethestabilizerscommute 22 32 locally. In contradistinction a failure of local commutation Proposition 1. The following principles hold for encoded wouldimplythatthesebitscouldnotbelearnedbyLOCC. graphsstates . Infactasmallersetofplayerscanaccessinformation.Con- |G~ℓ⋆2i tsoidreKrt#hℓe22seytieolfdpslayersV′′ = {v2,v3}. Applyingeigenopera- P1 oTnheveenrtceoxdvedigsraepqhuivstaalteent|Gto~ℓ⋆2tihewliathbeolnede-bgirtalpahbesltalit2e 1 i where vertex v is relabeled 0 and a neighbour- K1#ℓ22(cid:12)(cid:12)(cid:12)G~ℓ⋆2E=X⊗ℓZ22ℓZ22ℓ+12ℓ3⊗2 ⊗11Zℓ22+ℓ42|Gi |o~ℓinGjfg⋆~ℓtih=veet(ryℓtepi2xe,#vℓjj2oi⊕rs(cid:3)ℓrie2,l)ari,ebdsepelpeecedtniedvieitnlhyge.roTn~ℓhjwe⋆hree=tmhae(rinℓviie2nr,gtℓenjx2e)vigiohisr- = boursofv ,v N arerelabeled(0,ℓ ℓ ). Inthis (cid:12)G~ℓ=(ℓ22,ℓ12,0,0,0,ℓ22⊕ℓ32,0,ℓ22⊕ℓ42)E wayanynjeigkhb∈ouriofv canshufflethek2d⊕epein2dencyof (cid:12) i =((cid:12)−1)ℓ12ℓ22(cid:12)G~ℓ⋆2E (3.20) ℓflii2ngtoisitdseeplficatneddatosgitrseerenmaarrinoiwnsgannedigshhboowusrhs.owBidtespheunf-- (cid:12) Thisimpliesthatthereducedde(cid:12)nsitymatrixonlydependson dence of the reduced state on bit labels can be trans- ℓ ℓ . Thisinformationcanbeaccessedbymeasuring ferredfromoneplayertoanother. 22 32 ⊕ K#K# =11 X X 11. (3.21) P2 Thebitvalueℓ isaccessiblebyplayersinsetV′ifand 2 3 ⊗ ⊗ ⊗ onlyifv andail2litsneighboursN areinthesetV′. i i This can be done by LOCC. This shuffling is illustrated in Fig.2(c);henceallgraphstatesinFigs.2(a)to2(c)areequiv- P3 IfthesetV′ comprisesanevennumberofplayers,and alent. all their external neighbours (outside the set V′) are neighboursofeachandeveryplayerinV′,thenthesum Remark. StabilizeroperatorsK#(andproductsthereof)are i (mod 2) of all their one-bit labels ℓ is accessible, not directly measured by the players under LOCC; rather { i2} i.e.theycancollaboratetofind playerslocallymeasureintheX ,Y =iX Z ,orZ basesto i i i i i obtainone-bitoutcomessXi ,sYi ,andsZi ,respectively, where ℓ ℓ ... ℓ , v ,v ,...,v V′. sα is assigned the value 0 if the measurement outcome is 1, i2⊕ j2 ⊕ m2 i j m ∈ i and1ifthemeasurementoutcomeis 1. Then the bit value outcome for th−e measurement of K# P4 IfP2holds,andplayersinthesetsharequantumchan- 2 andK# inExample3is nels,allinformationencodedinone-bitlabelsisacces- 3 sible. Ifthesetsharesonlyclassicalchannels,andP2 ℓ =sZ sX, ℓ =sZ sX, (3.22) holds,theninformationaccessibilityislimitedbecause 22 1 ⊕ 2 32 1 ⊕ 3 neighboursv andv inthesetcanonlylearneitherℓ i j i2 respectively. Henceforth when we say players can locally or ℓ but not both, but v and v in the set can learn j2 i j measureanoperator,wemeanmeasurementinthesensethat bothℓ andℓ iftheyarenotimmediateneighbours. i2 j2 localPaulimeasurementscanbeperformedandresultantbit outcomescombinedtolearnthesameasifnonlocalstabilizer NOTE: The bit shuffling in P1 is not active; rather it recog- measurementswereperformed. nizesequivalencebetweenlabeledgraphstates. For Example 3, each player’s qubit corresponded to a # Proof. All proofs are simply derived from eigenequa- vertex. Extending to (cid:3) vertices is straightforward by using tions (3.11) and (3.12), which shuffles bits between play- theK(cid:3) stabilizers(3.11). Specificallyifavertexismodified ers,therebyrevealingactualdependenceofreducedstateson i bychangingits graphrepresentationfroma #to a (cid:3), in the givenbitlabels ℓ . i2 stabilizersanX ischangedtoaY andwehaveacorrespond- For P1, supp{ose}vertex v has a