ebook img

Gradually-varied Flow Profiles in Open Channels: Analytical Solutions by Using Gaussian Hypergeometric Function PDF

196 Pages·2014·4.63 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gradually-varied Flow Profiles in Open Channels: Analytical Solutions by Using Gaussian Hypergeometric Function

Advances in Geophysical and Environmental Mechanics and Mathematics Chyan-Deng Jan Gradually- varied Flow Profiles in Open Channels Analytical Solutions by Using Gaussian Hypergeometric Function Advances in Geophysical and Environmental Mechanics and Mathematics Series editors Angelika Humbert, Bremerhaven, Germany Kolumban Hutter, Zürich, Switzerland For furthervolumes: http://www.springer.com/series/7540 Chyan-Deng Jan Gradually-varied Flow Profiles in Open Channels Analytical Solutions by Using Gaussian Hypergeometric Function 123 Chyan-DengJan Department of Hydraulic andOcean Engineering National ChengKungUniversity Tainan Taiwan ISSN 1866-8348 ISSN 1866-8356 (electronic) ISBN 978-3-642-35241-6 ISBN 978-3-642-35242-3 (eBook) DOI 10.1007/978-3-642-35242-3 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013953191 (cid:2)Springer-VerlagBerlinHeidelberg2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To Dr. Cheng-lung Chen Preface Many hydraulic engineering works involve the computation of surface profiles of gradually varied flow (GVF) that is a steady nonuniform flow in an open channel withgradualchangesinitswatersurfaceelevation.Themostwidelyusedmethods forcomputingGVFprofilescouldbeclassifiedintothedirectintegrationmethods, step methods (i.e., simple numerical methods), and advanced numerical methods (e.g., the standard fourth order Runge–Kutta method). Numerical solutions of the GVF equation are primarily used in non-prismatic channels. In some prismatic channels, such as artificial channels, the GVF equation can be simplified so as to let the analytical (or semi-analytical) direct integration be applied. The analytical direct-integrationmethodisstraightforwardandcanprovidethetotallengthofthe profile in a single computation step. In the direct-integration method, the one-dimensional GVF equation is usually normalized to a simpler expression in advance so as to allow the performance of direct integration. In most cases, the GVF equation is normalized by the normal depth, while in some cases, it is normalized by the critical depth. Many attempts havebeenmadebypreviousinvestigatorsonthedirect-integrationmethodtosolve the GVF equation. The table of the varied-flow function (VFF) is needed in the Bakhmeteff-ChowproceduretoobtaintheGVFprofilesbyusingtheconventional direct-integration method. The use of the conventional Bakhmeteff-Chow proce- duretoobtainGVFprofileshasadrawbackcausedbytheinconvenienceoftheuse oftheVFF-table andtheimpreciseinterpolationofthe VFF-values fromtheVFF table. To overcome the drawback, Dr. C. L. Chen and the author had initiated a self-investigation to look for an alternative method to get analytical solutions of GVF profiles without recourse to the VFF since 2005. Dr. Chen was an excellent hydrologist in the U.S. Geological Survey, and a distinguished professor in the University of Illinois at Urbana-Champaign and in the Utah State University. Unfortunately,Dr.ChenpassedawayinJanuary2012,justaboutthetimeatwhich we found that the Gaussian hypergeometric functions (GHF) can be used to analytically solve the GVF equation, and completed two drafts of manuscripts to be submitted to a suitable journal. After some revisions by the author, these two manuscripts were submitted to two journals and finally published, one in the Journal of Hydrology in August 2012, and another in the Hydrology and Earth System Sciences (HESS) in March 2013, respectively. vii viii Preface ProfessorK.Hutter,theeditorofAdvancesinGeophysicalandEnvironmental MechanicsandMathematics(AGEM2),encouragedtheauthortothoroughlywrite outtheinnovativemethodusingtheGHFinanalyticallysolvingtheGVFprofiles in the form of a book, when he visited our university in May 2012. The author began to prepare this book in September 2012. This book attempts to thoroughly introduce the innovative procedure to obtain the analytical solution of GVF pro- filesusingtheGaussian hypergeometricfunctions(GHF)aswellastopresentthe analysisanddiscussionsoftheGHF-basedsolutions.Thisbookisdividedintofive chapters. Chapter 1 introduces the basic equations for the GVF in open channels. Chapter 2 introduces the conventional direct-integration methods used to analyt- ically solve the GVF equation. Chapter 3 presents the GVF equation normalized by the normal depth, and the application of the GHF on analytically solving