ebook img

Graded Rings and Graded Grothendieck Groups PDF

244 Pages·2016·2.806 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Graded Rings and Graded Grothendieck Groups

LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES ManagingEditor:ProfessorM.Reid,MathematicsInstitute, UniversityofWarwick,CoventryCV47AL,UnitedKingdom Thetitlesbelowareavailablefrombooksellers,orfromCambridgeUniversityPressat http://www.cambridge.org/mathematics 312 Foundationsofcomputationalmathematics,Minneapolis2002, F.CUCKERetal(eds) 313 Transcendentalaspectsofalgebraiccycles, S.MÜLLER-STACH&C.PETERS(eds) 314 Spectralgeneralizationsoflinegraphs, D.CVETKOVIC,P.ROWLINSON&S.SIMIC 315 Structuredringspectra, A.BAKER&B.RICHTER(eds) 316 Linearlogicincomputerscience, T.EHRHARD,P.RUET,J.-Y.GIRARD&P.SCOTT(eds) 317 Advancesinellipticcurvecryptography, I.F.BLAKE,G.SEROUSSI&N.P.SMART(eds) 318 Perturbationoftheboundaryinboundary-valueproblemsofpartialdifferentialequations, D.HENRY 319 DoubleaffineHeckealgebras, I.CHEREDNIK 320 L-functionsandGaloisrepresentations, D.BURNS,K.BUZZARD&J.NEKOVÁRˇ(eds) 321 Surveysinmodernmathematics, V.PRASOLOV&Y.ILYASHENKO(eds) 322 Recentperspectivesinrandommatrixtheoryandnumbertheory, F.MEZZADRI&N.C.SNAITH(eds) 323 Poissongeometry,deformationquantisationandgrouprepresentations, S.GUTTetal(eds) 324 Singularitiesandcomputeralgebra, C.LOSSEN&G.PFISTER(eds) 325 LecturesontheRicciflow, P.TOPPING 326 ModularrepresentationsoffinitegroupsofLietype, J.E.HUMPHREYS 327 Surveysincombinatorics2005, B.S.WEBB(ed) 328 Fundamentalsofhyperbolicmanifolds, R.CANARY,D.EPSTEIN&A.MARDEN(eds) 329 SpacesofKleiniangroups, Y.MINSKY,M.SAKUMA&C.SERIES(eds) 330 Noncommutativelocalizationinalgebraandtopology, A.RANICKI(ed) 331 Foundationsofcomputationalmathematics,Santander2005, L.MPARDO,A.PINKUS,E.SÜLI& M.J.TODD(eds) 332 Handbookoftiltingtheory, L.ANGELERIHÜGEL,D.HAPPEL&H.KRAUSE(eds) 333 Syntheticdifferentialgeometry(2ndEdition), A.KOCK 334 TheNavier–Stokesequations, N.RILEY&P.DRAZIN 335 Lecturesonthecombinatoricsoffreeprobability, A.NICA&R.SPEICHER 336 Integralclosureofideals,rings,andmodules, I.SWANSON&C.HUNEKE 337 MethodsinBanachspacetheory, J.M.F.CASTILLO&W.B.JOHNSON(eds) 338 Surveysingeometryandnumbertheory, N.YOUNG(ed) 339 GroupsStAndrews2005I, C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 340 GroupsStAndrews2005II, C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 341 Ranksofellipticcurvesandrandommatrixtheory, J.B.CONREY,D.W.FARMER,F.MEZZADRI& N.C.SNAITH(eds) 342 Ellipticcohomology, H.R.MILLER&D.C.RAVENEL(eds) 343 AlgebraiccyclesandmotivesI, J.NAGEL&C.PETERS(eds) 344 AlgebraiccyclesandmotivesII, J.NAGEL&C.PETERS(eds) 345 Algebraicandanalyticgeometry, A.NEEMAN 346 Surveysincombinatorics2007, A.HILTON&J.TALBOT(eds) 347 Surveysincontemporarymathematics, N.YOUNG&Y.CHOI(eds) 348 Transcendentaldynamicsandcomplexanalysis, P.J.RIPPON&G.M.STALLARD(eds) 349 ModeltheorywithapplicationstoalgebraandanalysisI, Z.CHATZIDAKIS,D.MACPHERSON,A.PILLAY &A.WILKIE(eds) 350 