neighbouring vertex v i j ingchangetothebittransfer. whichiseithera#ora(cid:3). Then 6 |G~ℓ⋆2i=(−1)ℓi2ℓj2Kj#ℓi2|G~ℓ⋆2i=(−1)ℓi2ℓj211i⊗Zjℓj2Xjℓi2 ⊗(vk,vj)∈EZk(ℓk2+ℓj2)⊗m6=i,j;(vm,vj)∈/EZmlm2|Gi, |G~ℓ⋆2i=(−1)ℓi2ℓj2Kj(cid:3)ℓi2|G~ℓ⋆2i=(−1)ℓi2ℓj2i11i⊗Zjli2⊕ℓj2Xjℓi2 ⊗(vk,vj)∈EZk(ℓk2+ℓj2)⊗m6=i,j;(vm,vj)∈/EZmℓm2|Gi, (3.23) respectively. Evidently dependency on ℓ is shuffled from i2 neighbourv tov ,andv ’sotherneighboursareasdescribed i j j inP1. For P2, players obtain ℓ by measuring K#,(cid:3) of (3.11) i2 i and(3.12). BecauseK#,(cid:3) isnontrivialoniandalsoonN , i i by (3.11), player i and all of N must collaborate to mea- i sureℓ ,andthiscollaborationissufficient. i2 ForP3westartbylookingatthecaseV′ containsonlytwo players. By (3.11) if all neighbours of pair v ,v V′ are i j either in the set, or shared outside the set, K#,(cid:3) ∈K#,(cid:3) is i · j nontrivialonlyinsidetheset,andthuscanbemeasuredbythe membersoftheset. ThisistruesincealltheZfromtheK#,(cid:3) i cancel with the Z from K#,(cid:3) on their commonneighbours. j ApplyingK#,(cid:3) K#,(cid:3)to(3.12),weseethatthisyieldsℓ i · j i2⊕ ℓ . Similarlythisholdsforanyevennumberofplayers. j2 For the comparison of LOCC to the fully quantum case ofP4,bytheabovelogicifpropertiesP2andP3hold,thenthe FIG.3:(Coloronline)WhenPauliZandY measurementsaremade dependencyontheassociatedobservablesarenontrivialonly on vertex v1, graphs (a) and (b) metamorphose into (a′) and (b′), within the set. As all operators K#,(cid:3) commute, all observ- respectively. Outcomes Siα = 0,1 correspond to measurement i eigenvalues 1,+1respectively,andareincorporatedintothelabels ables commute in the nontrivial set, and hence can be mea- in(a′)and(b−′). suredbyglobaloperations. ForLOCC,itisclearfrom(3.11)that,ifverticesv andv i j Paraeulnieoigphebraotuorrss,othneinaKndi#,j(cid:3)haenndceKcj#an,(cid:3)nosthbareesdimiffuelrtaennetoloucslayl vertexvi anditsedgesdeleted. ForoutcomesZi ,thelabelsof allverticesinN changeto~ℓ ⋆ (0,ℓ sZ). Wedenote measuredlocally;therefore,evenifP2holds,onemustchoose i j 7→ j2⊕ i theresultantgraphbyg. one measurement or the other. If vertices v and v are not i j If a Y measurement is made on vertex v of an encoded neighbours, they are indeed amenable to simultaneous local i graph state with circular vertices, the resultant state is a la- measurements. Similar statements can be made when P3 beled graph state obtained by applying the following four holds,butaremorecomplicatedgraphicallyandmustbetaken stepstotheoriginalgraph;thenewgraphisdenotedg′. casebycase. S1 Performlocalcomplementationonv :allexistingedges i between elements in N are removed, and where they C. LocalZandY measurementsonencodedgraphstates i didnotexist,theyareadded. In our protocols encoded graph states with both (cid:3) and # vertices arise as a result of performing either Y or Z mea- S2 Each#vertexinNi ischangedto(cid:3). surementsonqubitsidentifiedbyverticesofthelabeledgraph with only circular vertices. Local Pauli measurements on S3 For outcome sY, the labels on the neighbours of i i graphstatesaredescribedbyasimplesetofrules,whichread- changetoℓ =(0,ℓ ) (0,ℓ ℓ sY) ily yield the resultantstates [6]. These rules were originally j⋆ j2 → j2⊕ i2⊕ i statedintermsofgraphstatesuptolocalunitaryoperations. S4 Removevertexiandallitsedges. For ourpurposeswe wouldlike to incorporatealso these lo- cal unitaryoperationsinto the labeled graphstates. We now