ebook img

Gottlieb and Whitehead center groups of projective spaces PDF

0.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gottlieb and Whitehead center groups of projective spaces

0 Gottlieb and Whitehead center groups of projective spaces 1 0 MAREKGOLASIN´SKI 2 JUNOMUKAI n a J 6 ByuseofSiegel’smethodandtheclassicalresultsofhomotopygroupsofspheres 2 andLie groups,we determinesomeGottlieb groupsofprojectivespacesor give the lower boundsof their orders. Furthermore, making use of the properties of ] T Whitehead products, we determine some Whitehead center groupsof projective A spaces. . h 55P05,55Q15,55Q40,55Q50,55R10;19L20 t a m [ Introduction 1 v 3 Let X beaconnectedandpointedspace. The k-thGottliebgroup G (X) of X hasbeen 6 k 6 definedin[11]. Thisisthesubgroupofthe k-thhomotopygroup π (X) containing all k 4 elementswhichcanberepresentedbyamapf :Sk → X suchthat f∨id : Sk∨X → X . X 1 extends (up to homotopy) to a map F : Sk × X → X, where Sk is the k-sphere. 0 0 Throughout thepaperwedonotdistinguish betweenamapanditshomotopy class. 1 : For k ≥ 1, define the k-th Whitehead center group or P-group Pk(X) ⊆ πk(X) of v i elements α ∈πk(X) suchthattheWhiteheadproduct [α,β] = 0 forall β ∈ πl(X) and X l ≥ 1. Then, G (X) ⊆ P (X) for all k ≥ 1 [11]. Furthermore, if X is a Hopf space, k k r a Gk(X) = Pk(X)= πk(X) forall k ≥ 1. Let ι be the generator of π (Sn) represented by the identity map of Sn. Given n n α ∈π (Sn), α ∈G (Sn) ifandonlyif [α,ι ]= 0. Wenotethat G (Sn)= P (Sn) [9], k k n k k [47]. Let R and C bethefieldsofrealsandcomplexnumbers,respectivelyand H theskew R-algebra of quaternions. Denote by FPn for the n-projective space over F. Put d = dim F,write i : FPk ֒→ FPn for k ≤ n theinclusion mapandwritesimply R k,n,FP i = i :Sd ֒→ FPn. F 1,n,FP ThepurposeofthisnoteistodeterminesomeGottlieband P-groupsof FPn. Ouridea is based on Lang’s result n!π2n+1(CPn) ⊆ G2n+1(CPn) [22], Barratt-James-Stein’s resultabouttheWhitehead products [−, i ] [3]. F 2 MarekGolasin´skiandJunoMukai ThemethodistouseSiegel’sresult[43],fibrationswith Sd(n+1)−1,FPn asbasespaces and the results on the homotopy groups of spheres [28], [32], [31], [45], [46], the classical groups[21],[25],[26],[27],[29],[30],[33],[34],[35],[36]. Forexample, Gk+n(RPn) ispartlydetermined and Pk+n(RPn) completely determined