ebook img

Goal-Directed Proof Theory PDF

273 Pages·2000·1.206 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Goal-Directed Proof Theory

DOV GABBAY ANDNICOLA OLIVETTI GOAL-DIRECTED PROOF THEORY FOREWORD Thisbookcontainsthebeginningsofourresearchprogramintogoal-directedde- duction. The idea of presenting logics in a goal-directed way was conceived in 1984 when the first author was teaching logic at Imperialcollege, London. The aimwastoformulatetheentireclassicallogicina goal-directedprolog-likeway seethebook[Gabbay,1981]and[Gabbay,1998]. Thisformulationforbothclas- sical and intuitionistic logic was successful and gave rise to an early version of the Restart rule and N-Prolog, the first extension of Horn clause programming with hypotheticalimplication (1984–1985). Since that time, severalauthorsand researchgroupshaveadoptedthegoal-directedmethodologyeitherasafavourite deductionsystemforsomespecificlogicorasafavouriteextensionofProlog. Inthisbookwepresentgoal-directeddeductionasamethodologytobeapplied tothemajorfamiliesofnon-classicallogics. Fromthepointofviewofautomated deduction,whatmakesgoal-directednessadesirablepresentationisthatitdrasti- callyreducesthenon-determinisminproofsearch.Moreover,agoal-directedpro- cedureis by definition capableof focussing on the relevantdata for the proofof thegoal,ignoringtherest. Evenifthismayseemaminorpointinsmalltheorem- provingexamples, it is a most importantfeature if non-classicallogics are to be usedtospecifydeductivedatabasesorlogicprograms. Whenevertheset ofdata compriseshundredsof formulas,mostofwhichareirrelevanttothe proofofthe currentgoal, one cannotjust randomlyselect a formulaof the data to processat thenextstep. Heregoal-focusingorgoal-directednessmethodsbecomeessential. Furthermore,asweshallseeinthisbook,theproofsystemswepresentarenot just of interest in the pursue of automatization, but also for theoretical reasons. Ourpresentationhighlightaproceduralinterpretationoflogicalsystems. Thereis acommonnatureofalldeductivesystemsmadeofproceduralrules,anddifferent proof systems can be seen as procedural variants, or perturbation, of the same deductionalgorithm. We do not try to give a general definition or pattern of goal-directedness, it wouldberatherartificialasdefiningwhatisasequentcalculusoratableausystem in general. Nevertheless, all sequent calculi or tableaux methods have a family resemblancewhichjustifytheappellationofamethodasa‘tableaumethod’even withoutaformaldefinitionofthisconcept.Thesameholdstruewithgoal-directed proofmethodspresentedinthisbook. Thisbookis only the beginningof ourresearchprogram. It demonstratesthe thepossiblityofdevelopinggoal-directedproofproceduresforavarietyoflogical iv GOAL-DIRECTEDPROOFTHEORY systemsrangingoverintuitionistic, intermediate,modalandsubstructurallogics. Ourfutureresearchtopicsarediscussedinthelastchapter. We hopewe presentedenoughmaterialin this volumeto enable the readerto applythismethodologytohisownfavouritelogicsystem. Thebookisdirectedto researcher,undergraduateorgraduatestudentswithat least an elementary knowledge of classical logic and some non-classical logics, suchasmodallogics. Itcanbeusedin acourseonnon-classicallogicandauto- mateddeduction,complementingstandardpresentationsofnon-classicallogicand proof-theory. DovM.Gabbay NicolaOlivetti London,February2000 Acknowledgements WearegratefultoMatteoBaldoni,MarcelloD’Agostino,LauraGiordano,Alberto Martelli, PierangeloMiglioli, DanieleMundici,AlessandraRusso, LucaVigano`, SergeiVorobyovforvaluablediscussionsandcomments. We are indebted to Agata Ciabattoni and Ulrich Endrissfor carefully reading andcommentingonthemanuscript. SpecialthanksareduetoBobMeyerandAlasdairUrquhartforvaluableexpla- nationandinformationonrelevantlogics. ThanksalsotoRoyDyckhoffandJamesHarlandforprovidinguswithrelevant materialforthebook. Thesecondauthorgratefullyacknowledgesthesupportandencouragementof allhiscolleaguesoftheLogicProgrammingandAutomated-ReasoningGroupof theUniversityofTorino. MoreoverheexpresshisgratitudetoHansTompitsand