representtheserulesexactlygraphicallyfortheZandY mea- Example 5. A Z and a Y measurement on vertex v1 of a surements,usingthelabeledgraphsabove,withnolocaluni- squaregraphstatewith circularvertices changesthe graphs taryambiguity. asdepictedinFig.3. If a Z measurement is made on vertex v of an encoded i graph state with circular vertices, the resultant state corre- These rules can easily be understood by the fact that any spondstoalabeledgraphstateoftheoriginalgraphbutwith encodedgraphstate with labelsℓ = 0 i can bewritten in i2 ∀ 7 theform IV. SECRETSHARINGPROTOCOLS 1 |G(~0)i=√2(cid:18)|0i1|g(0···0)i2,...,n+|1i1|g(1···10···0)i2,...,n(cid:19) Inthissectionweintroduceourthreesecretsharingproto- cols beginningwith CC for sharing classical secrets in Sub- ∈N1 eiπ/4 | {z } sec.IVA. Usingourgraphstateapproach,weconstructsolu- = 0′ g′ ) tionsforeachof(n,n),(3,4)and(3,5)thresholdsecretshar- √2 (cid:18)| i1| (0···0 i2,...,n ing. These results provide a foundation for our subsequent protocols:CQinSubsec.IVBandQQinSubsec.IVC. i1′ g′ , (3.24) − | i1| (1 10···0)i2,...,n(cid:19) ··· ∈N1 | {z } A. CC with 0 , 1 and {| i | i} 0′ =1/√2(0 i1 ), 1′ =1/√2(0 +i1 ) In the CC protocol, classical information is directly en- {| i | i− | i | i | i | i } coded into the bit string ~ℓ , i.e. onto the encoded graph ⋆2 theeigenstatesoftheZ andY Paulioperators,andthecorre- state inamannerthatenablescertainsetsofcollab- spondingeigenvaluesare+1and 1,respectively.Addingla- {|G~ℓ⋆2i} oratingplayerstoaccessconcealedinformationaccordingto − bels~ℓ⋆2 indicatestheapplicationoflocalZs. Thiscommutes theprinciplesofthesecretsharingprotocol. withmeasuringPauliZ,sothelabelscarryforwardonlywith MathematicallyourprotocolissimilartoGottesman’s[14] theadditionofthecorrectionfromthemeasurementitself,e.g. whereinstabilizersareusedtoshareclassicalsecretsinquan- Fig. 3(a),(a’). However, local Z does not commute with a tumstates.AdifferencebetweenourschemeandGottesman’s Y measurement,hencethebitℓ12 carriesontothemeasured is that he uses mixed high-dimensional states whereas our graph(S3),e.g. Fig.3(b),(b’). graphstateapproachenablesuseofpurestatesonqubits.An- Thefollowingdefinitionfollowsnaturally. otherdifferencewithGottesman’sapproachisthatourmethod is notas general: ourscheme worksfor a limited numberof Definition5. Givenagraph withonlycircularvertices,and G (k,n) scenarioswhereasGottesman’smethodworks forany associatedencodedgraphstate , thegraphofthestate |G~ℓ⋆2i (k,n). Although our scheme is more restrictive, it is appli- givenbymeasuringPauliY onvertexi 1,...,n iscalled theconjugategraphdenotedg′,withcon∈ju{gategrap}hstatede- cable to a restricted set of cases and importantly provides a foundationforthe protocolsdiscussedinsubsequentsubsec- noted g′ andcanbefoundexplicitlybyfollowingthe | i1,...,n/i tions. rules TheCCprotocolstepsareasfollows: R1 Performlocalcomplementationonv . i CC1 ThedealerencodesthesecretbitstringS intotheclas- R2 Replaceallneighboursofiwith(cid:3)vertices. sicalinformation~ℓ andencodesthisontothen-qubit ⋆2 state . R3 Removev andallitsedges. {|G~ℓ⋆2i} i CC2 Thedealersendseachplayeronequbit. Itcaneasilybeshownthatencodedconjugategraphstates canbewrittenas CC3 An authorizedset of playersaccesses the secretbit by measuring appropriate stabilizer operators (prescribed e−iπ/4 (cid:12)g(′0···0)E= √2 (cid:18)|g(0···0)i+|g(1···10···0)i(cid:19) explicitlyineachcase). (cid:12)(cid:12) ∈N1 