JamesJ.Kelly GraduateMathematicalPhysics RelatedTitles Trigg,G.L.(ed.) Mathematical Tools for Physicists 686pageswith98figuresand29tables 2005 Hardcover ISBN3-527-40548-8 Masujima,M. Applied Mathematical Methods in Theoretical Physics 388pageswithapprox.60figures 2005 Hardcover ISBN3-527-40534-8 Dubin,D. Numerical and Analytical Methods for Scientists and Engineers Using Mathematica 633pages 2003 Hardcover ISBN0-471-26610-8 Lambourne,R.,Tinker,M. Basic Mathematics for the Physical Sciences 688pages 2000 Hardcover ISBN0-471-85206-6 Kusse,B.,Westwig,E.A. Mathematical Physics AppliedMathematicsforScientistsandEngineers 680pages 1998 Hardcover ISBN0-471-15431-8 Courant,R.,Hilbert,D. Methods of Mathematical Physics Volume1 575pageswith27figures 1989 Softcover ISBN0-471-50447-5 JamesJ.Kelly Handbook of Time Series Analysis With MATHEMATICA supplements WILEY-VCH Verlag GmbH & Co. KGaA TheAuthor AllbookspublishedbyWiley-VCHarecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformationcontained Prof.JamesJ.Kelly inthesebooks,includingthisbook,tobefreeof UniversityofMaryland errors.Readersareadvisedtokeepinmindthat Dept.ofPhysics statements,data,illustrations,proceduraldetailsor [email protected] otheritemsmayinadvertentlybeinaccurate. LibraryofCongressCardNo.: appliedfor ForaSolutionsManual,lecturersshould contacttheeditorialdepartmentat BritishLibraryCataloguing-in-PublicationData [email protected], Acataloguerecordforthisbookisavailablefrom statingtheiraffiliationandthecourseinwhich theBritishLibrary. theywishtousethebook. Bibliographicinformationpublishedby DieDeutscheBibliothek DieDeutscheBibliothekliststhispublicationinthe DeutscheNationalbibliografie;detailedbibliographic dataisavailableintheInternetat <http://dnb.ddb.de>. ©2006WILEY-VCHVerlagGmbH&Co.KGaA, Weinheim Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmaybe reproducedinanyform–photoprinting,microfilm, oranyothermeans–transmittedortranslatedinto amachinelanguagewithoutwrittenpermissionfrom thepublishers.Registerednames,trademarks,etc. usedinthisbook,evenwhennotspecifically markedassuch,arenottobeconsidered unprotectedbylaw. Typesetting Da-TeXGerdBlumenstein,Leipzig Printing betz-druckGmbH,Darmstadt Binding Litges&DopfGmbH,Heppenheim CoverDesign aktivCommGmbH,Weinheim PrintedintheFederalRepublicofGermany Printedonacid-freepaper ISBN-13: 978-3-527-40637-1 ISBN-10: 978-3-527-40637-1 Preface This textbook is intended to serve a course on mathematical methods of physics that is oftentakenbygraduatestudentsintheirfirstsemesterorbyundergraduatesintheirsenior year. I believe the most important topic for first-year graduate students in physics is the theoryofanalyticfunctions.Somestudentsmayhavehadabriefexposuretothatsubject asundergraduates,butfewareadequatelypreparedtoapplysuchmethodstophysicsprob- lems.Therefore,Istartwiththetheoryofanalyticfunctionsandpracticallyallsubsequent materialisbaseduponit.Theprimarytopicsinclude:theoryofanalyticfunctions,integral transforms,generalizedfunctions,eigenfunctionexpansions,Greenfunctions,boundary- valueproblems,andgrouptheory.Thiscourseisdesignedtopreparestudentsforadvanced treatmentsofelectromagnetictheoryandquantummechanics,butthemethodsandappli- cations are more general. Although this is a fairly standard course taught in most major universities,Iwasnotsatisfiedwiththeavailabletextbooks.Somepopularbutencyclope- dic books include a broader range of topics, much too broad to cover in one semester at thedepththatIthoughtnecessaryforgraduatestudents.Otherswithamoremanageable lengthappeartobetargetedprimarilyatundergraduatesandrelegatetoappendicessome ofthetopicsthatIbelievetobemostimportant.Therefore,Isoonfoundthatpreparation oflecturenotesfordistributiontostudentswasevolvingintoatextbook-writingproject. I was not able to avoid producing too much material either. I usually chose to skip most of the chapter on Legendre and Bessel functions, assuming that graduate students already had some familiarity with them, and instead referred them to a summary of the properties that are useful for the chapter on boundary-value problems. Other instructors might choose to omit the chapter on dispersion theory instead because most of it will probablybecoveredinthesubsequentcourseonelectromagnetism,butIfindthatsubject