ModeltheorywithapplicationstoalgebraandanalysisII, Z.CHATZIDAKIS,D.MACPHERSON, A.PILLAY&A.WILKIE(eds) 351 FinitevonNeumannalgebrasandmasas, A.M.SINCLAIR&R.R.SMITH 352 Numbertheoryandpolynomials, J.MCKEE&C.SMYTH(eds) 353 Trendsinstochasticanalysis, J.BLATH,P.MÖRTERS&M.SCHEUTZOW(eds) 354 Groupsandanalysis, K.TENT(ed) 355 Non-equilibriumstatisticalmechanicsandturbulence, J.CARDY,G.FALKOVICH&K.GAWEDZKI 356 EllipticcurvesandbigGaloisrepresentations, D.DELBOURGO 357 Algebraictheoryofdifferentialequations, M.A.H.MACCALLUM&A.V.MIKHAILOV(eds) 358 Geometricandcohomologicalmethodsingrouptheory, M.R.BRIDSON,P.H.KROPHOLLER& I.J.LEARY(eds) 359 Modulispacesandvectorbundles, L.BRAMBILA-PAZ,S.B.BRADLOW,O.GARCÍA-PRADA& S.RAMANAN(eds) 360 Zariskigeometries, B.ZILBER 361 Words:Notesonverbalwidthingroups, D.SEGAL 362 Differentialtensoralgebrasandtheirmodulecategories, R.BAUTISTA,L.SALMERÓN&R.ZUAZUA 363 Foundationsofcomputationalmathematics,HongKong2008, F.CUCKER,A.PINKUS&M.J.TODD(eds) 364 Partialdifferentialequationsandfluidmechanics, J.C.ROBINSON&J.L.RODRIGO(eds) 365 Surveysincombinatorics2009, S.HUCZYNSKA,J.D.MITCHELL&C.M.RONEY-DOUGAL(eds) 366 Highlyoscillatoryproblems, B.ENGQUIST,A.FOKAS,E.HAIRER&A.ISERLES(eds) 367 Randommatrices:Highdimensionalphenomena, G.BLOWER 368 GeometryofRiemannsurfaces, F.P.GARDINER,G.GONZÁLEZ-DIEZ&C.KOUROUNIOTIS(eds) 369 Epidemicsandrumoursincomplexnetworks, M.DRAIEF&L.MASSOULIÉ 370 Theoryofp-adicdistributions, S.ALBEVERIO,A.YU.KHRENNIKOV&V.M.SHELKOVICH 371 Conformalfractals, F.PRZYTYCKI&M.URBANSKI 372 Moonshine:Thefirstquartercenturyandbeyond, J.LEPOWSKY,J.MCKAY&M.P.TUITE(eds) 373 Smoothness,regularityandcompleteintersection, J.MAJADAS&A.G.RODICIO 374 Geometricanalysisofhyperbolicdifferentialequations:Anintroduction, S.ALINHAC 375 Triangulatedcategories, T.HOLM,P.JØRGENSEN&R.ROUQUIER(eds) 376 Permutationpatterns, S.LINTON,N.RUŠKUC&V.VATTER(eds) 377 AnintroductiontoGaloiscohomologyanditsapplications, G.BERHUY 378 Probabilityandmathematicalgenetics, N.H.BINGHAM&C.M.GOLDIE(eds) 379 Finiteandalgorithmicmodeltheory, J.ESPARZA,C.MICHAUX&C.STEINHORN(eds) 380 Realandcomplexsingularities, M.MANOEL,M.C.ROMEROFUSTER&C.T.CWALL(eds) 381 Symmetriesandintegrabilityofdifferenceequations, D.LEVI,P.OLVER,Z.THOMOVA& P.WINTERNITZ(eds) 382 Forcingwithrandomvariablesandproofcomplexity, J.KRAJÍCˇEK 383 Motivicintegrationanditsinteractionswithmodeltheoryandnon-ArchimedeangeometryI, R.CLUCKERS, J.NICAISE&J.SEBAG(eds) 384 Motivicintegrationanditsinteractionswithmodeltheoryandnon-ArchimedeangeometryII, R.CLUCKERS, J.NICAISE&J.SEBAG(eds) 385 EntropyofhiddenMarkovprocessesandconnectionstodynamicalsystems, B.MARCUS,K.PETERSEN& T.WEISSMAN(eds) 386 Independence-friendlylogic, A.L.MANN,G.SANDU&M.SEVENSTER 387 GroupsStAndrews2009inBathI, C.M.CAMPBELLetal(eds) 388 GroupsStAndrews2009inBathII, C.M.CAMPBELLetal(eds) 389 Randomfieldsonthesphere, D.MARINUCCI&G.PECCATI 390 Localizationinperiodicpotentials, D.E.PELINOVSKY 391 Fusionsystemsinalgebraandtopology, M.ASCHBACHER,R.KESSAR&B.OLIVER 