Hereweanalyzetheabilityofsetsofplayerstoaccessthisin- e−iπ/4 | {z } formationfortwocases: usingLOCCandusingfullquantum (cid:12)(cid:12)g(′1···10···0)(cid:29)= √2 (cid:18)|g(0···0)i−i|g(1···10···0)i(cid:19) caodmifmfeurennictasthioanri(nFgQsCtr)u.cWtuerew,iallnsdeethtahtattheeacrhulgersaopfharecpceressseanrtes (cid:12)(cid:12) |∈{Nz1} |∈{Nz1} (3.25) simpleingraphterms,andshowthatsomegraphscanbeused as secret sharing schemes as set out in the introduction. In soareeffectivelyconjugatetotheencodedgraphstates particularwepresentschemesfor(n,n),(3,4)and(3,5). We now proceed to give explicitexamplesof how the de- {(cid:12)g(0···0)(cid:11),|g(1···10···0)i}. pendence and access properties in Sec. IIIB can be applied (cid:12) ∈N1 to give secret sharing via the above protocol. We begin by | {z } looking at the case of nGHZM states. Using Property P1, ThefollowingdefinitionsareusefulforSec. V. i we can see in Fig. 4(a) that the player set v ,...,v de- 1 m { } Definition6. ThenGHZMgraphGnGHZMi isembeddedinG pendsonly on bits ℓ22,...,ℓm2; i.e., the dependencyon ℓ12 if andN = . hasbeenremoved. FromP2itispossibleforthesameplayer GnGHZMi ⊂G i∩G\GnGHZMi ∅ settorecoverallℓ ...,ℓ ,and,byP4,thiscanbedoneby Definition7. ThenGHZMgraphstateisembeddedintostate 22 m2 LOCC. if isembeddedin . |Gi GnGHZMi G Explicitlythiswouldbedonebyplayer1measuringZ1and Wenowhavethenecessaryformalismtodevelopthevari- the remainingplayers v ,...,v measuring X and com- 2 m i oussecretsharingprotocols. paringresultstomeasu{reK#,...,K} #,yieldingℓ ,...,ℓ 2 m 22 m2 8 obtain,andonlyobtain,ℓ ℓ . Fig.5(c)revealsthatplay- 22 42 ers v ,v ,v obtain,and o⊕nlyobtain,ℓ and/or(byusing 1 2 3 22 { } FQC/LOCC)ℓ ℓ . 12 32 Similarly, play⊕ers v ,v ,v obtain, and onlyobtain, ℓ 2 3 4 32 { } and/or (via FQC/LOCC) ℓ ℓ . The remaining triplets 22 42 ⊕ obtain, and only obtain, ℓ and/or (via FQC/LOCC) ℓ 12 22 ℓ in the case of v ,v ,v , and ℓ and/or (FQC/LOCC⊕) 42 1 2 4 42 ℓ ℓ inthecas{eof v ,v},v . 12 32 1 3 4 ⊕ { } We see that this graph gives a (3,4) threshold scheme by setting FIG. 4: (Color online) Distribution and access of information l12,...,ln2 for the n-GHZM state. The green arrows represent ℓ12 =ℓ22 =ℓ32 =ℓ42 =S. (4.2) { } uses of dependency Property P1. In (a) the dependency on l12 is takenoutoftheset,andin(b)thedependencyonl22issharedacross thewholeset.Thisencodedgraphstategivesan(n,n)secretsharing Ourfinalresultinthissubsectionconcernsthe(3,5)thresh- schemebysettingl12 =Sandtheotherbitscanbesetarbitrarily. oldscheme,givenbya5-qubitringdepictedinFig.6. Proposition4. Thefive-qubitencodedRINGgraphstateen- viaeigenequations(3.12). Hence,inthiscase,LOCCissuffi- ables(3,5)thresholdsecretsharingfortheCCprotocolpro- cientforallpossibleinformationaccess. vided that ℓ = ℓ = ℓ = ℓ = ℓ = S, with LOCC 12 22 32 42 52 Similarly Fig. 4(b) shows how P1 implies that the player betweenplayersbeingsufficientfordecoding. subset v ,...,v dependsonbits 2 m { } Proof. Fig. 6(a) shows how P1 implies that players 1 and 2 l ℓ ,ℓ ℓ ,...,ℓ ℓ cannotaccessanyinformationbecausethedependencycanbe 22 32 22 42 22 m2 ⊕ ⊕ ⊕ takenawayfromthem. Similarlyitiseasytoseethatnopair onlyand,byP3andP4,theycanbeaccessedsimultaneously of players can access any information by application of P1. byLOCCalone. Explicitlythiswouldbedonebyallplayers Ontheotherhandifthreecyclicneighbours vi,vj,vk form { } measuringXi. Theplayersinthissetthencompareresultsto