ebook img

Graduate Mathematical Physics with MATHEMATICA Supplements PDF

481 Pages·2006·3.074 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Graduate Mathematical Physics with MATHEMATICA Supplements

JamesJ.Kelly GraduateMathematicalPhysics RelatedTitles Trigg,G.L.(ed.) Mathematical Tools for Physicists 686pageswith98figuresand29tables 2005 Hardcover ISBN3-527-40548-8 Masujima,M. Applied Mathematical Methods in Theoretical Physics 388pageswithapprox.60figures 2005 Hardcover ISBN3-527-40534-8 Dubin,D. Numerical and Analytical Methods for Scientists and Engineers Using Mathematica 633pages 2003 Hardcover ISBN0-471-26610-8 Lambourne,R.,Tinker,M. Basic Mathematics for the Physical Sciences 688pages 2000 Hardcover ISBN0-471-85206-6 Kusse,B.,Westwig,E.A. Mathematical Physics AppliedMathematicsforScientistsandEngineers 680pages 1998 Hardcover ISBN0-471-15431-8 Courant,R.,Hilbert,D. Methods of Mathematical Physics Volume1 575pageswith27figures 1989 Softcover ISBN0-471-50447-5 JamesJ.Kelly Handbook of Time Series Analysis With MATHEMATICA supplements WILEY-VCH Verlag GmbH & Co. KGaA TheAuthor AllbookspublishedbyWiley-VCHarecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformationcontained Prof.JamesJ.Kelly inthesebooks,includingthisbook,tobefreeof UniversityofMaryland errors.Readersareadvisedtokeepinmindthat Dept.ofPhysics statements,data,illustrations,proceduraldetailsor [email protected] otheritemsmayinadvertentlybeinaccurate. LibraryofCongressCardNo.: appliedfor ForaSolutionsManual,lecturersshould contacttheeditorialdepartmentat BritishLibraryCataloguing-in-PublicationData [email protected], Acataloguerecordforthisbookisavailablefrom statingtheiraffiliationandthecourseinwhich theBritishLibrary. theywishtousethebook. Bibliographicinformationpublishedby DieDeutscheBibliothek DieDeutscheBibliothekliststhispublicationinthe DeutscheNationalbibliografie;detailedbibliographic dataisavailableintheInternetat <http://dnb.ddb.de>. ©2006WILEY-VCHVerlagGmbH&Co.KGaA, Weinheim Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmaybe reproducedinanyform–photoprinting,microfilm, oranyothermeans–transmittedortranslatedinto amachinelanguagewithoutwrittenpermissionfrom thepublishers.Registerednames,trademarks,etc. usedinthisbook,evenwhennotspecifically markedassuch,arenottobeconsidered unprotectedbylaw. Typesetting Da-TeXGerdBlumenstein,Leipzig Printing betz-druckGmbH,Darmstadt Binding Litges&DopfGmbH,Heppenheim CoverDesign aktivCommGmbH,Weinheim PrintedintheFederalRepublicofGermany Printedonacid-freepaper ISBN-13: 978-3-527-40637-1 ISBN-10: 978-3-527-40637-1 Preface This textbook is intended to serve a course on mathematical methods of physics that is oftentakenbygraduatestudentsintheirfirstsemesterorbyundergraduatesintheirsenior year. I believe the most important topic for first-year graduate students in physics is the theoryofanalyticfunctions.Somestudentsmayhavehadabriefexposuretothatsubject asundergraduates,butfewareadequatelypreparedtoapplysuchmethodstophysicsprob- lems.Therefore,Istartwiththetheoryofanalyticfunctionsandpracticallyallsubsequent materialisbaseduponit.Theprimarytopicsinclude:theoryofanalyticfunctions,integral transforms,generalizedfunctions,eigenfunctionexpansions,Greenfunctions,boundary- valueproblems,andgrouptheory.Thiscourseisdesignedtopreparestudentsforadvanced treatmentsofelectromagnetictheoryandquantummechanics,butthemethodsandappli- cations are more general. Although this is a fairly standard course taught in most major universities,Iwasnotsatisfiedwiththeavailabletextbooks.Somepopularbutencyclope- dic books include a broader range of topics, much too broad to cover in one semester at thedepththatIthoughtnecessaryforgraduatestudents.Otherswithamoremanageable lengthappeartobetargetedprimarilyatundergraduatesandrelegatetoappendicessome ofthetopicsthatIbelievetobemostimportant.Therefore,Isoonfoundthatpreparation oflecturenotesfordistributiontostudentswasevolvingintoatextbook-writingproject. I was not able to avoid producing too much material either. I usually chose to skip most of the chapter on Legendre and Bessel functions, assuming that graduate students already had some familiarity with them, and instead referred them to a summary of the properties that are useful for the chapter on boundary-value problems. Other