for n ≥ 2 and k ≤ 7. Weset P′k(FPn) = Pk(FPn)∩(γn∗πk(Sd(n+1)−1)) and P′k′(FPn) = Pk(FPn)∩iF∗(Eπk−1(Sd−1)). Notice that P′′(FPn) = 0 if d = 1,2 and k ≥ d + 1. We determine the fact that k P4n+3+k(HPn) = P′4n+3+k(HPn) ⊕ P′4′n+3+k(HPn) and the group P′4n+3+k(HPn) for 0 ≤k ≤ 10. Some particular cases of our results about the Gottlieb groups of FPn overlap with thoseof[23]and[41]. 1 Whitehead center groups of projective spaces Let EX be the suspension of a space X and denote by E : πk(X) → πk+1(EX) the suspension homomorphism. Write η ∈ π (S2), ν ∈ π (S4) and σ ∈ π (S8) for 2 3 4 7 8 15 theappropriate Hopfmaps, respectively. Weset ηn = En−2η2 ∈ πn+1(Sn) for n ≥ 2, νn = En−4ν4 ∈ πn+3(Sn) for n ≥ 4 and σn = En−8σ8 ∈ πn+7(Sn) for n ≥ 8. Note that νn for n ≥ 5 and σn for n ≥ 9 stand for generators of πn+3(Sn) ∼= Z24 and πn+7(Sn) ∼= Z240, respectively. By abuse of notaion, these are also used to represent generators ofthe 2-primarycomponents πn ∼= Z and πn ∼= Z ,respectively. n+3 8 n+7 16 Denoteby γ = γ : S(n+1)d−1 → FPn thequotient mapand by q = q : FPn → n n,F n n,F Sdn themappinching FPn−1 tothebasepoint. Then,asitiswellknown, (1−(−1)n)ι , if F = R, n (1.1) q γ = nη , if F = C, n n 2n   ±nν4n, if F = H. Let ∆ = ∆FP :πk(FPn)→ πk−1(Sd−1) betheconnecting map. By[3], ∆(iF∗E)= idπk−1(Sd−1) GottliebandWhiteheadcentergroupsofprojectivespaces 3 and πk(FPn) = γn∗πk(Sd(n+1)−1)⊕iF∗Eπk−1(Sd−1). By[14,Theorem(2.1)], (1.2) [ξ◦α,η◦β] = 0if[ξ,η] = 0(ξ ∈ π (X),η ∈ π (X),α ∈π (Sm),β ∈ π(Sn)). m n k l According to [47], a map f : X → Y is cyclic if f ∨ id : X ∨ Y → Y extends to Y F : X×Y → Y. Theextension F iscalled theassociated mapwith f [22]. Werecall from[43,Lemma2.1]and[47,Lemma1.3]: Lemma 1.1 (Siegel-Varadarajan) Letf : X → Y becyclic. Then,thecomposite f ◦g :W → Y iscyclicforanymapg :W → X. Thefollowingisobtained from(1.2)andLemma1.1: Lemma1.2 P (X)◦π (Sn)⊆ P (X) and G (X)◦π (Sn)⊆ G (X). n k k n k k By(1.2),[2,Corollary(7.4)] and[3,(4.1-3)],weobtainakeyformuladetermining the Whiteheadcentergroupsof FPn. Lemma 1.3 Let h α ∈ π (S2d(n+1)−3) bethe 0-thHopf-Hiltoninvariantfor α ∈ 0 k π (Sd(n+1)−1).Then: k 0, if nisodd, (1) [γ α,i ]= n R (−1)kγ (−2α+[ι ,ι ]◦h α), if niseven; n n n 0 (cid:26) 0, if nisodd, (2) [γ α,i ]= n C γn(η2n+1◦Eα+[ι2n+1,η2n+1]◦Eh0α), if