a set, P1 implies the set only depends on ℓj2; this is clear measure from the case for the player set v1,v2,v3 in Fig. 6(b). P2 { } implies the bit can be accessed, and P4 says this access can K# K#,K# K#,...K# K#. (4.1) beachievedviaLOCC.Accessingwouldbeaccomplishedby 2 · 3 2 · 4 2 · m measuringK#, which is done by locally measuringZ , X , j i j Only in the case that all players collaborate would there be Z . k a difference between the LOCC and FQ cases; in this case Theremainingpossiblesetsofthreeplayersareallsimilar P4 implies that, by LOCC, the players can either access to the T shape in Fig. 6(c); in this case the set v ,v ,v i j k { } ℓ ,...,ℓ or ℓ . Obviously, for FQC, all information is dependsonlyonℓ ℓ ℓ bypropertyP1.Thisisseenfor 22 n2 12 i2 j2 k2 simultaneouslyaccessible. theexample v ,v ,⊕v ⊕inFig.6(c).BypropertiesP2andP4 1 2 4 { } Weseeabovethatbitℓ isonlyaccessiblewhenallplay- theplayerscanaccessthesecretbyLOCC.Theirprocedureis 12 ersacttogether. BychoosingthesecretbitS asS = ℓ and effectedbymeasuringK# K# K#,whichisaccomplished 12 i · j · k fixingallotherℓ arbitrarily,weobtainthefollowingpropo- locallybymeasuringY ,Y ,X . i2 i j k sition. Anysetofmorethanthreeplayerscontainsatleastoneof these possibilities, and the players can therefore access the Proposition2. AnencodednGHZMstatewithℓ12 = S and sameinformation.BychoosingtoencodethebitsecretS as allotherℓ settozeroenablesa(n,n)directsecretsharing i2 schemethatcanbeaccessedviaLOCC. ℓ12 =ℓ22 =ℓ32 =ℓ24 =ℓ52 =S, (4.3) ThiscaseisdepictedinFig.4. thepropositionisproved. Nowweseethat(3,4)thresholdsecretsharingisattainable Here we established three examples that use graph states withencodedgraphstates. forsecretsharing.Thesethreeexamplesdemonstratethesim- ple propertiesof our approach, and more examplesof graph Proposition 3. The 4-qubit ring encoded graph state with statesforsecretsharingcouldbefound. Inthenexttwosub- ℓ = ℓ = ℓ = ℓ = S enables a (3,4) direct secret 12 22 32 42 sections,weextendtheseresultsandtechniquestosecretkey sharing scheme, and LOCC between players suffices for de- distillationandtosharingaquantumsecret. coding. Proof. The4-qubitringstateisdepictedinFig.5. We seein Fig.5(a)thatP1showsthatpairs v ,v , v ,v , v ,v B. CQ 1 2 2 3 3 4 and v ,v aredeniedanyinform{ationw}ha{tsoeve}r. { } 1 4 Fi{gure5(}b)showsthattheplayerpair v ,v canobtain, InthissubsectionweaddresscaseCQ,whichcorresponds 1 3 and moreovercan onlyobtain, ℓ ℓ .{Simil}arly v ,v totheprotocolexpoundedbyHillery,Buzˇek,andBerthiaume 12 32 2 4 ⊕ { } 9 FIG. 5: (Color online) Application of P1 to the square encoded graph state. This graph gives a (3,4) secret sharing scheme setting ℓ1 = ℓ2 = ℓ3= ℓ4 = S(seeproposition3). FIG.6: (Coloronline) Application of P1tothe5-qubit ring encoded graph statetoobtain a(3,5) direct secret sharingscheme by setting ℓ12 = ℓ22 = ℓ32 = ℓ42 = ℓ52 = S. (HBB) for sending a classical secret with insecure quantum and(3,3)cases,andthishasbeenextendedtothe(n,n)case channels between the dealer and players [2]. Actually this in[11]. problemcaninsteadbesolvedbycombiningtheclassicalse- We notethat,asanextensionofHBB, ourprotocolshares cretsharingprotocolofShamir[1]viastandardquantumkey thesamedrawbacks. TheHBBprotocol,henceours,protects distribution(QKD)[8]toassuresecureclassicalchannelsbe- againstintercept-resendattacksbutisnotguaranteedtobese- tween the dealer and each of the players. In the QKD