thestaffoftheKnowledgeBasedSystemGroupatViennaUniversityofTechnol- ogyforhavinginvitedhimto holdaone-termcourseonthesubjectofthisbook in May 1999. He thanks the students who took part for fruitful discussion and remarks. Finally we would like to thank Mrs Jane Spurr, King’s College Publications Manager,forherusualefficiency,dedicationandexcellenceinproducingthefinal manuscript. The second author was partially supported in this research by a six-month fellowship from the Italian Consiglio Nazionale delle Ricerche, Comitato per le Scienzematematiche,in1997. CONTENTS CHAPTER1 INTRODUCTION 1 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 ASURVEYOFGOAL-DIRECTEDMETHODS . . . . . . . . . . . 6 3 GOAL-DIRECTEDSYSTEMSARECUT-FREE . . . . . . . . . . . 14 4 ANOUTLINEOFTHEBOOK . . . . . . . . . . . . . . . . . . . . 15 5 NOTATIONANDBASICNOTIONS . . . . . . . . . . . . . . . . . 16 CHAPTER2 INTUITIONISTICANDCLASSICALLOGICS 21 1 ALTERNATIVEPRESENTATIONSOFINTUITIONISTICLOGIC . 21 2 RULESFORINTUITIONISTICIMPLICATION . . . . . . . . . . . 26 2.1 SoundnessandCompleteness . . . . . . . . . . . . . . . . . . . . 28 2.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 BOUNDEDRESOURCEDEDUCTIONFORIMPLICATION . . . 33 3.1 BoundedRestartRuleforIntuitionisticLogic . . . . . . . . . . . . 39 3.2 RestartRuleforClassicalLogic . . . . . . . . . . . . . . . . . . . 47 3.3 SomeEfficiencyConsideration . . . . . . . . . . . . . . . . . . . . 54 4 CONJUNCTIONANDNEGATION . . . . . . . . . . . . . . . . . . 58 5 DISJUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6 THE8;!-FRAGMENTOFINTUITIONISTICLOGIC . . . . . . . 78 CHAPTER3 INTERMEDIATELOGICS 93 1 LOGICSOFBOUNDEDHEIGHTKRIPKEMODELS . . . . . . . 94 2 DUMMETT–GO¨DELLOGICLC . . . . . . . . . . . . . . . . . . . 99 2.1 UnlabelledProcedurefortheImplicationalFragmentofLC . . . . 102 2.2 SoundnessandCompleteness . . . . . . . . . . . . . . . . . . . . 107 3 RELATIONWITHAVRON’SHYPERSEQUENTS. . . . . . . . . . 111 CHAPTER4 MODALLOGICSOFSTRICTIMPLICATION 117 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 2 PROOFSYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3 ADMISSIBILITYOFCUT. . . . . . . . . . . . . . . . . . . . . . . 123 4 SOUNDNESSANDCOMPLETENESS . . . . . . . . . . . . . . . . 126 5 SIMPLIFICATIONFORSPECIFICSYSTEMS . . . . . . . . . . . . 132 5.1 SimplificationforK,K4,S4,KT:DatabasesasLists . . . . . . . . 133 5.2 SimplificationforK5,K45,S5:DatabasesasClusters . . . . . . . 138 0 GOAL-DIRECTEDPROOFTHEORY 6 ANINTUITIONISTICVERSIONOFK5,K45,S5,KB,KBT . . . . 142 7 EXTENDINGTHELANGUAGE . . . . . . . . . . . . . . . . . . . 146 7.1 Conjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.2 ModalHarropFormulas . . . . . . . . . . . . . . . . . . . . . . . 148 7.3 ExtensiontotheWholePropositionalLanguage . . . . . . . . . . . 152 8 AFURTHERCASESTUDY:MODALLOGICG. . . . . . . . . . . 158 9 EXTENSIONTOHORNMODALLOGICS . . . . . . . . . . . . . 162 10 COMPARISONWITHOTHERWORK . . . . . . . . . . . . . . . . 164 CHAPTER5 SUBSTRUCTURALLOGICS 171 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 2 PROOFSYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 3 BASICPROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . . 178 4 ADMISSIBILITYOFCUT. . . . . . . . . . . . . . . . . . . . . . . 181 5 SOUNDNESSANDCOMPLETENESS . . . . . . . . . . . . . . . . 192 5.1 SoundnesswithRespecttoFineSemantics . . . . . . . . . . . . . 195 6 EXTENDINGTHELANGUAGETOHARROPFORMULAS . . . . 202 6.1 Routley–MeyerSemantics,SoundnessandCompleteness . . . . . . 206 7 ADECISIONPROCEDUREFORIMPLICATIONALR . . . . . . . 220 8 AFURTHERCASESTUDY:THESYSTEMRM0 . . . . . . . . . . 231 9 RELATIONWITHOTHERAPPROACHES. . . . . . . . . . . . . . 244 CHAPTER6 CONCLUSIONSANDFURTHERWORK 249 1 AMOREGENERALVIEWOFOURWORK . . . . . . . . . . . . 