more interesting and more fun to discuss than special functions. The chapter on group theorywaspreparedattherequestofreviewers;althoughIneverreachedthattopicinone semester, I hope that it will be useful for those teaching a two-semester course or as a resourcethatstudentswilluselateron.Itmayalsobeusefulforone-semestercoursesat institutionswheretheaveragestudentalreadyhasasufficientlystrongmasteryofanalytic functions that the first couple of chapters can be abbreviated or omitted. I believe that it should be possible to cover most of the remaining material well in a single semester at any mid-level university. I assume that the calculus of variations will be covered in a concurrent course on classical mechanics and that the students are already comfortable with linear algebra, differential equations, and vector calculus. Probability theory, tensor analysis,anddifferentialgeometryareomitted. A CD containing detailed solutions to all of the problems is available to instructors. These solutions often employ (cid:1)(cid:2) to perform some of the routine but tedious manipulations and to prepare figures. Some of these solutions may also be presented as additionalexamplesofthetechniquescoveredinthiscourse. GraduateMathematicalPhysics.JamesJ.Kelly Copyright©2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-40637-9 Contents Preface V NotetotheReader XV 1 AnalyticFunctions 1 1.1 ComplexNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 MotivationandDefinitions . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 TriangleInequalities . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 PolarRepresentation . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.4 ArgumentFunction . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 TakeCarewithMultivaluedFunctions . . . . . . . . . . . . . . . . . . . 8 1.3 FunctionsasMappings . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 Mapping:w(cid:1)(cid:2)z . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Mapping:w(cid:1)Sin(cid:3)z(cid:4) . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 ElementaryFunctionsandTheirInverses. . . . . . . . . . . . . . . . . . 17 1.4.1 ExponentialandLogarithm. . . . . . . . . . . . . . . . . . . . . 17 1.4.2 Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.3 TrigonometricandHyperbolicFunctions . . . . . . . . . . . . . 19 1.4.4 StandardBranchCuts . . . . . . . . . . . . . . . . . . . . . . . 20 1.5 Sets,Curves,RegionsandDomains . . . . . . . . . . . . . . . . . . . . 21 1.6 LimitsandContinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.7 Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.7.1 Cauchy–RiemannEquations . . . . . . . . . . . . . . . . . . . . 23 1.7.2 DifferentiationRules . . . . . . . . . . . . . . . . . . . . . . . . 25 1.8 PropertiesofAnalyticFunctions . . . . . . . . . . . . . . . . . . . . . . 26 1.9 Cauchy–GoursatTheorem . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.9.1 SimplyConnectedRegions . . . . . . . . . . . . . . . . . . . . . 28 1.9.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.9.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.10 CauchyIntegralFormula . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.10.1 IntegrationAroundNonanalyticRegions . . . . . . . . . . . . . 32 1.10.2 CauchyIntegralFormula . . . . . . . . . . . . . . . . . . . . . . 34 1.10.3 Example:YukawaField . . . . . . . . . . . . . . . . . . . . . . 34 1.10.4 DerivativesofAnalyticFunctions . . . . . . . . . . . . . . . . . 36 1.10.5 Morera’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.11 ComplexSequencesandSeries . . . . . . . . . . . . . . . . . . . . . . . 37 1.11.1 ConvergenceTests . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.11.2 UniformConvergence . . . . . . . . . . . . . . . . . . . . . . . 40 GraduateMathematicalPhysics.JamesJ.Kelly Copyright©2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-40637-9 VIII Contents 1.12 DerivativesandTaylorSeriesforAnalyticFunctions . . . . . . . . . . . 41 1.12.1 TaylorSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.12.2 CauchyInequality . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.12.3 Liouville’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . 44 1.12.4 FundamentalTheoremofAlgebra . . . . . . . . . . . . . . . . . 44 1.12.5 ZerosofAnalyticFunctions . . . . . . . . . . . . . . . . . . . . 45 1.13 LaurentSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1.13.1 Derivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1.13.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1.13.3 ClassificationofSingularities . . . . . . . . . . . . . . . . . . . 49 1.13.4 PolesandResidues . . . . . . . . . . . . . . . . . . . . . . . . . 50 1.14 MeromorphicFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.14.1 PoleExpansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.14.2 Example:Tan(cid:3)z(cid:4) . . . . . . . . . . . . . . . . . . . . . . . . . . 53 1.14.3 ProductExpansion . . . . . . . . . . . . . . . . . . . . . . . . . 54 1.14.4 Example:Sin(cid:3)z(cid:4). . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2 Integration 65 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.2 GoodTricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.2.1 ParametricDifferentiation . . . . . . . . . . . . . . . . . . . . . 65 2.2.2 ConvergenceFactors . . . . . . . . . . . . . . . . . . . . . . . . 66 2.3 ContourIntegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.3.1 ResidueTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.3.2 DefiniteIntegralsoftheForm(cid:1)2Π f(cid:3)sinΘ,cosΘ(cid:4)(cid:7)Θ . . . . . . . . 67 0(cid:8) 2.3.3 DefiniteIntegralsoftheForm(cid:1) f(cid:3)x(cid:4)(cid:7)x . . . . . . . . . . . . . 69 (cid:9)(cid:8) 2.3.4 FourierIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2.3.5 CustomContours . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.4 IsolatedSingularitiesontheContour . . . . . . . . . . . . . . . . . . . . 73 2.4.1 RemovableSingularity . . . . . . . . . . . . . . . . . . . . . . . 73 2.4.2 CauchyPrincipalValue . . . . . . . . . . . . . . . . . . . . . . . 75 2.5 IntegrationAroundaBranchPoint . . . . . . . . . . . . . . . . . . . . . 77 2.6 ReductiontoTabulatedIntegrals . . . . . . . . . . . . . . . . . . . . . . 79 2.6.1 Example:(cid:1)(cid:8) (cid:2)(cid:9)x4(cid:7)x . . . . . . . . . . . . . . . . . . . . . . . . 80 (cid:9)(cid:8) 2.6.2 Example:TheBetaFunction . . . . . . . . . . . . . . . . . . . . 81 2.6.3 Example:(cid:1)(cid:8) Ωn (cid:7)Ω . . . . . . . . . . . . . . . . . . . . . . . 81 0 (cid:2)ΒΩ(cid:9)1 2.7 IntegralRepresentationsforAnalyticFunctions . . . . . . . . . . . . . . 82 2.8 Using(cid:1)(cid:2)toEvaluateIntegrals . . . . . . . . . . . . . . . . . 86 2.8.1 SymbolicIntegration . . . . . . . . . . . . . . . . . . . . . . . . 86 2.8.2 NumericalIntegration . . . . . . . . . . . . . . . . . . . . . . . 88 2.8.3 FurtherInformation. . . . . . . . . . . . . . . . . . . . . . . . . 89 3 AsymptoticSeries 95 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Contents IX 3.2 MethodofSteepestDescent . . . . . . . . . . . . . . . . . . . . . . . . 96 3.2.1 Example:GammaFunction . . . . . . . . . . . . . . . . . . . . 99 3.3 PartialIntegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.3.1 Example:ComplementaryErrorFunction . . . . . . . . . . . . . 102 3.4 ExpansionofanIntegrand . . . . . . . . . . . . . . . . . . . . . . . . . 104 3.4.1 Example:ModifiedBesselFunction . . . . . . . . . . . . . . . . 105 4 GeneralizedFunctions 111 4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.2 PropertiesoftheDiracDeltaFunction . . . . . . . . . . . . . . . . . . . 113 4.3 OtherUsefulGeneralizedFunctions . . . . . . . . . . . . . . . . . . . . 115 4.3.1 HeavisideStepFunction . . . . . . . . . . . . . . . . . . . . . . 115 4.3.2 DerivativesoftheDiracDeltaFunction . . . . . . . . . . . . . . 116 4.4 GreenFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.5 MultidimensionalDeltaFunctions . . . . . . . . . . . . . . . . . . . . . 120 5 IntegralTransforms 125 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2 FourierTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.2 DefinitionandInversion . . . . . . . . . . . . . . . . . . . . . . 128 5.2.3 BasicProperties . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.2.4 Parseval’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.2.5 ConvolutionTheorem . . . . . . . . . . . . . . . . . . . . . . . 