the normal-depth-based dimensionless equation for GVF in sustaining channels. The classification and properties of the GHF-based solutions of the GVF profiles are also discussed in this chapter. Chapter 4 is devoted to the GVF equation nor- malized by the critical depth, and then solves it by using GHF for GVF flows in sustaining and non-sustaining channels. Chapter 5 presents the analysis and classificationoftheGHF-basedsolutionsofthecritical-depth-baseddimensionless GVFequation.Thischapteralsoshowsthatthecritical-depth-basedGVFsolution expressed in terms of the GHF is more useful and versatile than its counterpart normalized by using the normal depth. TheauthorisespeciallyindebtedtoProf.C.L.Chenwhointroducedtheauthor tothesubjectofGVFprofilesaspresentedinthisbook,aswellastothesubjectof debrisflowwhentheauthorwasagraduatestudentintheUniversityofCalifornia, Berkeleybetween1988and1992,andwhentheauthorwasavisitingscholaratthe U.S. Geological Survey at Menlo Park, California, in 1999. The author also acknowledges Prof. Y. C. Tai and Miss C. C. Shen for their help in the trans- formation of the manuscript typed in the form of Microsoft Word to that in the form of LaTex. Thanks are due to Prof. K. Hutter and Dr. A. Siviglia for their reviews and valuable suggestions. The author appreciates the supports and resources provided by the National Cheng Kung University, and the National Science Council, Taiwan. Finally, the author would like to express his sincere thankstoallthosewhohavedirectlyorindirectlyhelpedhiminwritingthisbook, and to Springer Verlag and its personnel for their help in the production of the book. Theauthorsincerelyhopesthatthisbookwillbeareferencebookforpractical civilorhydraulicengineerswhentheydesignhydraulicengineeringworksaswell as for undergraduate and graduate students in the fields of civil, hydraulic, and agricultural engineering. Taiwan, September 1, 2013 Chyan-Deng Jan Contents 1 Basic Equations for the Gradually-Varied Flow . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The GVF Equation for Flow in Open Channels. . . . . . . . . . . . . 1 1.3 The GVF Equation in Terms of Flow Depth. . . . . . . . . . . . . . . 4 1.3.1 Conveyance and Section Factor of Channel Section . . . . 4 1.3.2 Hydraulic Exponents Defined in Relation to Conveyance and Section Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.3 Role of the Power-Law Flow Resistance Formula in the GVF Equation. . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 The GVF Equation for Flow in Adverse Channels. . . . . . . . . . . 10 1.5 Classification of Gradually-varied Flow Profiles . . . . . . . . . . . . 11 1.6 Hydraulic Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.7 The Equation for GVF in Non-Prismatic Channels . . . . . . . . . . 18 1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Conventional Integral Solutions of the GVF Equation. . . . . . . . . . 21 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 GVF Solution in Terms of Varied-Flow Function . . . . . . . . . . . 21 2.3 GVF Solution by the Bresse Method . . . . . . . . . . . . . . . . . . . . 23 2.4 GVF Solution by the Bakhmeteff-Chow Procedure . . . . . . . . . . 25 2.5 Drawbacks on the VFF Table for GVF Solution . . . . . . . . . . . . 26 2.6 Attempts Made on M and N by Previous Investigators. . . . . . . . 26 2.7 Previous Studies on Integrating the GVF Equation . . . . . . . . . . 27 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Normal-Depth-Based Dimensionless GVF Solutions Using the Gaussian Hypergeometric Function. . . . . . . . . . . . . . . . . . . . . 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Normalization of the GVF Equation . . . . . . . . . . . . . . . . . . . . 38 3.3 GVFSolutionsbyUsingGaussianHypergeometricFunctions . . . 39 3.3.1 An Alternative Form of (3.5) for juj [1. . . . . . . . . . . 40 3.3.2 Feasible Arrangement of Two Integrals. . . . . . . . . . . . . 40 ix x Contents 3.3.3 Gaussian Hypergeometric Functions . . . . . . . . . . . . . . . 42 3.3.4 The GHF-Based Solutions of GVF Equation . . . . . . . . . 43 3.4 Alternative Method to Get the GHF-Based Solutions. . . . . . . . . 47 3.5 Classification of GHF-Based Solutions. . . . . . . . . . . . . . . . . . . 49 3.5.1 M, C and S Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5.2 An Example of GHF-Based GVF Profiles with Specified Hydraulic Exponents . . . . . . . . . . . . . . . 50 3.5.3 N-values for Fully Rough Flows in Wide Channels. . . . . 51 3.5.4 GHF-Based Solutions Under Specified Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5.5 Examples of GHF-Based GVF Prolfiles with M ¼3 and N ¼10=3, Specified k and BCs . . . . . . 