niseven; (cid:26) (3) [γnα,iH]= ±(n+1)γn(ν4n+3◦E3α+[ι4n+3,ν4n+3]◦E3h0α). ′ Hereafter, we use the results and notations of [45] freely. Let ν and α (3) be the 1 generatorsofthe 2-primary π3 and 3-primary π (S3;3) componentsofπ (S3)∼= Z , 6 6 6 12 respectively. Set ω = ν′ + α (3) and α (n) = En−3α (3) for n ≥ 3. We use the 1 1 1 relations (1.3) [ι ,ι ]= 2ν −Eω 4 4 4 and En−3ω = 2ν for n ≥ 5. n 4 MarekGolasin´skiandJunoMukai Wewrite O(n), for F =R; O (n) = U(n), for F =C; F   Sp(n), for F =H, where O(n), U(n) and Sp(n) denote the Lie groups of the orthogonal, unitary and  symplectic n×n matrices, respectively. Furthermore, weset SO(n), for F = R; SO (n) = SU(n), for F = C; F   Sp(n), for F = H. Denote by in = in,F : SOF(n−1)֒→ SOF(n) and pn = pn,F : SOF(n) → Sdn−1 the inclusion and projection maps, respectively. Then, we consider the exact sequence inducedfromthefibration SO (n+1) S−O→F(n)Sd(n+1)−1: F (SFnk) ···−→πk+1(Sd(n+1)−1)−∆→F πk(SOF(n))−i→∗ πk(SOF(n+1))−p→∗ ··· , where i = i and p= p . n+1,F n+1,F Denote by r : U(n) → SO(2n), c : Sp(n) → SU(2n) the canonical map. Let J = JR : πk(SO(n)) → πk+n(Sn) be the J-homomorphism, JF : πk(SOF(n)) → πk+dn(Sdn) the complex or symplectic J-homomorphism defined as follows: JC = J ◦ r∗ : πk(SU(n)) → πk+2n(S2n) and JH = J ◦r∗ ◦c∗ : πk(Sp(n)) → πk+4n(S4n). Then, we seethat (1.4) Ed−1◦J ◦∆ = J◦∆ for ∆ = ∆ . F F R Letωn,R ∈ πn−1(O(n)), ωn,C ∈ π2n(U(n))and ωn,H ∈π4n+2(Sp(n)) bethecharacteris- ticelementsforappropriate bundles. Wenotethat ω = ω istheBlakeres-Massey’s 1,H element, ωn,R =∆(ιn), ωn,C = ∆C(ι2n+1) and ωn,H =∆H(ι4n+3). Asitiswell-known, (1.5) i2n+1,Rrωn,C = ω2n+1,R and i2n+1,Ccωn,H = ω2n+1,C. If ∆α = 0 for α ∈ π (Sn),thenthere exists alift [α] ∈ π (SO(n+1)) of α. Forthe k k inclusion im,n = im,n,R = in,R◦···◦im+1,R : SO(m)֒→ SO(n)(m ≤ n−1), weset [α] = i [α] ∈ π (SO(n)),where[α] ∈ π (SO(m))isaliftofα ∈ π (Sm−1). n m,n∗ k k k Noticethatπ (SO(4)) ={[η ] ,[ι ]} ∼= Z2andanyelementofπ (SO(4)) ∼= π (SO(3))⊕ 3 2 4 3 k k π (S3) isuniquelyrepresented bytwoelementsof π (S3): k k [η ] α+[ι ]β for α,β ∈ π (S3). 