392 Surveysincombinatorics2011, R.CHAPMAN(ed) 393 Non-abelianfundamentalgroupsandIwasawatheory, J.COATESetal(eds) 394 Variationalproblemsindifferentialgeometry, R.BIELAWSKI,K.HOUSTON&M.SPEIGHT(eds) 395 Howgroupsgrow, A.MANN 396 Arithmeticdifferentialoperatorsoverthep-adicintegers, C.C.RALPH&S.R.SIMANCA 397 Hyperbolicgeometryandapplicationsinquantumchaosandcosmology, J.BOLTE&F.STEINER(eds) 398 Mathematicalmodelsincontactmechanics, M.SOFONEA&A.MATEI 399 Circuitdoublecoverofgraphs, C.-Q.ZHANG 400 Densespherepackings:ablueprintforformalproofs, T.HALES 401 AdoubleHallalgebraapproachtoaffinequantumSchur–Weyltheory, B.DENG,J.DU&Q.FU 402 Mathematicalaspectsoffluidmechanics, J.C.ROBINSON,J.L.RODRIGO&W.SADOWSKI(eds) 403 Foundationsofcomputationalmathematics,Budapest2011, F.CUCKER,T.KRICK,A.PINKUS& A.SZANTO(eds) 404 Operatormethodsforboundaryvalueproblems, S.HASSI,H.S.V.DESNOO&F.H.SZAFRANIEC(eds) 405 Torsors,étalehomotopyandapplicationstorationalpoints, A.N.SKOROBOGATOV(ed) 406 Appalachiansettheory, J.CUMMINGS&E.SCHIMMERLING(eds) 407 Themaximalsubgroupsofthelow-dimensionalfiniteclassicalgroups, J.N.BRAY,D.F.HOLT& C.M.RONEY-DOUGAL 408 Complexityscience:theWarwickmaster’scourse, R.BALL,V.KOLOKOLTSOV&R.S.MACKAY(eds) 409 Surveysincombinatorics2013, S.R.BLACKBURN,S.GERKE&M.WILDON(eds) 410 Representationtheoryandharmonicanalysisofwreathproductsoffinitegroups, T.CECCHERINI-SILBERSTEIN,F.SCARABOTTI&F.TOLLI 411 Modulispaces, L.BRAMBILA-PAZ,O.GARCÍA-PRADA,P.NEWSTEAD&R.P.THOMAS(eds) 412 Automorphismsandequivalencerelationsintopologicaldynamics, D.B.ELLIS&R.ELLIS 413 Optimaltransportation, Y.OLLIVIER,H.PAJOT&C.VILLANI(eds) 414 AutomorphicformsandGaloisrepresentationsI, F.DIAMOND,P.L.KASSAEI&M.KIM(eds) 415 AutomorphicformsandGaloisrepresentationsII, F.DIAMOND,P.L.KASSAEI&M.KIM(eds) 416 Reversibilityindynamicsandgrouptheory, A.G.O’FARRELL&I.SHORT 417 Recentadvancesinalgebraicgeometry, C.D.HACON,M.MUSTAT¸A˘&M.POPA(eds) 418 TheBloch–KatoconjecturefortheRiemannzetafunction, J.COATES,A.RAGHURAM,A.SAIKIA& R.SUJATHA(eds) 419 TheCauchyproblemfornon-Lipschitzsemi-linearparabolicpartialdifferentialequations, J.C.MEYER& D.J.NEEDHAM 420 Arithmeticandgeometry, L.DIEULEFAITetal(eds) 421 O-minimalityandDiophantinegeometry, G.O.JONES&A.J.WILKIE(eds) 422 GroupsStAndrews2013, C.M.CAMPBELLetal(eds) 423 Inequalitiesforgrapheigenvalues, Z.STANIC´ 424 Surveysincombinatorics2015, A.CZUMAJetal(eds) 425 Geometry,topologyanddynamicsinnegativecurvature, C.S.ARAVINDA,F.T.FARRELL& J.-F.LAFONT(eds) 426 Lecturesonthetheoryofwaterwaves, T.BRIDGES,M.GROVES&D.NICHOLLS(eds) 427 RecentadvancesinHodgetheory, M.KERR&G.PEARLSTEIN(eds) 428 GeometryinaFréchetcontext, C.T.J.DODSON,G.GALANIS&E.VASSILIOU 429 Sheavesandfunctionsmodulop, L.TAELMAN 430 RecentprogressinthetheoryoftheEulerandNavier-Stokesequations, J.C.ROBINSON,J.L.RODRIGO, W.SADOWSKI&A.VIDAL-LÓPEZ(eds) 431 Harmonicandsubharmonicfunctiontheoryontherealhyperbolicball, M.STOLL 432 Topicsingraphautomorphismsandreconstruction(2ndEdition), J.LAURI&RSCAPELLATO 