instructors might choose to omit the chapter on dispersion theory instead because most of it will probablybecoveredinthesubsequentcourseonelectromagnetism,butIfindthatsubject more interesting and more fun to discuss than special functions. The chapter on group theorywaspreparedattherequestofreviewers;althoughIneverreachedthattopicinone semester, I hope that it will be useful for those teaching a two-semester course or as a resourcethatstudentswilluselateron.Itmayalsobeusefulforone-semestercoursesat institutionswheretheaveragestudentalreadyhasasufficientlystrongmasteryofanalytic functions that the first couple of chapters can be abbreviated or omitted. I believe that it should be possible to cover most of the remaining material well in a single semester at any mid-level university. I assume that the calculus of variations will be covered in a concurrent course on classical mechanics and that the students are already comfortable with linear algebra, differential equations, and vector calculus. Probability theory, tensor analysis,anddifferentialgeometryareomitted. A CD containing detailed solutions to all of the problems is available to instructors. These solutions often employ (cid:1)(cid:2) to perform some of the routine but tedious manipulations and to prepare figures. Some of these solutions may also be presented as additionalexamplesofthetechniquescoveredinthiscourse. GraduateMathematicalPhysics.JamesJ.Kelly Copyright©2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-40637-9 Contents Preface V NotetotheReader XV 1 AnalyticFunctions 1 1.1 ComplexNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 MotivationandDefinitions . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 TriangleInequalities . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 PolarRepresentation . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.4 ArgumentFunction . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 TakeCarewithMultivaluedFunctions . . . . . . . . . . . . . . . . . . . 8 1.3 FunctionsasMappings . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 Mapping:w(cid:1)(cid:2)z . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Mapping:w(cid:1)Sin(cid:3)z(cid:4) . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 ElementaryFunctionsandTheirInverses. . . . . . . . . . . . . . . . . . 17 1.4.1 ExponentialandLogarithm. . . . . . . . . . . . . . . . . . . . . 17 1.4.2 Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.3 TrigonometricandHyperbolicFunctions . . . . . . . . . . . . . 19 1.4.4 StandardBranchCuts . . . . . . . . . . . . . . . . . . . . . . . 20 1.5 Sets,Curves,RegionsandDomains . . . . . . . . . . . . . . . . . . . . 21 1.6 LimitsandContinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.7 Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.7.1 Cauchy–RiemannEquations . . . . . . . . . . . . . . . . . . . . 23 1.7.2 DifferentiationRules . . . . . . . . . . . . . . . . . . . . . . . . 25 1.8 PropertiesofAnalyticFunctions . . . . . . . . . . . . . . . . . . . . . . 26 1.9 Cauchy–GoursatTheorem . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.9.1 SimplyConnectedRegions . . . . . . . . . . . . . . . . . . . . . 28 1.9.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.9.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.10 CauchyIntegralFormula . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.10.1 IntegrationAroundNonanalyticRegions . . . . . . . . . . . . . 32 1.10.2 CauchyIntegralFormula . . . . . . . . . . . . . . . . . . . . . . 34 1.10.3 Example:YukawaField . . . . . . . . . . . . . . . . . . . . . . 34 1.10.4 DerivativesofAnalyticFunctions . . . . . . . . . . . . . . . . . 36 1.10.5 Morera’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.11 ComplexSequencesandSeries . . . . . . . . . . . . . . . . . . . . . . . 37 1.11.1 ConvergenceTests . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.11.2 UniformConvergence . . . . . . . . . . . . . . . . . . . . . . . 40 GraduateMathematicalPhysics.JamesJ.Kelly Copyright©2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-40637-9 VIII Contents 1.12 DerivativesandTaylorSeriesforAnalyticFunctions . . . . . . . . . . . 41 1.12.1 TaylorSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.12.2 CauchyInequality . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.12.3 Liouville’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . 44 1.12.4 FundamentalTheoremofAlgebra . . . . . . . . . . . . . . . . . 44 1.12.5 ZerosofAnalyticFunctions . . . . . . . . . . . . . . . . . . . . 45 1.13 LaurentSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1.13.1 Derivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1.13.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1.13.3 ClassificationofSingularities . . . . . . . . . . . . . . . . . . . 49 1.13.4 PolesandResidues . . . . . . . . . . . . . . . . . . . . . . . . . 50 1.14 MeromorphicFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.14.1 PoleExpansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.14.2 Example:Tan(cid:3)z(cid:4) . . . . . . . . . . . . . . . . . . . . . . . . . . 53 1.14.3 ProductExpansion . . . . . . . . . . . . . . . . . . . . . . . . . 54 1.14.4 Example:Sin(cid:3)z(cid:4). . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2 Integration 65 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.2 GoodTricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.2.1 ParametricDifferentiation . . . . . . . . . . . . . . . . . . . . . 65 2.2.2 ConvergenceFactors . . . . . . . . . . . . . . . . . . . . . . . . 66 2.3 ContourIntegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.3.1 ResidueTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.3.2 DefiniteIntegralsoftheForm(cid:1)2Π f(cid:3)sinΘ,cosΘ(cid:4)(cid:7)Θ . . . . . . . . 67 0(cid:8) 2.3.3 DefiniteIntegralsoftheForm(cid:1) f(cid:3)x(cid:4)(cid:7)x . . . . . . . . . . . . . 69 (cid:9)(cid:8) 2.3.4 FourierIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2.3.5 CustomContours . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.4 IsolatedSingularitiesontheContour . . . . . . . . . . . . . . . . . . . . 73 2.4.1 RemovableSingularity . . . . . . . . . . . . . . . . . . . . . . . 73 2.4.2 CauchyPrincipalValue . . . . . . . . . . . . . . . . . . . . . . . 75 2.5 IntegrationAroundaBranchPoint . . . . . . . . . . . . . . . . . . . . . 77 2.6 ReductiontoTabulatedIntegrals . . . . . . . . . . . . . . . . . . . . . . 79 2.6.1 Example:(cid:1)(cid:8) (cid:2)(cid:9)x4(cid:7)x . . . . . . . . . . . . . . . . . . . . . . . . 80 (cid:9)(cid:8) 2.6.2 Example:TheBetaFunction . . . . . . . . . . . . . . . . . . . . 81 2.6.3 Example:(cid:1)(cid:8) Ωn (cid:7)Ω . . . . . . . . . . . . . . . . . . . . . . . 81 0 (cid:2)ΒΩ(cid:9)1 2.7 IntegralRepresentationsforAnalyticFunctions . . . . . . . . . . . . . . 82 2.8 Using(cid:1)(cid:2)toEvaluateIntegrals . . . . . . . . . . . . . . . . . 86 2.8.1 SymbolicIntegration . . . . . . . . . . . . . . . . . . . . . . . . 86 2.8.2 NumericalIntegration . . . . . . . . . . . . . . . . . . . . . . . 88 2.8.3 FurtherInformation. . . . . . . . . . . . . . . . . . . . . . . . . 89 3 AsymptoticSeries 95 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Contents IX 3.2 MethodofSteepestDescent . . . . . . . . . . . . . . . . . . . . . . . . 96 3.2.1 Example:GammaFunction . . . . . . . . . . . . . . . . . . . . 99 3.3 PartialIntegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.3.1 Example:ComplementaryErrorFunction . . . . . . . . . . . . . 102 3.4 ExpansionofanIntegrand . . . . . . . . . . . . . . . . . . . . . . . . . 104 3.4.1 Example:ModifiedBesselFunction . . . . . . . . . . . . . . . . 105 4 GeneralizedFunctions 111 4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.2 PropertiesoftheDiracDeltaFunction . . . . . . . . . . . . . . . . . . . 113 4.3 OtherUsefulGeneralizedFunctions . . . . . . . . . . . . . . . . . . . . 115 4.3.1 HeavisideStepFunction . . . . . . . . . . . . . . . . . . . . . . 115 4.3.2 DerivativesoftheDiracDeltaFunction . . . . . . . . . . . . . . 116 4.4 GreenFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.5 MultidimensionalDeltaFunctions . . . . . . . . . . . . . . . . . . . . . 120 5 IntegralTransforms 125 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2 FourierTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.2 DefinitionandInversion . . . . . . . . . . . . . . . . . . . . . . 128 5.2.3 BasicProperties . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.2.4 Parseval’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.2.5 ConvolutionTheorem . . . . . . . . . . . . . . . . . . . . . . . 