2 4 3 k GottliebandWhiteheadcentergroupsofprojectivespaces 5 Noticethatwecantake J[ι ] =ν and J[η ] = ω. 3 4 2 Definethesubgroups of πk(Sd(n+1)−1) and πk−1(Sd−1) asfollows: M (Sd(n+1)−1) =M (Sd(n+1)−1)= {α ∈ π (Sd(n+1)−1) |[γ α,i ] = 0}, k k,F k n F L′k−1(Sd−1) = L′k−1,n(Sd−1)= {β ∈ πk−1(Sd−1)| [iFEβ,iF] = 0}, L′k′−1(Sd−1) = L′k′−1,n(Sd−1) = {β ∈πk−1(Sd−1) |[iFEβ,γn] = 0} and Lk−1(Sd−1) = Lk−1,n(Sd−1) = L′k−1,n(Sd−1)∩L′k′−1,n(Sd−1). Wealsodefinethesubgroup Q (S3) of π (S3) by k k Q (S3) = {β ∈ π (S3) |hι ,βi = 0}, k k 3 where h−, −i standsfortheSamelsonproduct. ForanabeliangroupG,wedenoteby(G;p)itsp-component. Forexample,(π (Sn);p) = k π (Sn;p). k Wewrite ′Lkd−−11 =L′k−1(Sd−1;2), ′′Ldk−−11 = L′k′−1(Sd−1;2), Ldk−−11 = Lk−1(Sd−1;2), Pdk(n+1)−1 = Pk(Sd(n+1)−1;2), Qdk−−11 = Qk−1(Sd−1;2), Mkd(n+1)−1 = Mk(Sd(n+1)−1;2). Write (−,−) forthegreatest commondivisor. Example1.4 M4n+3,H(S4n+3)= (24,2n4+1)π4n+3(S4n+3); L′3′,n(S3) = (24,2n4+1)π3(S3) for n ≥1; Q (S3) = 12π (S3). 3 3 Weshowthefollowing,inwhich(6)wassuggested byK.Morisugi: Lemma1.5 (1) M (Sd(n+1)−1)◦π (Sk) ⊆ M (Sd(n+1)−1), k m m L′k−1(Sd−1)◦πm−1(Sk−1) ⊆ L′m−1(Sd−1), L′k′−1(Sd−1)◦πm−1(Sk−1) ⊆ L′m′−1(Sd−1), Lk−1(Sd−1)◦πm−1(Sk−1) ⊆ Lm−1(Sd−1) andQk(S3)◦πm(Sk)⊆ Qm(S3); (2) L′k′−1,n(S3)= E−4n−3(Ker(n+1)ν4n+3∗),where ν4n+3∗ :πk+4n+2(S4n+6) → πk+4n+2(S4n+3) istheinducedhomomorphism.Inpartic- ular,L′ (S3) ⊆L′′ (S3) for n odd; k−1,n k−1,n (3) Qk−1(S3)= L′k−1,n(S3) forn≥ 2; 6 MarekGolasin´skiandJunoMukai (4)Letn ≥ 2.Then,L′ (S3;3) ⊆ L′′ (S3;3) and k−1 k−1 L′k−1(S3;p) = L′k′−1(S3;p) = πk−1(S3;p) foranoddprimep ≥5; (5) iH∗Pk(S4) ⊆ iH∗EQk−1(S3);Moreover, iH∗Pk(S4)= iH∗EQk−1(S3) providedthat2E4Qk−1(S3) =0; (6) L′k′−1,n(S3)= πk−1(S3) forn ≥ 1 if 5 ≤ k ≤ 4n+2. Proof. Since hι ,β◦δi = hι ,βi◦E3δ [18,(6.3)],thelastof(1)follows. Therestof 3 3 (1)isadirectconsequence of(1.2). Bytheproperties ofWhitehead products [48]andLemma1.3(3), (−1)k[iHEβ,γn]= [γn,iHEβ] = [γn,iH]◦E4n+3β = ±(n+1)γnν4n+3E4n+3β. Thisleadstothefirstof(2). If [Eβ,ι ] = 0,then [Eβ,ν ]= 0 (1.2). Thisleadstothe 4 4 secondof(2)for n =1. Since i ◦ν = 0for n ≥ 2 and [Eβ,ι ] = (2ν −Eω)◦E4β, H 4 4 4 therelation i [Eβ,ι ]= 0 implies i E(ωE3β) = 0,andso ωE3β = 0. Hence, H 4 H (△) 2ν4n+3E4n+3β = 0 and (n+1)ν4n+3E4n+3β = 0 forodd n ≥ 3. Thisleadstothesecondof(2)for n ≥ 2. Since hι ,βi = hι ,ι i◦E3β = ωE3β,weobtain(3). 