249 2 FUTUREWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 INDEX 265 CHAPTER1 INTRODUCTION 1 INTRODUCTION This book is about goal-directed proof-theoretical formulations of non-classical logics. It evolved from a response to the existence of two camps in the applied logic(computerscience/artificialintelligence)community. Therearethosemem- berswhobelievethatthenewnon-classicallogicsarethemostimportantforap- plicationsandthatclassicallogicitselfisnolongerthemainworkhorseofapplied logicandtherearethosewhomaintainthatclassicallogicistheonlylogicworth consideringand that within classical logic the Horn clause fragmentis the most important. ThebookpresentsauniformProlog-likeformulationofthelandscapeofclas- sicalandnon-classicallogics,doneinsuchawaythatthedistinctionsandmove- mentsfromonelogic to anotherseem simple andnatural; and withinit classical logic becomes just one among many. This should please the non-classical logic camp. Itwillalsopleasetheclassicallogiccampsincethegoal-directedformula- tionmakesitalllooklikeanalgorithmicextensionoflogicprogramming. Thespectacularriseinnon-classicallogicanditsroleincomputerscienceand artificial intelligence was fuelled by the fact that more and more computational ‘devices’ were needed to help the human at his work and satisfy his needs. To makesucha‘device’moreeffectiveinanapplicationarea,alogicalmodelofthe mainfeature ofhumanbehaviourin that area was needed. Thuslogicalanalysis of human behaviour became part of applied computer science. Such study and analysisofhumanactivityisnotnew. Philosophersandpurelogicianshavealso beenmodellingsuchbehaviours,andinfact, havealreadyproducedmanyofthe non-classical logics used in computer science. Typical examples are modal and temporallogics. Theyhavebeenappliedextensivelyinphilosophyandlinguistics aswellasincomputerscienceandartificialintelligence. Thelandscapeofnon-classicallogicsapplicationsincomputerscienceandar- tificialintelligenceiswideandvaried.Modalandtemporallogicshavebeenprof- itablyappliedtoverificationandspecificationofconcurrentsystems[Mannaand Pnueli, 1981; Pnueli, 1981]. In the area of artificial intelligence as well as dis- tributedsystems,theproblemofreasoningaboutknowledge,beliefandactionhas receivedmuchattention; modallogics[Turner,1985;HalpernandMoses, 1990] have been seen to provide the formal language to represent this type of reason- ing. Relevance logics have been applied in natural language understanding and 1 2 GOAL-DIRECTEDPROOFTHEORY database updating [Martins and Shapiro, 1988]. Lambek’s logic [1958] and its extensionsarecurrentlyusedfornaturallanguageprocessing. Anothersourceof interestinnon-classicallogics,andinparticularintheso-calledsubstructurallog- ics(withtheprominentcaseoflinearlogic[Girard,1987])hasoriginatedfromthe functionalinterpretationprovidedby the Curry–Howard’sisomorphism between formulasandtypesin functionallanguages(see [Hindley,1997]foranintroduc- tionandreferencestherein,seealsoalso[Wansing,1990;GabbayanddeQueiroz, 1992]). In parallel with the theoretical study of the logics mentioned above and their applications, there has been a considerableamountof work on their automation. The area of non-classical theorem-provingis growing rapidly, although it is yet notasdevelopedasclassicaltheoremproving. Althoughthereisawidevarietyoflogics,wecangrouptheexistingmethodolo- giesforautomateddeductionintoafewcategories.Mostoftheideasandmethods fornon-classicaldeductionhavebeenderivedfromtheirclassicalcounterpart.We haveanalyticmethodssuchastableaux,systemsbasedonsequentcalculi,meth- odswhichextendandreformulateclassicalresolution,translationbasedmethods, andgoal-directedmethods. Wecanroughlydistinguishtwoparadigmsofdeduction:human-orientedproof methodsversusmachine-orientedproofmethods.Wecancalladeductionmethod human-oriented if, in principle, the formal deduction follows closely the way a humandoesit. Inotherwords,wecanunderstandhowadeductionproceedsand, more precisely, how each intermediate step is related to the original deductive query. With machine-orientedproofmethodsthisrequirementis notmandatory: the originaldeductive task might be translated and encodedeven in another for- malism. The intermediate steps of a computationmight have no directly