ap- cure against other attacks [9]. Second, it only works for a proach, the dealer would first establish a random key with noiseless channel: In the case of a noisy channel, the HBB each of the players individually by using QKD. This would protocol can not establish a key (as the noise will be mis- enableperfectlysecureclassicalcommunicationbetweenthe takenforaneavesdropper).Thisproblemislikelynotfatal,as dealerandeachplayer(asaonetimepad),whichcanthenbe approachesinvolvingentanglementdistillationoralternatives used to performthe Shamir protocolsafely. However, QKD couldhelptoovercometheeffectsofnoiseinthechannel[10]. maynotaffordthemostefficientapproachhencetheinterest Our protocolemploys graph states to generalize the HBB inalternativeschemes. scheme[2]. Byusinggraphstatesourschemecouldbuildon HBB [2] combinesecret sharingprotocolswith QKD: the currentexperimentalresearchfor generatinggraphstates for dealer distributes multipartite states to share a secret key, measurement-basedquantumcomputing[12].Further,encod- whichcanonlybedistilledbyorsharedwithauthorizedsets ingontographstatesallowsustousethepropertiesdeveloped of players. This key can then be used to send any classical Sec.IIItogeneralizetootheraccessstructures. messagethedealerwouldwishtosendtotheauthorizedplay- As an example we show how this approach generalizes ers,withoutanyunauthorizedpartieshavingaccesstoit. The HBB’s protocol to the (3,5) case, together with the (n,n) HBBapproachcanbemoreefficientinthenumberofusesof case. Although other examples are not provided here, the quantumchannelsbetweendealerandplayers,whichiscom- propertiesgiveninSec.IIIBallowfurtherexploration.Inad- parabletothegreaterefficiencyachievedbydirectdistillation dition, our graph state shows how the HBB protocol can be of multipartite entanglement rather than distillation of pairs thoughtofasanextensiontoGottesman’sresults[14],inthe of maximallyentangledstates and complicatedsequencesof sensethatHBB’sprotocolcanberegardedasapurificationof teleportations[15]). Gottesman’s. AnotherbenefitisthattheHBBapproachcanbeextended tosharingquantumsecrets(QQ)asweseeinthenextsubsec- Theunderlyingconceptfortheprotocolissimple. Weuse tion. HBB[2]createdaclassicalthresholdschemefor(2,2) anentangledstateasthechannelbetweenthedealerDandn 10 players.Thiswillbeagraphstate;hencewecanalwayswrite inthefollowingway(c.f.Sec.IIIC) 1 {|g(0···0)i1,...,n,|g(1···10···0)i1,...,n}, |G(~0)i=√2(cid:16)|0iD|g(0···0)i1,...,n |∈{NzD} ortheconjugatestates +|1iD|g(1···10···0)i1,...,n(cid:17) g′ , g′ . ∈ND {| (0···0)i1,...,n | (1···10···0)i1,...,n} =eiπ/4 0′| {gz′} ∈ND √2 (cid:16)| iD| (0···0)i1,...,n As seen in Sec. IIIC these sta|te{sza}re conjugate in the sense i1′ g′ . (4.4) thatdiscriminatingthestates − | iD| (1···10...0)i1,...,n(cid:17) |∈{NzD} {|g(0···0)i1,...,n,|g(1···10···0)i1,...,n} The dealer measures randomly in either the 0 , 1 or ∈ND D D the 0′ D, 1′ D basis. Thedealer’smeasure{m| einto|utico}mes providesnoinformationabout|w{hzeth}erwehave {| i | i } providetherandomkey. Throughthe entanglement, the playerscan access the key |g(′0···0)i1,...,n bymakingthecorrectmeasurement.Ifthedealermeasuresin or 0 , 1 ,theresultsarethencorrelatedtothestates D D {| i | i } g′ . {|g(0···0)i1,...,n,|g(1···10···0)i1,...,n} | (1···10···0)i1,...,n ∈ND ∈ND | {z } | {z } Thus, the players cannot discriminate both bases simultane- held by the players. If any set of