3 3 3 (△) for β ∈ πk−1(S3;3) implies β ∈ L′k′−1(S3;3) andthefirsthalfof(4). Thesecond halfisadirectconsequence ofthedefinitionof L′ (Sd−1) and L′′ (Sd−1). k−1 k−1 Werecall πk(S4)= Eπk−1(S3)⊕ν4∗πk(S7). Suppose that β = Eβ1 +ν4β2 ∈ Pk(S4) for β1 ∈ πk−1(S3) and β2 ∈ πk(S7). Then, bytherelation i β = i Eβ ,weobtain H H 1 0 = i [ι ,β] = i [ι ,Eβ ] = (i E)(ωE3β ). H 4 H 4 1 H 1 Thisimpliestheinclusion Pk(S4) ⊆ EQk−1(S3)⊕ν4∗πk(S7) andleadstothefirsthalf of(5). Ontheotherhand,for β ∈ Qk−1(S3),weobtain [ι4,Eβ] = 2ν4E4β = 0 bythe assumption. Thismeans EQk−1(S3)⊆ Pk(S4) andleadstothesecondhalfof(5). We have ν4n+3E4n+3β = J([ι3]4n+3β). By the fact that πk−1(S3) is finite for k 6= 4 and Z, if k ≡ 0(mod 4); πk−1(SO(4n+3)) ∼= Z2, if k ≡ 1,2(mod 8);   0, if k ≡ 3,5,6,7 (mod 8) if k ≤ 4n+2 [6],wehave(6)for k 6≡ 1,2(mod 8).  GottliebandWhiteheadcentergroupsofprojectivespaces 7 Assume that ν4n+3E4n+3β 6= 0 for k ≡ 1 (mod 8). Then, in view of [21, Lemma 2], wehave ν4n+3E4n+3β = J([ι3]4n+3β) = J(δ′ηk−2), where δ′ ∈ πk−2(SO(4n+3)) is a generator. Since J : πk−1(SO(4n+3)) → πk+4n+2(S4n+3) is a monomorphism, weobtain δ′ηk−2 = [ι3]4n+3β. By[7,Theorem 1.1], δ′ηk−2 has the SO(6)-of-origin. Thisisacontradiction andleadsto(6)for k ≡ 1(mod 8). By the parallel argument, we have the assertion for k ≡ 2 (mod 8) This leads to (6) andcompletestheproof. Another proof of Lemma 1.5(6). Toconsider k ≡ 1,2 (mod 8), write (according to Adams’notations[1]) j fortheimageofthegeneratorin π (SO) under J : π (SO) → r r r πrS. First, assume that ν4n+3E4n+3β 6= 0 for k ≡ 1 (mod 8). Then, in view of [21, Lemma 2], we have ν4n+3E4n+3β = νE∞β = jk−2η and jk−2η2 generates the J- imageof π (SO) ∼=π (SO(4n+3)) ∼= Z . Ontheotherhand,by[45,Proposition3.1], k k 2 β ∧η2 = E2(βηk−1) = η5E3β. This and the relation νη = 0 imply a contradictory relation jk−2η2 = νE∞(βη) =νηE∞β = 0. Now, assume that ν4n+3E4n+3β 6= 0 for 5 ≤ k ≤ 4n with k ≡ 2 (mod 8). Then, by [21, Lemma 2], ν4n+3E4n+3β = νE∞β = νE∞β = jk−1. By the relation ([45, Proposition 3.1]) (1.6) ν4∧β = ν7E7β = (E4β)νk+3, wegetforthestableTodabracket < jk−1,η,2ι >=<νE∞β,η,2ι >=<(E∞β)ν,η,2ι > ⊇ (E∞β) < ν,η,2ι >≡ 0(mod 2πS ). k−1 Ontheotherhand,by[1,Corollary11.7]and[24,TheoremB.v)],wededucethat πS k−1 containsthedirectsummandZ8 whichisgeneratedby< jk−1,j3,24ι > .