56 3.6 Validation of the GHF-Based Solutions . . . . . . . . . . . . . . . . . . 57 3.6.1 Solving Equation (3.5) by Use of the ETF. . . . . . . . . . . 61 3.6.2 Comparison of the GHF-Based and ETF-Based Solutions. . . . . . . . . . . . . . . . . . . . . . . 62 3.7 Properties of the GHF-Based Solutions . . . . . . . . . . . . . . . . . . 66 3.7.1 Slopes of Flow Profiles Varying with h =h and N. . . . . 66 c n 3.7.2 Singularities of the Rational Function Representing the Slopes of C1 and C3 Profiles . . . . . . . . . . . . . . . . . 67 3.7.3 Points of Inflection on the M1 and M3 Profiles . . . . . . . 68 3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.8.1 Applicability of the GHF-Based Solutions in Perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.8.2 Role of h =h in the Domain of the GHF-Based c n Solution Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.8.3 Reclassification of the Critical Profiles and Points of Infinite Profile Slopes . . . . . . . . . . . . . . . . . . . . . . . 76 3.8.4 Identification of Inflection Points on GVF Profiles. . . . . 77 3.8.5 Curvature of GVF Profiles. . . . . . . . . . . . . . . . . . . . . . 78 3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4 Critical-Depth-Based Dimensionless GVF Solutions Using the GHF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.1.1 Background and Motivation of This Study. . . . . . . . . . . 86 4.1.2 Literature Survey of GVF Profiles in Adverse Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.1.3 Objectives and Scope of This Study . . . . . . . . . . . . . . . 88 4.2 Formulation of the h -Based Dimensionless GVF Equation . . . . 89 c 4.2.1 Dimensionless GVF Equation for Flow in Sustaining Channels . . . . . . . . . . . . . . . . . . . . . . . . 90 Contents xi 4.2.2 Dimensionless GVF Equation for Flow in Horizontal Channels . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2.3 Dimensionless GVF Equation for Flow in Adverse Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.3 GHF-Based Solutions of the h -Based Dimensionless c GVF Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.3.1 Alternative Forms of GVF Equations for jkvj [1 . . . . 96 4.3.2 Integration of the GVF Equation for Flow in Sustaining Channels . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3.3 GHF-Based Solutions of GVF Profiles in Sustaining Channels . . . . . . . . . . . . . . . . . . . . . . . . 98 4.3.4 Alternative Method to Get the GVF Profiles in Sustaining Channels . . . . . . . . . . . . . . . . . . . . . . . . 103 4.4 GHF-Based Dimensionless GVF Profiles in Adverse Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.4.1 Integrations of the GVF Equations for Flow in Adverse Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.4.2 GHF-Based Solutions of GVF Profiles in Adverse Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.4.3 Alternative Method to Get the GVF Profiles in Adverse Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5 Analysis of the GHF-Based Solutions of h -Based GVF Profiles. . . 115 c 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.2 Analysis of the GHF-Based Solutions of Equations (4.4) and (4.12) . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.2.1 Plotting the GHF-Based Solutions on the ðx ;vÞ-Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 ] 5.2.2 Mild (M), Steep (S), and Adverse (A) Profiles. . . . . . . . 116 5.2.3 Critical (C) Profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.2.4 Horizontal (H) Profiles in Zones 2 and 3. . . . . . . . . . . . 119 5.2.5 Horizontal Asymptotes at v¼h =h n c for Various h =h -values . . . . . . . . . . . . . . . . . . . . . . . 119 n c 5.3 Classification of GHF-Based Solutions Using h =h . . . . . . . . . 122 c n 5.4 Conversion from the h -Based Solutions to the h -Based c n Solutions, or Vice Versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.4.1 Solutions of GVF in Sustaining Channels . . . . . . . . . . . 126 5.4.2 Solutions of GVF in Adverse Channels. . . . . . . . . . . . . 131 5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.5.1 Features of the h -Based Dimensionless GVF Profiles. . . 133 c 5.5.2 Singularities of the h -Based Slopes of the C Profiles . . . 134 c 5.5.3 Two Inflection Points of the M Profiles. . . . . . . . . . . . . 134

Description:
Gradually-varied flow (GVF) is a steady non-uniform flow in an open channel with gradual changes in its water surface elevation. The evaluation of GVF profiles under a specific flow discharge is very important in hydraulic engineering. This book proposes a novel approach to analytically solve the GV
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.