visible relationshipwiththeoriginalproblem. According to this distinction, natural deduction, tableaux and sequent calculi areexamplesofthehuman-orientedparadigm,whereasresolutionandtranslation- basedmethodsarebetterseenasexamplesofthemachineorientedparadigm. In particularresolutionmethodsrequireustotransformthequestion‘doesQfollow from (cid:1)?’, into the question ‘is (cid:1)(cid:3) [fQ(cid:3)g consistent?’, where (cid:1)(cid:3) and Q(cid:3) are preprocessednormalforms of (cid:1) andQ. Steppingfrom(cid:1) and Q to (cid:1)(cid:3) and Q(cid:3) onemayloseinformationinvolvedintheoriginal(cid:1)andQ.Moreover,thenormal formsmay be natural only from the machine implementationpoint of view, and notsupportedbythehumanwayofreasoning. Machine-oriented proof methods are more promising from the point of view ofefficiencythanhuman-orientedproofmethods. Afterall,efficiency,uniformity andreductionofthesearchspacewerethemainmotivationbehindtheintroduction ofresolution. Thebasicfeaturesofgoal-directedmethodsarethat: theyarehumanoriented and they are a generalization of logic programming style of deduction. Goal- directedmethodscanbeseenasanattempttofillthegapbetweenthetwoparadigms: ontheonehand,theymaintaintheperspicuityofhuman-orientedproofmethods, 1.INTRODUCTION 3 ontheotherhand,theyarenottoofarfromanefficientimplementation. Thereis anotherreasontobeinterestedingoal-directedproofsearch. Althoughwegener- allyspeakaboutdeduction,thereareseveraldifferenttasks/problemswhichcanbe qualifiedasdeductive. Thesedifferenttasksmightbetheoreticallyreducibleone toeachother,butamethodoranalgorithmtosolveonedoesnotnecessarilyapply successfullytoanother. Tomakethispointmoreconcrete,assumewearedealing withagivenlogicalsystemL(sayclassical,orintuitionisticlogic,ormodallogic S4),weusethesymbol‘tomeanboththeoremhoodandconsequencerelationin thatlogic.Comparethefollowingproblems: 1. given a formula A we want to know whether ‘ A, that is whether A is a theoremofL; 2. we are given a set Γ containing10,000formulasand a formulaA and we wanttoknowwhetherΓ‘A; 3. we are given a set of formulas Γ and we are asked to generate all atomic propositionswhichareentailedbyΓ; 4. WearegivenaformulaAandasetofformulasΓsuchthatΓ 6‘ A. Weare askedtofindasetofatomicpropositionsS suchthatΓ[S ‘A. The list of problems/tasks might continue. We call the first problem ‘theorem- proving’. The second problem is close to deductive-database query answering. The third problem/task may occur when we want to revise a knowledge-baseor a state description as an effect of some new incoming information. The fourth problem is involved in abductive reasoning and, in practice, one would impose various constraints on possible solution sets S. It is not difficult to see that the second,thirdandfourthproblemsare reducibleto thefirstone. An algorithmto determinetheoremhoodcanbeusedtosolvetheotherproblemsaswell. Suppose we haveVan efficient theorem prover P. Problem 2 can be reduced to check the theorem Γ ! A. Thus, we can feed P with this huge formula, run it and get an answer. However it might be that the formulasof Γ have a particular simple formatand,mostimportantly,onlyaverysmallsubsetofthem(say10formulas) arerelevanttoobtaintheproofofA. EvenifourtheoremproverPhasanoptimal complexity in the size of the data (Γ+A), we would rather prefer a deduction methodwhichis,inprinciple,capableofconcentratingonthedatainΓwhichare relevanttotheproofofAandignoretherest. The theorem prover can be usedVto solve also Problem 3: just enumerate all atomicformulaspi,checkwhether Γ !pi,giveasoutputtheatomicformulas forwhichtheanswerisyes. Itislikelythattherearebettermethodstoaccomplish this task! For instance in the case that Γ is a set of Horn clauses, one can use a bottom-upevaluation;moregenerally,onewouldtrytogeneratethissetincremen- tallybyasaturationprocedure. Thetheorem-provercanbeusedtosolveProblem4inanonV-deterministicway: guess a set S and check by the theorem-proverwhether Γ^ S ! A. Again,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.