(Wepointout that[24,TheoremB.v)]hasamisprint. Itshouldbe e(ρ)= 2−p(j) (mod 2−p(j)−1).) j Because, j1 = η, 12j3 = η3 and jk−1 = jk−3◦η2,wederive < jk−3,j3,24ι >⊆<jk−3,12j3,2ι >=< jk−3,η3,2ι >⊇< jk−1,η,2ι > . Thus, < jk−3,j3,24ι >≡< jk−1,η,2ι > (mod2π8Ss+3). Thisisacontradiction withtheabovewhichleadstotheassertion. Now,weshow: 8 MarekGolasin´skiandJunoMukai Proposition1.6 P′k(FPn)= γn∗(Pk(Sd(n+1)−1)∩Mk(Sd(n+1)−1)) and P′k′(FPn)= iF∗(ELk−1(Sd−1)). Proof. For an element α ∈ π (Sd(n+1)−1), it holds that [γ α,γ ] = 0 if and only if k n n [α,ιd(n+1)−1]= 0. Thisleadstothefirsthalf. Next, for an element β ∈ πk−1(Sd−1), it holds that iFEβ ∈ P′′(FPn) if and only if β ∈ Lk−1(Sd−1). Thisleadstothesecondhalfandcompletestheproof. We recall the order of [ι ,α] for α = ι ,η ,η2,Eω (n = 4),ν ,ν2,Eσ′ (n = 8) and n n n n n n σ [9]. n 1, if n= 1,3,7, (1.7) ♯[ι ,ι ]= 2, if n isodd and n6= 1,3,7, n n   ∞, if n iseven;  1, if n≡ 3(mod4), n = 2orn = 6, (1.8) ♯[ι ,η ]= n n 2, ifotherwise; (cid:26) 1, if n ≡2,3(mod4), (1.9) ♯[ι ,η2]= n n 2, ifotherwise; (cid:26) (1.10) ♯[ι ,Eω] = 6; 4 1, if n ≡ 7(mod8), n = 2i−3 ≥ 5, 2, if n ≡ 1,3,5(mod8) ≥ 9, n6= 2i−3, (1.11) ♯[ιn,νn]=  12, if n ≡ 2(mod4) ≥ 6,n = 4,12,    24, if n ≡ 0(mod4) ≥ 8, n 6=12;    (1.12) ♯[ι ,ν2]= 1ifandonlyifn ≡ 4,5,7(mod8)orn = 2i−5fori≥ 4; n n (1.13) ♯[ι ,Eσ′]= 60; 8 GottliebandWhiteheadcentergroupsofprojectivespaces 9 1, ifn = 11, n≡ 15(mod16), 2, ifn ≡ 1(mod2) ≥ 9, n6= 11, n 6≡ 15(mod16), (1.14) ♯[ιn,σn]=  120, ifn = 8,    240, ifn ≡ 0(mod2) ≥ 10.    Weshow: Lemma1.7 (1) M (Sd(2n+2)−1)= π (Sd(2n+2)−1) forF = R,C; k k (2)(i) Eπk−1(S2n−1)∩Ker2ι2n∗ ⊆ Mk,R(S2n),where2ι2n∗ : πk(S2n)→ πk(S2n)isthe inducedhomomorphism; Mk,R(S2n) =Ker2ι2n∗ ifk ≤ 4n−2; (ii) Eπk−1(S4n)∩E−1(Kerη4n+1∗) ⊆Mk,C(S4n+1),whereη4n+1∗ :πk+1(S4n+2) → πk+1(S4n+1) ; Mk,C(S4n+1) = E−1(Kerη4n+1∗) ifk ≤ 8n; (iii) Eπk−1(S4n+2) ∩ E−3(Ker (n + 1)ν4n+3∗) ⊆ Mk,H(S4n+3), where ν4n+3∗ : πk+3(S4n+6)→ πk+3(S4n+3); Mk,H(S4n+3) = E−3(Ker(n+1)ν4n+3∗) ifk ≤ 8n+4. Inparticular,M (S4n+3) = π (S4n+3) ifn+1 ≡ 0(mod 24); k,H k (iv) Eπk−1(S8n+2)∩E−3(Ker(2n+1)ν8n+3∗) ⊆ Mk,H(S8n+3); Mk,H(S8n+3) = E−3(Ker(2n+1)ν8n+3∗) if k ≤ 16n+4; (v) Mk,H(S8n+7) = E−3(Ker2(n+1)ν8n+7∗); (3) [ι2n,ι2n] ∈ M4n−1,R(S2n); (4) M (S2) = π (S2) exceptk = 2 andM (S2)= 0; k,R k 2,R (5) Pk+2n(S2n) ⊆ Mk+2n,R(S2n) ifk ≤ 2n−2; (6)(i) P (S8n+3;p) = M (S8n+3;p) = π (S8n+3;p) foranoddprimep≥ 5; k k,H k (ii) M (S8n+3;3) = π (S8n+3;3) ifn ≡ 1(mod 3). k,H k 8π8n+3, if k = 0; 8n+3 (7) M8n+3 = π8n+3 , if k = 1,2,4,5,7,8,9,10; k+8n+3  k+8n+3  2πk8+n+8n3+3, if k = 3,6. Proof. (1)isadirectconsequence ofLemma1.3(1);(2). By Lemma1.3(1), Eα ∈ M (S2n) if and only if 2Eα = 2ι ◦Eα = 0. This leads k,R 2n tothefirsthalfof(2)-(i). ThesecondhalfisobtainedfromtheFreudenthalsuspension theorem. By Lemma 1.3(2), Eα ∈ Mk,C(S4n+1) if and only if η4n+1E2α = 0 for α ∈πk−1(S4n). Thisleadsto(2)-(ii). 