132 5.2.6 CorrelationTheorem . . . . . . . . . . . . . . . . . . . . . . . . 133 5.2.7 UsefulFourierTransforms . . . . . . . . . . . . . . . . . . . . . 134 5.2.8 FourierTransformofDerivatives. . . . . . . . . . . . . . . . . . 138 5.2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3 GreenFunctionsviaFourierTransform . . . . . . . . . . . . . . . . . . 139 5.3.1 Example:GreenFunctionforOne-DimensionalDiffusion . . . . 139 5.3.2 Example:Three-DimensionalGreenFunctionforDiffusion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.3.3 Example:GreenFunctionforDampedOscillator . . . . . . . . . 143 5.3.4 OperatorMethod . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.4 CosineorSineTransformsforEvenorOddFunctions. . . . . . . . . . . 147 5.5 DiscreteFourierTransform . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.5.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.5.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.5.3 TemporalCorrelation . . . . . . . . . . . . . . . . . . . . . . . . 156 5.5.4 PowerSpectrumEstimation . . . . . . . . . . . . . . . . . . . . 160 5.6 LaplaceTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.6.1 DefinitionandInversion . . . . . . . . . . . . . . . . . . . . . . 165 5.6.2 LaplaceTransformsforElementaryFunctions. . . . . . . . . . . 167 5.6.3 LaplaceTransformofDerivatives . . . . . . . . . . . . . . . . . 170 X Contents 5.6.4 ConvolutionTheorem . . . . . . . . . . . . . . . . . . . . . . . 171 5.6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 5.7 GreenFunctionsviaLaplaceTransform . . . . . . . . . . . . . . . . . . 173 5.7.1 Example:SeriesRCCircuit . . . . . . . . . . . . . . . . . . . . 174 5.7.2 Example:DampedOscillator . . . . . . . . . . . . . . . . . . . . 175 5.7.3 Example:DiffusionwithConstantBoundaryValue . . . . . . . . 176 6 AnalyticContinuationandDispersionRelations 191 6.1 AnalyticContinuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.1.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 6.1.3 ReflectionPrinciple. . . . . . . . . . . . . . . . . . . . . . . . . 194 6.1.4 PermanenceofAlgebraicForm . . . . . . . . . . . . . . . . . . 195 6.1.5 Example:GammaFunction . . . . . . . . . . . . . . . . . . . . 195 6.2 DispersionRelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.2.1 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.2.2 OscillatorModel . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.2.3 Kramers–KronigRelations . . . . . . . . . . . . . . . . . . . . . 203 6.2.4 SumRules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 6.3 HilbertTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6.4 SpreadingofaWavePacket. . . . . . . . . . . . . . . . . . . . . . . . . 209 6.5 Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 7 Sturm–LiouvilleTheory 223 7.1 Introduction:TheGeneralStringEquation . . . . . . . . . . . . . . . . . 223 7.2 HilbertSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 7.2.1 SchwartzInequality . . . . . . . . . . . . . . . . . . . . . . . . 229 7.2.2 Gram–SchmidtOrthogonalization . . . . . . . . . . . . . . . . . 230 7.3 PropertiesofSturm–LiouvilleSystems . . . . . . . . . . . . . . . . . . . 232 7.3.1 Self-Adjointness . . . . . . . . . . . . . . . . . . . . . . . . . . 232 7.3.2 RealityofEigenvaluesandOrthogonalityofEigenfunctions . . . 233 7.3.3 DiscretenessofEigenvalues . . . . . . . . . . . . . . . . . . . . 235 7.3.4 CompletenessofEigenfunctions . . . . . . . . . . . . . . . . . . 235 7.3.5 Parseval’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.3.6 RealityofEigenfunctions . . . . . . . . . . . . . . . . . . . . . 238 7.3.7 InterleavingofZeros . . . . . . . . . . . . . . . . . . . . . . . . 238 7.3.8 ComparisonTheorems . . . . . . . . . . . . . . . . . . . . . . . 240 7.4 GreenFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 7.4.1 InterfaceMatching . . . . . . . . . . . . . . . . . . . . . . . . . 242 7.4.2 EigenfunctionExpansionofGreenFunction. . . . . . . . . . . . 246 7.4.3 Example:VibratingString . . . . . . . . . . . . . . . . . . . . . 252 7.5 PerturbationTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 7.5.1 Example:BeadatCenterofaString . . . . . . . . . . . . . . . . 255 7.6 VariationalMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256