132 5.2.6 CorrelationTheorem . . . . . . . . . . . . . . . . . . . . . . . . 133 5.2.7 UsefulFourierTransforms . . . . . . . . . . . . . . . . . . . . . 134 5.2.8 FourierTransformofDerivatives. . . . . . . . . . . . . . . . . . 138 5.2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3 GreenFunctionsviaFourierTransform . . . . . . . . . . . . . . . . . . 139 5.3.1 Example:GreenFunctionforOne-DimensionalDiffusion . . . . 139 5.3.2 Example:Three-DimensionalGreenFunctionforDiffusion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.3.3 Example:GreenFunctionforDampedOscillator . . . . . . . . . 143 5.3.4 OperatorMethod . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.4 CosineorSineTransformsforEvenorOddFunctions. . . . . . . . . . . 147 5.5 DiscreteFourierTransform . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.5.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.5.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.5.3 TemporalCorrelation . . . . . . . . . . . . . . . . . . . . . . . . 156 5.5.4 PowerSpectrumEstimation . . . . . . . . . . . . . . . . . . . . 160 5.6 LaplaceTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.6.1 DefinitionandInversion . . . . . . . . . . . . . . . . . . . . . . 165 5.6.2 LaplaceTransformsforElementaryFunctions. . . . . . . . . . . 167 5.6.3 LaplaceTransformofDerivatives . . . . . . . . . . . . . . . . . 170 X Contents 5.6.4 ConvolutionTheorem . . . . . . . . . . . . . . . . . . . . . . . 171 5.6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 5.7 GreenFunctionsviaLaplaceTransform . . . . . . . . . . . . . . . . . . 173 5.7.1 Example:SeriesRCCircuit . . . . . . . . . . . . . . . . . . . . 174 5.7.2 Example:DampedOscillator . . . . . . . . . . . . . . . . . . . . 175 5.7.3 Example:DiffusionwithConstantBoundaryValue . . . . . . . . 176 6 AnalyticContinuationandDispersionRelations 191 6.1 AnalyticContinuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.1.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 6.1.3 ReflectionPrinciple. . . . . . . . . . . . . . . . . . . . . . . . . 194 6.1.4 PermanenceofAlgebraicForm . . . . . . . . . . . . . . . . . . 195 6.1.5 Example:GammaFunction . . . . . . . . . . . . . . . . . . . . 195 6.2 DispersionRelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.2.1 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.2.2 OscillatorModel . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.2.3 Kramers–KronigRelations . . . . . . . . . . . . . . . . . . . . . 203 6.2.4 SumRules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 6.3 HilbertTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6.4 SpreadingofaWavePacket. . . . . . . . . . . . . . . . . . . . . . . . . 209 6.5 Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 7 Sturm–LiouvilleTheory 223 7.1 Introduction:TheGeneralStringEquation . . . . . . . . . . . . . . . . . 223 7.2 HilbertSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 7.2.1 SchwartzInequality . . . . . . . . . . . . . . . . . . . . . . . . 229 7.2.2 Gram–SchmidtOrthogonalization . . . . . . . . . . . . . . . . . 230 7.3 PropertiesofSturm–LiouvilleSystems . . . . . . . . . . . . . . . . . . . 232 7.3.1 Self-Adjointness . . . . . . . . . . . . . . . . . . . . . . . . . . 232 7.3.2 RealityofEigenvaluesandOrthogonalityofEigenfunctions . . . 233 7.3.3 DiscretenessofEigenvalues . . . . . . . . . . . . . . . . . . . . 235 7.3.4 CompletenessofEigenfunctions . . . . . . . . . . . . . . . . . . 235 7.3.5 Parseval’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.3.6 RealityofEigenfunctions . . . . . . . . . . . . . . . . . . . . . 238 7.3.7 InterleavingofZeros . . . . . . . . . . . . . . . . . . . . . . . . 238 7.3.8 ComparisonTheorems . . . . . . . . . . . . . . . . . . . . . . . 240 7.4 GreenFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 7.4.1 InterfaceMatching . . . . . . . . . . . . . . . . . . . . . . . . . 242 7.4.2 EigenfunctionExpansionofGreenFunction. . . . . . . . . . . . 246 7.4.3 Example:VibratingString . . . . . . . . . . . . . . . . . . . . . 252 7.5 PerturbationTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 7.5.1 Example:BeadatCenterofaString . . . . . . . . . . . . . . . . 255 7.6 VariationalMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.