10 MarekGolasin´skiandJunoMukai ByLemma1.3(3), Eα∈ Mk,H(S4n+2) ifandonlyif (n+1)ν4n+3E4α = 0. Thisleads to (2)-(iii). By the parallel argument, we have (2)-(iv). By Lemma 1.3(3) and the relation [ι8n+7,ν8n+7] = 0 (1.11),weobtain(2)-(v). (3)isadirectconsequence of[13,Proposition 2]. By Lemma 1.3(1), [γ ,i ] = −2γ and [γ η ,i ] = 0. This implies M (S2) = 0 2 R 2 2 2 R 2,R and η ∈ M (S2). ByLemma1.5(1), π (S2) = η ◦π (S3) ⊆ M (S2). Thisleads 2 3,R k 2 k k,R to(4). Suppose that Eα ∈ P2n+k(S2n). Then, 0 = [ι2n,Eα] = [ι2n,ι2n] ◦ E2nα. By the fact that H[ι2n,ι2n] = ±2ι4n−1 for the Hopf homomorphism H : π4n−1(S2n) → π4n−1(S4n−1),wehave 0 = H[ι2n,ι2n]◦E2nα = 2E2nα. Since E2n−1 : πk+2n(S2n) → πk+4n−1(S4n−1) isanisomorphism, weobtain 2Eα = 0. Hence,(2)-(i)leadsto(5). Since s[ι8n+3,α] = 0 for s = 2,p and tα1(8n + 3)E3α = 0 for t = 3,p. This leads to (6)-(i). The assumption on n implies 2n + 1 ≡ 0 (mod 3). We have u[ι8n+3,ν8n+3]◦E3h0(α) = 0 for u= 2,3. Thisleadsto(6)-(ii). Next, we show (7). By Lemma 1.3(3), we get that α ∈ M8n+3 if and only if k+8n+3 ν8n+3E3α = 0. Hence, M88nn++33 = 8π88nn++33 and in view of the relation ν6η9 = 0 [45, (5.9)],wegetthat M8n+3 = π8n+3 for k = 1,2. k+8n+3 k+8n+3 Because π88nn++63 = {ν8n+3} and ♯ν82n+3 = 2,wederivethat M88nn++63 = 2π88nn++63. Trivially, M8n+3 = M8n+3 = 0. 8n+7 8n+8 Since ♯ν3 = 2 and π8n+3 = {ν2 },wehave M8n+3 = 2π8n+3 = 0. 8n+3 8n+9 8n+3 8n+9 8n+9 Because π88nn++130 = {σ8n+3},inviewoftherelation ν11σ14 = 0[45,(7.20)],wededuce M8n+3 = π8n+3 . 8n+10 8n+10 Invirtueoftherelation [45,(7.17)and(7.18)] (1.15) ν ε = ν ν¯ = [ι ,ν2], 6 9 6 9 6 6 we obtain ν ε = ν ν¯ = 0. So we get M8n+3 = π8n+3 . Trivially, M8n+3 = 7 10 7 10 8n+11 8n+11 8n+12 π8n+3 . 8n+12 Finally,[45,(5.9)]leadsto M8n+3 = π8n+3 andtheproofiscompleted. 8n+13 8n+13 By Lemma 1.7 and the fact that η53 = 12ν5, η5ν6 = 0, πn+6(Sn) = {νn2} ∼= Z2 for n ≥5,weobtain: Example1.8 M7,C(S5) = 0,M12,C(S9)= π12(S9) and M4n+6,H(S4n+3) = (2,n2+1)π4n+6(S4n+3).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.