ebook img

Graph Spectra for Complex Networks PDF

364 Pages·2011·2.476 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Graph Spectra for Complex Networks

This page intentionally left blank GRAPH SPECTRA FOR COMPLEX NETWORKS PIET VAN MIEGHEM Delft University of Technology CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore, S˜aoPaulo,Delhi,Dubai,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521194587 °c CambridgeUniversityPress2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2011 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata ISBN978-0-521-19458-7Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. to Saskia who tolerated with love that science is a passionate and most demanding mistress Contents Preface ix Acknowledgements xiii Symbols xv 1 Introduction 1 1.1 Interpretation and contemplation 2 1.2 Outline of the book 5 1.3 Classes of graphs 7 1.4 Outlook 10 Part I Spectra of graphs 11 2 Algebraic graph theory 13 2.1 Graph related matrices 13 2.2 Walks and paths 25 3 Eigenvalues of the adjacency matrix 29 3.1 General properties 29 3.2 The number of walks 33 3.3 Regular graphs 43 3.4 Bounds for the largest, positive eigenvalue (cid:24) 46 1 3.5 Eigenvalue spacings 55 3.6 Additional properties 58 3.7 The stochastic matrix (cid:83) =(cid:4)(cid:3)1(cid:68) 63 4 Eigenvalues of the Laplacian (cid:84) 67 4.1 General properties 67 v vi Contents 4.2 Second smallest eigenvalue of the Laplacian (cid:84) 80 4.3 Partitioning of a graph 89 4.4 The modularity and the modularity matrix (cid:80) 96 4.5 Bounds for the diameter 108 4.6 Eigenvalues of graphs and subgraphs 109 5 Spectra of special types of graphs 115 5.1 The complete graph 115 5.2 A small-world graph 115 5.3 A circuit on (cid:81) nodes 123 5.4 A path of (cid:81) (cid:3)1 hops 124 5.5 A path of (cid:107) hops 129 5.6 The wheel (cid:90) 129 (cid:81)+1 5.7 The complete bipartite graph (cid:78) 129 (cid:112)(cid:62)(cid:113) 5.8 A general bipartite graph 131 5.9 Complete multi-partite graph 135 5.10 An (cid:112)-fully meshed star topology 138 5.11 A chain of cliques 147 5.12 The lattice 154 6 Density function of the eigenvalues 159 6.1 Definitions 159 6.2 The density when (cid:81) (cid:36)(cid:52) 161 6.3 Examples of spectral density functions 163 6.4 Density of a sparse regular graph 166 6.5 Random matrix theory 169 7 Spectra of complex networks 179 7.1 Simple observations 179 7.2 Distribution of the Laplacian eigenvalues and of the degree 181 7.3 Functional brain network 184 7.4 Rewiring Watts-Strogatz small-world graphs 185 7.5 Assortativity 187 7.6 Reconstructability of complex networks 196 7.7 Reaching consensus 199 7.8 Spectral graph metrics 200 Part II Eigensystem and polynomials 209 8 Eigensystem of a matrix 211 8.1 Eigenvalues and eigenvectors 211 8.2 Functions of a matrix 219 Contents vii 8.3 Hermitian and real symmetric matrices 222 8.4 Vector and matrix norms 230 8.5 Non-negative matrices 235 8.6 Positive (semi) definiteness 240 8.7 Interlacing 243 8.8 Eigenstructure of the product (cid:68)(cid:69) 252 8.9 Formulae of determinants 255 9 Polynomials with real coe(cid:33)cients 263 9.1 General properties 263 9.2 Transforming polynomials 270 9.3 Interpolation 274 9.4 The Euclidean algorithm 277 9.5 Descartes’ rule of signs 282 9.6 The number of real zeros in an interval 292 9.7 Locations of zeros in the complex plane 295 9.8 Zeros of complex functions 302 9.9 Bounds on values of a polynomial 305 9.10 Bounds for the spacing between zeros 306 9.11 Bounds on the zeros of a polynomial 308 10 Orthogonal polynomials 313 10.1 Definitions 313 10.2 Properties 315 10.3 The three-term recursion 317 10.4 Zeros of orthogonal polynomials 323 10.5 Gaussian quadrature 326 10.6 The Jacobi matrix 331 References 339 Index 345

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.