433 RegularandirregularholonomicD-modules, M.KASHIWARA&P.SCHAPIRA 434 Analyticsemigroupsandsemilinearinitialboundaryvalueproblems(2ndEdition), K.TAIRA 435 GradedringsandgradedGrothendieckgroups, R.HAZRAT LondonMathematicalSocietyLectureNoteSeries:435 Graded Rings and Graded Grothendieck Groups ROOZBEH HAZRAT WesternSydneyUniversity UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781316619582 ©RoozbehHazrat2016 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2016 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Names:Hazrat,Roozbeh,1971– Title:GradedringsandgradedGrothendieckgroups/RoozbehHazrat, UniversityofWesternSydney. Description:Cambridge:CambridgeUniversityPress,2016.|Series:London MathematicalSocietylecturenoteseries;435|Includesbibliographical referencesandindex. Identifiers:LCCN2016010216|ISBN9781316619582(pbk.:alk.paper) Subjects:LCSH:Grothendieckgroups.|Gradedrings.|Rings(Algebra) Classification:LCCQA251.5.H392016|DDC512/.4–dc23LCrecordavailable athttp://lccn.loc.gov/2016010216 ISBN978-1-316-61958-2Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyInternetWebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchWebsitesis,orwillremain, accurateorappropriate. Contents Introduction page1 1 Gradedringsandgradedmodules 5 1.1 Gradedrings 6 1.1.1 Basicdefinitionsandexamples 6 1.1.2 Partitioninggradedrings 10 1.1.3 Stronglygradedrings 14 1.1.4 Crossedproducts 16 1.1.5 Gradedideals 20 1.1.6 Gradedprimeandmaximalideals 22 1.1.7 Gradedsimplerings 23 1.1.8 Gradedlocalrings 25 1.1.9 GradedvonNeumannregularrings 26 1.2 Gradedmodules 28 1.2.1 Basicdefinitions 28 1.2.2 Shiftofmodules 28 1.2.3 TheHomgroupsandcategoryofgradedmodules 30 1.2.4 Gradedfreemodules 33 1.2.5 Gradedbimodules 34 1.2.6 Tensorproductofgradedmodules 35 1.2.7 Forgettingthegrading 36 1.2.8 Partitioninggradedmodules 37 1.2.9 Gradedprojectivemodules 41 1.2.10 Gradeddivisiblemodules 47 1.3 Gradingonmatrices 49 1.3.1 Gradedcalculusonmatrices 50 1.3.2 Homogeneousidempotentscalculus 58 1.3.3 Gradedmatrixunits 59 v vi Contents 1.3.4 Mixedshift 60 1.4 Gradeddivisionrings 64 1.4.1 Thezerocomponentringofgradedsimplering 71 1.5 StronglygradedringsandDade’stheorem 72 1.5.1 Invertiblecomponentsofstronglygradedrings 78 1.6 Gradingongraphalgebras 79 1.6.1 Gradingonfreerings 79 1.6.2 CornerskewLaurentpolynomialrings 81 1.6.3 Graphs 84 1.6.4 Leavittpathalgebras 85 1.7 ThegradedIBNandgradedtype 94 1.8 Thegradedstablerank 96 1.9 Gradedringswithinvolution 100 2 GradedMoritatheory 104 2.1 FirstinstanceofthegradedMoritaequivalence 105 2.2 Gradedgenerators 109 2.3 GeneralgradedMoritaequivalence 111 3 GradedGrothendieckgroups 122 3.1 ThegradedGrothendieckgroupKgr 124 0 3.1.1 Groupcompletions 124 3.1.2 Kgr-groups 126 0 3.1.3 Kgr ofstronglygradedrings 128 0 (cid:2) 3.1.4 ThereducedgradedGrothendieckgroupKgr 130 0 3.1.5 Kgr asaZ[Γ]-algebra 132 0 3.2 Kgr fromidempotents 132 0 3.2.1 Stabilityofidempotents 137 3.2.2 ActionofΓonidempotents 137 3.2.3 Kgr isacontinuousfunctor 138 0 3.2.4 