players can discriminate ously,soevenifasetofplayersisauthorizedandcandiscrim- thesestatesperfectly,theycanfindoutwhatthemeasurement inate perfectly,50%of the time they will measurein a basis resultofthedealerwas,andtherebyobtaintherandomkey. inwhichtheygainnoinformationaboutthedealer’smeasure- The dealer may instead choose to measure in mentresult, hencewill notaccess the key. To accommodate the 0′ , 1′ basis, and then the player’s qubits {| iD | iD} thisatsome pointin the protocol,thedealeror playersmust willendupineitheroftheassociatedconjugatestates announcewhichbasistheymeasure. Resultswherethebases matcharekept,andthosethatdonotmatcharediscarded.The g′ , g′ {| (0···0)i1,...,n | (1 10···0)i1,...,n} remainingresultsshouldbeperfectlycorrelatedandprovidea ··· ∈ND randomkey,oftenreferredtoasthe‘siftedkey’. Bystandard | {z } classicalsecurityprotocols[3],thiscanbedistilledtoasecret correlatedto themeasurementresult. Theabilityto discrim- keybythedealerandauthorisedplayerssacrificingpartofthe inate (or in other words, to access the information ~ℓ⋆2 and siftedkey. hencegetthekey)isthendeterminedbytheconjugategraph Inthiswayourprotocolsareprotectedagainstalargeclass g′, which must be checked to have the correct access struc- ofattacks,namelytheso-calledintercept-resendattacks. For ture also (if we want to do secret sharing). We see that this suchattacksweimagineaneavesdropper(traditionallycalled worksfortheGHZandthe5-qubitringencodedgraphstates, Eve)whotriestogaininformationaboutthesecretkeybyin- butitdoesnotworkforthe4-qubitringencodedgraphstate. terceptingthequbitsbeforetheyreachtheplayers,andeither This is why we cannotextend the (3,4) CC protocolto key measuring them directly or entangling them to some ancilla distributioninthisway. ‘spy’-qubitsofherownandthensendingthemontotheplay- In the case of only one player, this corresponds to Ek- ers.(Infact,thiseavesdroppercouldinsteadbesomeunautho- ert’s protocol [16]. In our case there is the added struc- rizedplayers.) AtanypointintheprotocolEvemaymeasure ture given by the graph g. Discriminating these states is herentangledancillaspy-qubitstoattemptaccesstothekey. the same as accessing either the information ~ℓ⋆2 = ~0 or She will try to do this in a way that is not detectable by the ~ℓ = (1,...,1,0,...,0). Bychoosingtherightgraph,only dealerandauthorizedplayers. ⋆2 theauthorizedplayerscanaccesstheinformation,ordiscrimi- Measuringintwoconjugatebasesservestwocomplemen- natethestatesandaccessthiskey.Inthisfirstinstanceweuse tarypurposestocounterthisparticularclassofattacks. First exactlythegraphsofthelastprotocolstodothis. Inthisway the measurements in conjugate bases is decided randomly, theseentangledstates(4.4)areapurificationoftheprotocols which protects against any intercept-resend eavesdropping ofthelastsection-takinga randomchoiceofthetwograph strategy: if Eve knows which measurement the players will states(whichcanbeviewedasamixedstate)toanentangled make, she can make the same measurementherself and thus purestate byaddinganauxiliarysystem, whichisthedealer beundetected,but,ifshedoesnotknowthemeasurementba- inthiscase. sis, thenanyintrusionbyherwillaffectthestatisticsofsub- The players also measure randomly to either discriminate sequentmeasurementsandthusbe detectable. Second,mea- states surement in conjugate bases allows checking of correlations

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.