TheHattori–Stallings(Chern)tracemap 139 3.3 Kgr ofgraded∗-rings 141 0 3.4 RelativeKgr-groups 142 0 3.5 Kgr ofnonunitalrings 145 0 3.5.1 Gradedinnerautomorphims 148 3.6 Kgr isapre-orderedmodule 149 0 3.6.1 Γ-pre-orderedmodules 149 3.7 Kgr ofgradeddivisionrings 152 0 3.8 Kgr ofgradedlocalrings 158 0 3.9 Kgr ofLeavittpathalgebras 160 0 3.9.1 K ofLeavittpathalgebras 161 0 Contents vii 3.9.2 ActionofZonKgr ofLeavittpathalgebras 163 0 3.9.3 Kgr of a Leavitt path algebra via its 0- 0 componentring 164 3.10 Ggr ofgradedrings 168 0 3.10.1 Ggr ofgradedArtinianrings 169 0 3.11 SymbolicdynamicsandKgr 172 0 3.12 Kgr-theory 177 1 4 GradedPicardgroups 180 4.1 Picgr ofagradedcommutativering 181 4.2 Picgr ofagradednoncommutativering 184 5 Gradedultramatricialalgebras,classificationviaKgr 192 0 5.1 Gradedmatricialalgebras 193 5.2 Gradedultramatricialalgebras,classificationviaKgr 198 0 6 Gradedversusnongraded(higher)K-theory 205 6.1 K∗gr ofpositivelygradedrings 206 6.2 ThefundamentaltheoremofK-theory 214 6.2.1 Quillen’sK-theoryofexactcategories 214 6.2.2 Basechangeandtransferfunctors 215 6.2.3 Alocalisationexactsequenceforgradedrings 216 6.2.4 Thefundamentaltheorem 217 6.3 RelatingK∗gr(A)toK∗(A0) 222 6.4 RelatingK∗gr(A)toK∗(A) 223 References 227 Index 232 Introduction A bird’s eye view of the theory of graded modules over a graded ring might give the impression that it is nothing but ordinary module theory with all its statementsdecoratedwiththeadjective“graded”.Oncethegradingisconsid- eredtobetrivial,thegradedtheoryreducestotheusualmoduletheory.From thisperspective,thetheoryofgradedmodulescanbeconsideredasanexten- sion of module theory. However, this simplistic overview might conceal the pointthatgradedmodulescomeequippedwithashift,thankstothepossibility ofpartitioningthestructuresandthenrearrangingthepartitions.Thisaddsan extralayerofstructure(andcomplexity)tothetheory.Thismonographfocuses onthetheoryofthegradedGrothendieckgroupKgr,thatprovidesasparkling 0 illustration of this idea. Whereas the usual K is an abelian group, the shift 0 provides Kgr with anatural structure ofa Z[Γ]-module, whereΓ is thegroup 0 used for the grading and Z[Γ] its group ring. As we will see throughout this book,thisextrastructurecarriessubstantialinformationaboutthegradedring. Let Γ and Δ be abelian groups and f : Γ → Δ a group homomorphism. Then for any Γ-graded ring A, one can consider a natural Δ-grading on A (see §1.1.2); in the same way, any Γ-graded A-module can be viewed as a Δ- gradedA-module.Theseoperationsinducefunctors U :GrΓ-A−→GrΔ-A, f (−)Ω :GrΓ-A−→GrΩ-AΩ, (see§1.2.8),whereGrΓ-AisthecategoryofΓ-gradedrightA-modules,GrΔ-A that of Δ-graded right A-modules, and GrΩ-A the category of Ω-graded right AΩ-modulewithΩ=ker(f). One aim of the theory of graded rings is to investigate the ways in which these categories relate to one another, and which properties of one category canbeliftedtoanother.Inparticular,inthetwoextremecaseswhenthegroup 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.